File: poly.scm

package info (click to toggle)
jacal 1c7-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,068 kB
  • sloc: lisp: 6,489; sh: 419; makefile: 315
file content (715 lines) | stat: -rw-r--r-- 22,118 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
;; JACAL: Symbolic Mathematics System.        -*-scheme-*-
;; Copyright 1989, 1990, 1991, 1992, 1993, 1995, 1997 Aubrey Jaffer.
;;
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or (at
;; your option) any later version.
;; 
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; General Public License for more details.
;; 
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, write to the Free Software
;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.


;;;Functions which operate on polynomials as polynomials
;;;have prefix POLY:
;;;Functions which operate on polynomials with the same major variable
;;;have prefix UNIV:
;;;Functions which operate on scalar coefficients
;;;have prefix COEF:

(require 'modular)
(require 'common-list-functions)

;;; *MODULUS* (defined in "toploads.scm") is the modulus for the
;;; coefficient ring used by polynomials.  It gets dynamically bound
;;; using FLUID-LET.

;;(proclaim '(optimize (speed 3) (compilation-speed 0)))

(define (coef:invertable? k) (modular:invertable? *modulus* k))
(define (coef:invert j) (modular:invert *modulus* j))
(define (poly:0? n) (eqv? 0 n))
(define (poly:1? n) (eqv? 1 n))
(define (divides? a b) (zero? (remainder b a)))

(define (sign a) (if (negative? a) -1 1))

;;; poly is the internal workhorse data type in the form
;;; of numeric or list (var coeff0 coeff1 ...)
;;; where var is a variable and coeffn is the coefficient of var^n.
;;; coeffn is poly.  The variables are arranged reverse alphabetically
;;; with z higher order than A.

(define (univ:one? p var)
  (if (not (eqv? (car p) var)) (jacal:found-bug 'expecting var 'univ p))
  (and (= (length p) 2) (= (cadr p) 1)))
(define (univ:zero? p)
  (and (= (length p) 2) (zero? (cadr p))))
(define (univ:const? p)
  (and (= (length p) 2) (number? (cadr p)) (cadr p)))

;;; Degree of already normalized p
(define (univ:deg p)
  (- (length p) 2))

;;; Return a polynomial in variable v if given a number, otherwise
;;; returns its first argument.
(define (number->poly a v)
  (if (number? a) (list v a) a))

(define (poly:find-var? poly var)
  (poly:find-var-if? poly (lambda (x) (eqv? var x))))

(define (poly:find-var-if? poly proc)
  (cond ((number? poly) #f)
	((proc (car poly)))
	(else (some (lambda (x) (poly:find-var-if? x proc)) (cdr poly)))))

;;; This can call proc more than once per var
(define (poly:for-each-var proc poly)
  (cond ((number? poly))
	(else
	 (proc (car poly))
	 (for-each (lambda (b) (poly:for-each-var proc b))
		   (cdr poly)))))

;;;POLY:VARS returns a list of all vars used in POLY
(define (poly:vars poly)
  (let ((elts '()))
    (poly:for-each-var (lambda (v) (set! elts (adjoin v elts))) poly)
    elts))

(define (poly:total-degree poly)
  (if (number? poly)
      0
      (do ((lst (cdr poly) (cdr lst))
	   (tdg 0 (+ 1 tdg))
	   (mxdg 0 (max mxdg (+ tdg (poly:total-degree (car lst))))))
	  ((null? lst) mxdg))))

(define (poly:poly? p)
  (and (pair? p) (poly:var? (car p))))

(define (poly:univariate? p)
  (and (poly:poly? p) (every number? (cdr p))))

(define (poly:multivariate? p)
  (and (poly:poly? p) (not (every number? (cdr p)))))

;;;; the following functions are for internal use on the poly data type

;;; this normalizes short polys.
(define (univ:norm0 var col)
  (cond ((null? col) 0)
	((null? (cdr col)) (car col))
	(else (cons var col))))

(define (map-no-end-0s proc l)
  (if (null? l)
      l
      (let ((first (proc (car l)))
	    (rest (map-no-end-0s proc (cdr l))))
	(if (and (null? rest) (eqv? 0 first))
	    rest
	    (cons first rest)))))
(define (map2c-no-end-0s proc l1 l2)
  (cond ((null? l1) l2)
	((null? l2) l1)
	(else
	 (let ((first (proc (car l1) (car l2)))
	       (rest (map2c-no-end-0s proc (cdr l1) (cdr l2))))
	   (if (and (null? rest) (eqv? 0 first))
	       rest
	       (cons first rest))))))

(define (ipow-by-squaring x n acc proc)
  (cond ((zero? n) acc)
	((eqv? 1 n) (proc acc x))
	(else (ipow-by-squaring (proc x x)
				(quotient n 2)
				(if (even? n) acc (proc acc x))
				proc))))

(define (poly:add-scalar scalar p2)
  (if (zero? scalar) p2
      (poly:add-const scalar p2)))
(define (poly:add-const term p2)
  (cons (car p2) (cons (poly:+ term (cadr p2)) (cddr p2))))
(define (poly:+ p1 p2)
  (cond ((and (number? p1) (number? p2)) (modular:+ *modulus* p1 p2))
	((number? p1) (poly:add-scalar p1 p2))
	((number? p2) (poly:add-scalar p2 p1))
	((eq? (car p1) (car p2))
	 (univ:norm0 (car p1) (map2c-no-end-0s poly:+ (cdr p1) (cdr p2))))
	((var:> (car p2) (car p1)) (poly:add-const p1 p2))
	(else (poly:add-const p2 p1))))
(define (univ:+ p1 p2)
  (cons (car p1) (map2c-no-end-0s poly:+ (cdr p1) (cdr p2))))

;;; UNIV:* is called from POLY:*.  If *MODULUS* has 0-divisors, an
;;; unnormalized polynomial may be returned (leading 0 coefficients).

(define (univ:* p1 p2)
  (let ((res (make-list (+ (length (cdr p1)) (length (cdr p2)) -1) 0)))
    (do ((rpl res (cdr rpl))
	 (a (cdr p1) (cdr a)))
	((null? a) (cons (car p1) res))
      (do ((b (cdr p2) (cdr b))
	   (rp rpl (cdr rp)))
	  ((null? b))
	(set-car! rp (poly:+ (poly:* (car a) (car b)) (car rp)))))))
(define (poly:times-scalar scalar p2)
  (cond ((zero? scalar) 0)
	((eqv? 1 scalar) p2)
	(else (poly:times-const scalar p2))))
(define (poly:times-const term p2)
  (cons (car p2) (map (lambda (x) (poly:* term x)) (cdr p2))))
(define (poly:* p1 p2)
  (cond ((and (number? p1) (number? p2)) (modular:* *modulus* p1 p2))
	((number? p1) (poly:times-scalar p1 p2))
	((number? p2) (poly:times-scalar p2 p1))
	((eq? (car p1) (car p2)) (univ:* p1 p2))
	((var:> (car p2) (car p1)) (poly:times-const p1 p2))
	(else (poly:times-const p2 p1))))

(define (poly:negate p) (poly:* -1 p))
(define (poly:- p1 p2) (poly:+ p1 (poly:negate p2)))

;;; Divide coefficients by a scalar
(define (univ/scalar a c)
  (cons (car a) (map (lambda (x) (quotient x c)) (cdr a))))

(define (univ:/? u v)
  (let ((r (list->vector (cdr u)))
	(m (length (cddr u)))
	(n (length (cddr v)))
	(vn (univ:lc v))
	(q '()))
    (do ((k (- m n) (+ -1 k))
	 (qk (poly:/? (vector-ref r m) vn)
	     (and (> k 0) (poly:/? (vector-ref r (+ n k -1)) vn))))
	((not qk)
	 (and (< k 0)
	      (do ((k (+ -2 n) (+ -1 k)))
		  ((or (< k 0) (not (poly:0? (vector-ref r k))))
		   (< k 0)))
	      (univ:norm0 (car u) q)))
      (set! q (cons qk q))
      (let ((qk- (poly:negate qk)))
	(do ((j (+ n k -1) (+ -1 j)))
	    ((< j k))
	  (vector-set! r j (poly:+
			    (vector-ref r j)
			    (poly:* (list-ref v (+ (- j k) 1)) qk-))))))))

;;; POLY:/? returns U / V if V divides U, otherwise returns #f
(define (poly:/? u v)
  (cond ((equal? u v) 1)
	((eqv? 0 u) 0)
	((number? v)
	 (cond ((poly:0? v) #f)
;;;	       ((unit? v) (poly:* u v))
	       ((coef:invertable? v) (poly:* u (coef:invert v)))
	       ((number? u) (and (divides? v u) (quotient u v)))
	       (else (univ:/? u (const:promote (car u) v)))))
	((number? u) #f)
	((eq? (car u) (car v)) (univ:/? u v))
	((var:> (car u) (car v))
	 (univ:/? u (const:promote (car u) v)))
	(else #f)))

(define (univ:/ dividend divisor)
  (or (univ:/? dividend divisor)
      (math:error divisor 'does-not-udivide- dividend)))

(define (poly:/ dividend divisor)
  (or (poly:/? dividend divisor)
      (math:error divisor 'does-not-divide- dividend)))

(define (univ:monomial coeff n var)
  (cond ((eqv? 0 coeff) 0)
	((>= 0 n) coeff)
	(else
	 (cons var
	       ((lambda (x) (set-car! (last-pair x) coeff) x)
		(make-list (+ 1 n) 0))))))

(define (poly:degree p var)
  (cond ((number? p) 0)
	((eq? var (car p)) (length (cddr p)))
	((var:> var (car p)) 0)
	(else (reduce-init (lambda (m c) (max m (poly:degree c var)))
			   0
			   (cdr p)))))

(define (poly:leading-coeff p var) (poly:coeff p var (poly:degree p var)))

(define (poly:^ x n)
  (if (number? x)
      (expt x n)			; (ipow-by-squaring x n 1 *)
      (ipow-by-squaring x n 1 poly:*)))

;;;; Routines used in normalizing IMPL polynomials

(define (univ:lc p)
  (car (last-pair p)))

(define (leading-number p)
  (if (number? p) p (leading-number (univ:lc p))))

;;; This canonicalizes polys with respect to units by forcing the
;;; numerical coefficient of a certain term to always be positive.  In
;;; the case of finite field coefficients, the polynomial is made
;;; monic.
(define (unitcan p)
  (cond ((zero? *modulus*)
	 (if (negative? (leading-number p)) (poly:negate p) p))
	((number? p)
	 (math:warn 'unitcan 'of p)
	 p)
	(else (univ:make-monic p))))

(define (shorter? x y) (< (length x) (length y)))

(define (univ:degree p var)
  (if (or (number? p) (not (eq? (car p) var))) 0 (length (cddr p))))

;;; THE NEXT SEVERAL ROUTINES FOR SUBRESULTANT GCD ASSUME THAT THE
;;; ARGUMENTS ARE POLYNOMIALS WITH THE SAME MAJOR VARIABLE.  THESE TWO
;;; ROUTINES ASSUME THAT THE FIRST ARGUMENT IS OF GREATER OR EQUAL
;;; ORDER THAN THE SECOND.
;;; These algorithms taken from:
;;; Knuth, D. E.,
;;; The Art Of Computer Programming, Vol. 2: Seminumerical Algorithms,
;;; Addison Wesley, Reading, MA 1969.
;;; Pseudo Remainder

;;; This returns a list of the pseudo quotient and pseudo remainder.
(define (univ:pdiv u v)
  (let* ((r (list->vector (cdr u)))
	 (m (length (cddr u)))
	 (n (length (cddr v)))
	 (vn (univ:lc v))
	 (q (make-vector (+ (- m n) 1) 1)))
    (do ((tt (- (- m n) 1) (+ -1 tt))
	 (k 1 (+ 1 k))
	 (vnp 1))
	((< tt 0))
      (set! vnp (poly:* vnp vn))
      (vector-set! q k vnp)
      (vector-set! r tt (poly:* (vector-ref r tt) vnp)))
    (do ((k (- m n) (+ -1 k))
	 (rnk 0))
	((< k 0))
      (set! rnk (poly:negate (vector-ref r (+ n k))))
      (do ((j (+ n k -1) (+ -1 j)))
	  ((< j k))
	(vector-set! r j (poly:+ (poly:* (vector-ref r j) vn)
				 (poly:* (list-ref v (+ (- j k) 1)) rnk)))))
    (list
     (do ((k (- m n) (+ -1 k))
	  (end '() (cons (poly:* (vector-ref r (+ n k))
				 (vector-ref q k)) end)))
	 ((zero? k) (univ:norm0 (car u) (cons (vector-ref r n) end))))
     (do ((j (+ -1 n) (+ -1 j))
	  (end '()))
	 ((< j 0) (univ:norm0 (car u) end))
       (if (not (and (null? end) (eqv? 0 (vector-ref r j))))
	   (set! end (cons (vector-ref r j) end)))))))

;;; POLY:PDIV returns a list of the pseudo-quotient and pseudo-remainder
(define (poly:pdiv dividend divisor var)
  (let ((pd1 (poly:degree dividend var))
	(pd2 (poly:degree divisor var)))
    (cond ((< pd1 pd2) (list 0 dividend))
	  ((zero? (+ pd1 pd2))
	   (list (quotient dividend divisor) (remainder dividend divisor)))
	  ((zero? pd1) (list 0 dividend))
	  ((zero? pd2)
;;; This should work but doesn't.
;;;	   (map univ:demote (univ:pdiv (poly:promote var dividend)
;;;				       (const:promote var divisor)))
	   (list 0 dividend))
	  (else
	   (map univ:demote (univ:pdiv (poly:promote var dividend)
				       (poly:promote var divisor)))))))
(define (poly:prem dividend divisor var)
  (let ((pd1 (poly:degree dividend var))
	(pd2 (poly:degree divisor var)))
    (cond ((< pd1 pd2) dividend)
	  ((zero? (+ pd1 pd2)) (remainder dividend divisor))
	  ((zero? pd1) dividend)
	  ((zero? pd2)
;;; Does this work?
;;;	   (univ:demote (univ:prem (poly:promote var dividend)
;;;				   (const:promote var divisor)))
	   dividend)
	  (else
	   (univ:demote (univ:prem (poly:promote var dividend)
				   (poly:promote var divisor)))))))

(define (univ:prem u v)
  (let* ((r (list->vector (cdr u)))
	 (m (length (cddr u)))
	 (n (length (cddr v)))
	 (vn (univ:lc v)))
    (do ((k (- (- m n) 1) (+ -1 k))
	 (vnp 1))
	((< k 0))
      (set! vnp (poly:* vnp vn))
      (vector-set! r k (poly:* (vector-ref r k) vnp)))
    (do ((k (- m n) (+ -1 k))
	 (rnk 0))
	((< k 0))
      (set! rnk (poly:negate (vector-ref r (+ n k))))
      (do ((j (+ n k -1) (+ -1 j)))
	  ((< j k))
	(vector-set! r j (poly:+ (poly:* (vector-ref r j) vn)
				 (poly:* (list-ref v (+ (- j k) 1)) rnk)))))
    (do ((j (+ -1 n) (+ -1 j))
	 (end '()))
	((< j 0) (univ:norm0 (car u) end))
      (if (and (null? end) (eqv? 0 (vector-ref r j)))
	  #f
	  (set! end (cons (vector-ref r j) end))))))

;;; Pseudo Remainder Sequence
(define (univ:prs u v)
  (let ((var (car u))
	(g 1)
	(h 1)
	(delta 0))
    (do ((r (univ:prem u v) (univ:prem u v)))
	((eqv? 0 (univ:degree r var))
	 (if (eqv? 0 r) v r))
      (set! delta (- (univ:degree u var) (univ:degree v var)))
      (set! u v)
      (set! v (univ:/ r (const:promote (car r) (poly:* g (poly:^ h delta)))))
      (set! g (univ:lc u))
      (set! h (cond ((eqv? 1 delta) g)
		    ((zero? delta) h)
		    (else (poly:/ (poly:^ g delta)
				  (poly:^ h (+ -1 delta)))))))))

(define (univ:gcd u v)
  (let* ((cu (univ:cont u))
	 (cv (univ:cont v))
	 (c (poly:gcd cu cv))
	 (ppu (poly:/ u cu))
	 (ppv (poly:/ v cv))
	 (ans (if (shorter? ppv ppu)
		  (univ:prs ppu ppv)
		  (univ:prs ppv ppu))))
    (if (zero? (univ:degree ans (car u)))
	c
	(poly:* c (univ:primpart ans)))))

(define (poly:gcd p1 p2)
  (cond ((equal? p1 p2) p1)
	((and (number? p1) (number? p2)) (gcd p1 p2))
	((number? p1) (if (poly:0? p1) p2 (apply poly:gcd* p1 (cdr p2))))
	((number? p2) (if (poly:0? p2) p1 (apply poly:gcd* p2 (cdr p1))))
	((eq? (car p1) (car p2))
	 (cond ((zero? *modulus*) (univ:gcd p1 p2))
	       (else (univ:fgcd p1 p2))))
	((var:> (car p2) (car p1)) (apply poly:gcd* p1 (cdr p2)))
	(else (apply poly:gcd* p2 (cdr p1)))))

(define (poly:gcd* . li)
  (let ((nums (remove-if-not number? li)))
    (if (null? nums)
	(reduce poly:gcd li)
	(let ((gnum (reduce gcd nums)))
	  (if (= 1 gnum) 1
	      (reduce-init poly:gcd gnum (remove-if number? li)))))))

(define (univ:cont p) (apply poly:gcd* (cdr p)))
(define (univ:primpart p) (poly:/ p (univ:cont p)))
(define (poly:num-cont p)
  (if (number? p)
      p
      (do ((l (cdr p) (cdr l))
	   (n (poly:num-cont (cadr p))
	      (gcd n (poly:num-cont (cadr l)))))
	  ((or (= 1 n) (null? (cdr l))) n))))
(define (poly:primpart p) (poly:/ p (poly:num-cont p)))

;;; Returns the sign of the leading coefficient of univariate poly p
(define (u:unitz p) (sign (univ:lc p)))

;;; Returns the sign of the leading coefficient of the polynomial p.
(define (poly:unitz p var)
  (sign (leading-number (poly:leading-coeff p var))))

(define (poly:primative? poly var)
  (unit? (apply poly:gcd* (cdr (poly:promote var poly)))))

(define (u:primz p)
  (univ/scalar p (* (u:unitz p) (univ:cont p))))

;;; Primitive part of a multivariate polynomial p, with respect to var.
(define (poly:primz p var)
  (if (number? p)
      (abs p)
      (unitcan (poly:/ p (univ:cont p)))))

(define (list-ref? l n)
  (cond ((null? l) #f)
	((zero? n) (car l))
	(else (list-ref? (cdr l) (+ -1 n)))))

(define (univ:coeff p ord) (or (list-ref? (cdr p) ord) 0))
(define (poly:coeff p var ord)
  (cond ((or (number? p) (var:> var (car p)))
	 (if (zero? ord) p 0))
	((eq? var (car p)) (univ:coeff p ord))
	(else
	 (univ:norm0 (car p)
		     (map-no-end-0s (lambda (c) (poly:coeff c var ord))
				    (cdr p))))))

(define (poly:subst0 old e) (poly:coeff e old 0))

(define const:promote list)

(define (poly:promote var p)
  (if (eq? var (car p))
      p
      (let ((dgr (poly:degree p var)))
	(do ((i dgr (+ -1 i))
	     (ol (list (poly:coeff p var dgr))
		 (cons (poly:coeff p var (+ -1 i)) ol)))
	    ((zero? i) (cons var ol))))))

;;;this is bummed if v has higher priority than any variable in (cdr p)
(define (univ:demote p)
  (if (number? p)
      p
    (let ((v (car p)))
      (if (every (lambda (cof) (or (number? cof) (var:> v (car cof))))
		 (cdr p))
	  p
	(poly:+ (cadr p)
		(do ((trms (cddr p) (cdr trms))
		     (sum 0)
		     (mon (list v 0 1) (cons v (cons 0 (cdr mon)))))
		    ((null? trms) sum)
		    (set! sum (poly:+ sum (poly:* mon (car trms))))))))))

(define (poly:cabs p)
  (cond ((number? p) (abs p))
	((poly:find-var? p %i)
	 (^ (apply poly:+
		   (map (lambda (x) (poly:* x x))
			(cdr (poly:promote %i p))))
	    _1/2))
	(else (deferop _abs p))))

(define (poly:valid? p)
  (if (number? p) #t
      (let ((var (car p)))
	(every (lambda (q) (poly:valid1 q var))
	       (cdr p)))))

(define (poly:valid1 p var)
  (cond ((number? p) #t)
	((var:> var (car p)) (every (lambda (p) (poly:valid1 p var))
				    (cdr p)))
	(else
	 (display-diag "poly:valid detected that ")
	 (math:print var)
	 (display-diag " <= some var in ")
	 (math:print p)
	 (newline-diag)
	 #f)))

(define (sylvester p1 p2 var)
  (set! p1 (poly:promote var p1))
  (set! p2 (poly:promote var p2))
  (let ((d1 (univ:degree p1 var))
	(d2 (univ:degree p2 var))
	(m (list)))
    (do ((i d1 (+ -1 i))
	 (row (nconc (make-list (+ -1 d1) 0) (reverse (cdr p2)))
	      (append (cdr row) (list 0))))
	((<= i 1) (set! m (cons row m)))
      (set! m (cons row m)))
    (do ((i d2 (+ -1 i))
	 (row (nconc (make-list (+ -1 d2) 0) (reverse (cdr p1)))
	      (append (cdr row) (list 0))))
	((<= i 1) (set! m (cons row m)))
      (set! m (cons row m)))
    m))

;;; Bareiss's integer preserving gaussian elimination.
;;; Bareiss, E.H.: Sylvester's identity and multistep
;;; integer-preserving Gaussian elimination. Mathematics of
;;; Computation 22, 565-578, 1968.
;;; as related by:
;;; Akritas, A.G.: Exact Algorithms for the Matrix-Triangulation
;;; Subresultant PRS Method.  Computers and Mathematics, 145-155.
;;; Springer Verlag, 1989.
(define (bareiss m)
  4)

(define (poly:resultant p1 p2 var)
  (let ((u1 (poly:promote var p1))
	(u2 (poly:promote var p2)))
    (or (not (zero? (univ:degree u1 var)))
	(not (zero? (univ:degree u2 var)))
	(math:error var 'does-not-appear-in- p1 'or- p2))
    (let ((res (cond ((zero? (univ:degree u1 var)) p1)
		     ((zero? (univ:degree u2 var)) p2)
		     ((shorter? u1 u2) (univ:prs u2 u1))
		     (else (univ:prs u1 u2)))))
      (if (zero? (univ:degree res var)) res
	  0))))

(define (poly:elim2 p1 p2 var)
  (cond (math:trace
	 (display-diag "eliminating: ")
	 (display-diag (var:sexp var))
	 (display-diag " from:")
	 (newline-diag)
	 (let ((grm (get-grammar 'standard)))
	   (math:write (poleqn->licit p1) grm)
	   (math:write (poleqn->licit p2) grm))))
  (let* ((u1 (poly:promote var p1))
	 (u2 (poly:promote var p2))
	 (pg (poly:gcd (univ:lc u1) (univ:lc u2))))
    (or (not (zero? (univ:degree u1 var)))
	(not (zero? (univ:degree u2 var)))
	(math:error var 'does-not-appear-in- p1 'or- p2))
    (let* ((res (cond ((zero? (univ:degree u1 var)) p1)
		      ((zero? (univ:degree u2 var)) p2)
		      ((shorter? u1 u2) (univ:prs u2 u1))
		      (else (univ:prs u1 u2))))
	   (e (if (zero? (univ:degree res var)) res 0)))
      (set! res (if (number? pg)
		    e
		    (let ((q (poly:/ e pg)))
		      (if (number? q) e (univ:primpart q)))))
      (cond (math:trace (display-diag 'yielding:)
			(newline-diag)
			(math:write res (get-grammar 'standard))))
      res)))

(define (poly:modularize modulus poly)
  (if (number? poly)
      (modular:normalize modulus poly)
      (let ((coeffs (map-no-end-0s (lambda (x) (poly:modularize modulus x))
				   (cdr poly))))
	(if (null? coeffs) 0 (cons (car poly) coeffs)))))

;;;; UNIV:F routines for polynomials with (finite) field coefficients.

;;; This returns a list of the quotient and remainder.
;;; After Knuth Vol 2. 4.6.1 Algorithm D.
(define (univ:fdiv u v)
  (let* ((r (list->vector (cdr u)))
	 (m (length (cddr u)))
	 (n (length (cddr v)))
	 (vni (coef:invert (univ:lc v)))
	 (q '()))
    (do ((k (- m n) (+ -1 k))
	 (rnk 0))
	((< k 0))
      (set! q (cons (poly:* vni (vector-ref r (+ n k))) q))
      (set! rnk (poly:negate (car q)))
      (do ((j (+ n k -1) (+ -1 j)))
	  ((< j k))
	(vector-set! r j (poly:+ (vector-ref r j)
				 (poly:* (list-ref v (+ (- j k) 1)) rnk)))))
    (list (univ:norm0 (car u) q)
	  (do ((j (+ -1 n) (+ -1 j))
	       (end '()))
	      ((< j 0) (univ:norm0 (car u) end))
	    (if (and (null? end) (eqv? 0 (vector-ref r j)))
		#f
		(set! end (cons (vector-ref r j) end)))))))

(define (univ:frem u v)
  (let* ((r (list->vector (cdr u)))
	 (m (length (cddr u)))
	 (n (length (cddr v)))
	 (vni (poly:negate (coef:invert (univ:lc v)))))
    (do ((k (- m n) (+ -1 k))
	 (rnk 0))
	((< k 0))
      (set! rnk (poly:* vni (vector-ref r (+ n k))))
      (do ((j (+ n k -1) (+ -1 j)))
	  ((< j k))
	(vector-set! r j (poly:+ (vector-ref r j)
				 (poly:* (list-ref v (+ (- j k) 1)) rnk)))))
    (do ((j (+ -1 n) (+ -1 j))
	 (end '()))
	((< j 0) (univ:norm0 (car u) end))
      (if (and (null? end) (eqv? 0 (vector-ref r j)))
	  #f
	  (set! end (cons (vector-ref r j) end))))))

;;; Remainder Sequence for Polynomials with a Coefficient Field
(define (univ:frs u v)
  (let ((var (car u)))
    (do ((r (univ:frem u v) (univ:frem u v)))
	((eqv? 0 (univ:degree r var))
	 (if (eqv? 0 r) v r))
      (set! u v)
      (set! v r))))

(define (univ:fgcd u v)
  (let* ((ans (if (shorter? v u)
		  (univ:frs u v)
		  (univ:frs v u))))
    (if (zero? (univ:degree ans (car u)))
	1				; (list (car u) 1)
	(univ:make-monic ans))))

(define (univ:make-monic p)
  (poly:* p (coef:invert (univ:lc p))))

;;;; VERIFICATION TESTS
(define (poly:test)
  (define a (sexp->var 'a))
  (define b (sexp->var 'b))
  (define c (sexp->var 'c))
  (define x (sexp->var 'x))
  (define y (sexp->var 'y))
  (test (list a 0 -2)
	poly:gcd
	(list a 0 -2)
	(list a 0 0 -2))
  (test (list x (list a 0 1) 1)
	poly:gcd
	(list x (list a 0 0 -1) 0 1)
	(list x (list a 0 0 1) (list a 0 2) 1))
  (test (list x 0 (list a 0 1))
	poly:gcd
	(list x 0 (list a 0 0 1))
	(list x 0 0 (list a 0 1)))
  (test (list x (list b 0 0 1) 0 (list b 1 2) (list a 0 1) 1)
	poly:resultant
	(list y (list x (list b 0 1) 0 1) (list x 0 1))
	(list y (list x 1 (list a 0 1)) 0 1)
	y)
  (test (list y (list b 0 0 1) 0 (list b 1 2) (list a 0 1) 1)
	poly:resultant
	(list y (list b 0 1) (list x 0 1) 1)
	(list y (list x 1 0 1) (list a 0 1))
	x)
  (cond ((provided? 'bignum)
	 (test 1
	       poly:gcd
	       (list x -5 2 8 -3 -3 1 1)
	       (list x 21 -9 -4 5 3))
	 (test 1
	       poly:gcd
	       (list x -5 2 8 -3 -3 0 1 0 1)
	       (list x 21 -9 -4 0 5 0 3))))
  'done)