File: anti-diff.scm

package info (click to toggle)
jacal 1c8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,064 kB
  • sloc: lisp: 6,648; sh: 419; makefile: 315
file content (176 lines) | stat: -rw-r--r-- 6,397 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
;; "anti-diff.scm" rational-function anti-derivative.	-*-scheme-*-
;; Copyright 2020, 2023 Aubrey Jaffer
;;
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or (at
;; your option) any later version.
;;
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, write to the Free Software
;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

(require 'common-list-functions)

;; returns a list of unsquared factors of increasing power.
(define (sqfr-splits c var)
  (define splitter (poly:diff c var))
  (cond ((not (number? splitter))
	 (let ((d '())
	       (aj '())
	       (bi (poly:gcd c splitter)))
	   (do ((b bi (poly:/ b d))
		(a (poly:/ c bi) d))
	       ((number? b)
		(reverse (cons a aj)))
	     (set! d (poly:gcd a b))
	     (set! aj (cons (poly:/ a d) aj)))))
	((number? c) (list c))
	(else (list (univ:demote c)))))

;; The inverse of sqfr-splits.  Returns the product of increasing
;; powers of list of factors fcts.
(define (powfacts fcts)
  (let lp ((fcts fcts) (n 1) (acc 1))
    (cond ((null? fcts) acc)
	  (else
	   (lp (cdr fcts)
	       (+ 1 n)
	       (poly:* (ipow-by-squaring (car fcts) n 1 poly:*)
		       acc))))))

(define (rat:integrate dnmf L var ver)
  (define dY (normalize (diff (var->expl ver) var)))
  (define Q (denom dY))
  (define Qxd (poly:degree Q var))
  (define N (reduce-init poly:* 1 dnmf))
  (define M
    (let ((M 0) (j 0))
      (if math:debug (math:print 'dnmf= dnmf))
      (for-each (lambda (p)
		  (set! M (poly:+ (poly:*
				   (reduce-init poly:* 1 (butnth j dnmf))
				   (poly:* (- j) (poly:diff p var)))
				  M))
		  (set! j (+ 1 j)))
		dnmf)
      M))
  (let ((A 0) (R L) (Nyd (poly:degree N ver)))
    (define NyC (poly:coeff N ver Nyd))
    (define Nxd (poly:degree NyC var))
    (define (fnl) (app* $1/$2 A (powfacts (cdr dnmf))))
    (define (fail . args)
      (math:warn 'could-not-find-algebraic-anti-derivative)
      (apply math:print args)
      novalue)
    (if math:debug (math:print 'M= M 'N= N 'NyC= NyC 'Nxd= Nxd))
    (let lp ((Ryd (poly:degree (num R) ver)))
      (define RyC (poly:coeff (num R) ver Ryd))
      (define Rxd (poly:degree RyC var))
      (define g (+ 1 (- Rxd Nxd)))
      (define h (- Ryd Nyd))
      (define T
	(cond ((negative? g) (math:warn 'g= g '<0) 1)
	      ((number? Q) (univ:monomial 1 g var))
	      ((<= Qxd g)
	       (poly:* (ipow-by-squaring Q (quotient g Qxd) 1 poly:*)
		       (poly:* (univ:monomial 1 (remainder g Qxd) var)
			       (univ:monomial 1 h ver))))
	      (else (poly:* (univ:monomial 1 g var)
			    (univ:monomial 1 h ver)))))
      (define dT (normalize (diff T var)))
      (define B (normalize (app* $1*$2+$3 N dT (poly:* M T))))
      (define C (expr:normalize
		 (app* $1/$2
		       (poly:* (denom B) (poly:coeff RyC var Rxd))
		       (poly:* (poly:coeff (poly:coeff (num B) ver Ryd) var Rxd)
			       (denom R)))))
      (cond (math:debug
	     (math:print 'Ryd= Ryd 'Rxd= Rxd
			 'Byd= (poly:degree (num B) ver)
			 'ByC= (poly:coeff (num B) ver (poly:degree (num B) ver))
			 'Bxd= (poly:degree (poly:coeff (num B) ver (poly:degree (num B) ver)) var)
			 'Qxd= Qxd 'g= g 'h= h)
	     (math:print 'R= R)
	     (math:print 'T= T)
	     (math:print 'dT= dT)
	     (math:print 'B= B)
	     (math:print 'C= C)))
      (set! A (expr:normalize (app* $1*$2+$3 C T A)))
      (set! R (expr:normalize (app* $1-$2*$3 R C B)))
      (cond ((and math:debug (number? R) (not (zero? R)))
	     (math:print 'nonzero-number-R= R)))
      (cond ((if (number? R) (zero? R) (univ:zero? R))
	     (fnl))
	    ;; ((number? R) (math:warn 'non-zero-constant-part R) (fnl))
	    ((> (poly:degree (num R) ver) Ryd)
	     (fail 'increasing-Ryd (poly:degree (num R) ver) 'vs Ryd))
	    ((and (= (poly:degree (num R) ver) Ryd)
		  (>= (poly:degree (poly:coeff (num R) ver (poly:degree (num R) ver)) var)
		      Rxd))
	     (fail 'non-decreasing-Rxd
		   (poly:degree (poly:coeff (num R) ver (poly:degree (num R) ver)) var)
		   'vs Rxd))
	    (else (lp (poly:degree (num R) ver)))))))

(define (poly:cont2 ve v p)
  (apply poly:gcd*
	 (map (lambda (c) (univ:cont (promote v c)))
	      (cdr (promote ve p)))))

(define (independent-of-var? poly var)
  (and (zero? (poly:degree poly var))
       (null? (poly:find-var-exts poly var))))

(define (indef-integrate p v)
  (define nm (num p))
  (define dnm (denom p))
  (define verlst (poly:find-var-exts nm v))
  (define ver (if (null? verlst) _$ (car verlst)))
  (define cnm (poly:cont2 ver v nm))
  (define cdnm (univ:cont (promote v dnm)))
  (define nm/cnm (poly:/ nm cnm))
  (define dnm/cdnm (poly:/ dnm cdnm))
  (cond ((> (length verlst) 1)
	 (math:warn 'too-many-extensions-involving v ': verlst)
	 novalue)
	(else
	 (let ((ans (normalize
		     (app* $1*$2
			   (rat:integrate (sqfr-splits dnm/cdnm v) nm/cnm v ver)
			   (app* $1/$2 cnm cdnm)))))
	   (let ((chk (expr:normalize (diff ans v))))
	     (cond ((novalue? ans) ans)
		   ((independent-of-var? (normalize (app* $1-$2 chk p)) v)
		    ans)
		   ((independent-of-var? (normalize (app* $1+$2 chk p)) v)
		    (if math:debug (math:warn 'integration-was-negated))
		    (app* _-$1 ans))
		   (else
		    (math:warn 'diff-of-integral-mismatch chk)
		    (math:print 'mr-diff-of-integral-mismatch p)
		    novalue)))))))

(define (integrate . args)
  (if (not (<= 2 (length args) 4)) (bltn:error 'integrate 'wna args))
  (let ((expr (normalize (car args)))
	(var (expl->var (cadr args)))
	(lo (if (null? (cddr args)) #f (caddr args)))
	(hi (and (= 4 (length args)) (cadddr args))))
    (cond ((= 2 (length args))
	   (indef-integrate expr var))
	  (else
	   (let ((sexp (sexp:alpha-convert (list (var:sexp var))
					   (cano->sexp expr horner))))
	     (define ifun (indef-integrate (sexp->math sexp) $1))
	     (cond ((novalue? ifun) ifun)
		   ((case (length args)
		      ((3) (app* ifun lo))
		      ((4) (app* $1-$2 (app* ifun hi) (app* ifun lo)))))))))))

(defbltn 'integrate 2 4 integrate)