1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
;; "anti-diff.scm" rational-function anti-derivative. -*-scheme-*-
;; Copyright 2020, 2023 Aubrey Jaffer
;;
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or (at
;; your option) any later version.
;;
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, write to the Free Software
;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
(require 'common-list-functions)
;; returns a list of unsquared factors of increasing power.
(define (sqfr-splits c var)
(define splitter (poly:diff c var))
(cond ((not (number? splitter))
(let ((d '())
(aj '())
(bi (poly:gcd c splitter)))
(do ((b bi (poly:/ b d))
(a (poly:/ c bi) d))
((number? b)
(reverse (cons a aj)))
(set! d (poly:gcd a b))
(set! aj (cons (poly:/ a d) aj)))))
((number? c) (list c))
(else (list (univ:demote c)))))
;; The inverse of sqfr-splits. Returns the product of increasing
;; powers of list of factors fcts.
(define (powfacts fcts)
(let lp ((fcts fcts) (n 1) (acc 1))
(cond ((null? fcts) acc)
(else
(lp (cdr fcts)
(+ 1 n)
(poly:* (ipow-by-squaring (car fcts) n 1 poly:*)
acc))))))
(define (rat:integrate dnmf L var ver)
(define dY (normalize (diff (var->expl ver) var)))
(define Q (denom dY))
(define Qxd (poly:degree Q var))
(define N (reduce-init poly:* 1 dnmf))
(define M
(let ((M 0) (j 0))
(if math:debug (math:print 'dnmf= dnmf))
(for-each (lambda (p)
(set! M (poly:+ (poly:*
(reduce-init poly:* 1 (butnth j dnmf))
(poly:* (- j) (poly:diff p var)))
M))
(set! j (+ 1 j)))
dnmf)
M))
(let ((A 0) (R L) (Nyd (poly:degree N ver)))
(define NyC (poly:coeff N ver Nyd))
(define Nxd (poly:degree NyC var))
(define (fnl) (app* $1/$2 A (powfacts (cdr dnmf))))
(define (fail . args)
(math:warn 'could-not-find-algebraic-anti-derivative)
(apply math:print args)
novalue)
(if math:debug (math:print 'M= M 'N= N 'NyC= NyC 'Nxd= Nxd))
(let lp ((Ryd (poly:degree (num R) ver)))
(define RyC (poly:coeff (num R) ver Ryd))
(define Rxd (poly:degree RyC var))
(define g (+ 1 (- Rxd Nxd)))
(define h (- Ryd Nyd))
(define T
(cond ((negative? g) (math:warn 'g= g '<0) 1)
((number? Q) (univ:monomial 1 g var))
((<= Qxd g)
(poly:* (ipow-by-squaring Q (quotient g Qxd) 1 poly:*)
(poly:* (univ:monomial 1 (remainder g Qxd) var)
(univ:monomial 1 h ver))))
(else (poly:* (univ:monomial 1 g var)
(univ:monomial 1 h ver)))))
(define dT (normalize (diff T var)))
(define B (normalize (app* $1*$2+$3 N dT (poly:* M T))))
(define C (expr:normalize
(app* $1/$2
(poly:* (denom B) (poly:coeff RyC var Rxd))
(poly:* (poly:coeff (poly:coeff (num B) ver Ryd) var Rxd)
(denom R)))))
(cond (math:debug
(math:print 'Ryd= Ryd 'Rxd= Rxd
'Byd= (poly:degree (num B) ver)
'ByC= (poly:coeff (num B) ver (poly:degree (num B) ver))
'Bxd= (poly:degree (poly:coeff (num B) ver (poly:degree (num B) ver)) var)
'Qxd= Qxd 'g= g 'h= h)
(math:print 'R= R)
(math:print 'T= T)
(math:print 'dT= dT)
(math:print 'B= B)
(math:print 'C= C)))
(set! A (expr:normalize (app* $1*$2+$3 C T A)))
(set! R (expr:normalize (app* $1-$2*$3 R C B)))
(cond ((and math:debug (number? R) (not (zero? R)))
(math:print 'nonzero-number-R= R)))
(cond ((if (number? R) (zero? R) (univ:zero? R))
(fnl))
;; ((number? R) (math:warn 'non-zero-constant-part R) (fnl))
((> (poly:degree (num R) ver) Ryd)
(fail 'increasing-Ryd (poly:degree (num R) ver) 'vs Ryd))
((and (= (poly:degree (num R) ver) Ryd)
(>= (poly:degree (poly:coeff (num R) ver (poly:degree (num R) ver)) var)
Rxd))
(fail 'non-decreasing-Rxd
(poly:degree (poly:coeff (num R) ver (poly:degree (num R) ver)) var)
'vs Rxd))
(else (lp (poly:degree (num R) ver)))))))
(define (poly:cont2 ve v p)
(apply poly:gcd*
(map (lambda (c) (univ:cont (promote v c)))
(cdr (promote ve p)))))
(define (independent-of-var? poly var)
(and (zero? (poly:degree poly var))
(null? (poly:find-var-exts poly var))))
(define (indef-integrate p v)
(define nm (num p))
(define dnm (denom p))
(define verlst (poly:find-var-exts nm v))
(define ver (if (null? verlst) _$ (car verlst)))
(define cnm (poly:cont2 ver v nm))
(define cdnm (univ:cont (promote v dnm)))
(define nm/cnm (poly:/ nm cnm))
(define dnm/cdnm (poly:/ dnm cdnm))
(cond ((> (length verlst) 1)
(math:warn 'too-many-extensions-involving v ': verlst)
novalue)
(else
(let ((ans (normalize
(app* $1*$2
(rat:integrate (sqfr-splits dnm/cdnm v) nm/cnm v ver)
(app* $1/$2 cnm cdnm)))))
(let ((chk (expr:normalize (diff ans v))))
(cond ((novalue? ans) ans)
((independent-of-var? (normalize (app* $1-$2 chk p)) v)
ans)
((independent-of-var? (normalize (app* $1+$2 chk p)) v)
(if math:debug (math:warn 'integration-was-negated))
(app* _-$1 ans))
(else
(math:warn 'diff-of-integral-mismatch chk)
(math:print 'mr-diff-of-integral-mismatch p)
novalue)))))))
(define (integrate . args)
(if (not (<= 2 (length args) 4)) (bltn:error 'integrate 'wna args))
(let ((expr (normalize (car args)))
(var (expl->var (cadr args)))
(lo (if (null? (cddr args)) #f (caddr args)))
(hi (and (= 4 (length args)) (cadddr args))))
(cond ((= 2 (length args))
(indef-integrate expr var))
(else
(let ((sexp (sexp:alpha-convert (list (var:sexp var))
(cano->sexp expr horner))))
(define ifun (indef-integrate (sexp->math sexp) $1))
(cond ((novalue? ifun) ifun)
((case (length args)
((3) (app* ifun lo))
((4) (app* $1-$2 (app* ifun hi) (app* ifun lo)))))))))))
(defbltn 'integrate 2 4 integrate)
|