File: combin.scm

package info (click to toggle)
jacal 1c8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,064 kB
  • sloc: lisp: 6,648; sh: 419; makefile: 315
file content (103 lines) | stat: -rw-r--r-- 3,148 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
;; JACAL: Symbolic Mathematics System.        -*-scheme-*-
;; Copyright 1989, 1990, 1991, 1992, 1993, 1995 Aubrey Jaffer.
;;
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or (at
;; your option) any later version.
;; 
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; General Public License for more details.
;; 
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, write to the Free Software
;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

(require 'common-list-functions)
(require 'hash-table)			; for memon

;;; =================== Memoize procedure calls ===================
;;; From Norvig "Artificial Intelligence Programming"
;;; Examples:
;;; (define fib
;;;   (memon (lambda (n)
;;;	 (if (<= n 1) 1
;;;	    (+ (fib (+ -1 n)) (fib (+ -2 n)))))))
;;;
;;; (define sum
;;;   (memon (lambda (x y)
;;;	 (+ x y))))
;;;
(define (memon fn)
  (let ((table (make-hash-table 100))
	(gethash (hash-inquirer equal?))
	(puthash (hash-associator equal?)))
    (lambda x
      (let ((val (gethash table x)))
	(if val
	    val
	    (let ((fx (apply fn x)))
	      (puthash table x fx)
	      fx))))))

(define (factorial n)
  (define (fact i acc)
    (if (< i 2) acc (fact (+ -1 i) (* acc i))))
  (fact n 1))

(define (cart-prod choices)
  (if (null? choices)
      '(())
      (let* ((choice (car choices)))
	(apply append
	       (map (lambda (tuple)
		      (map (lambda (elt)
			     (cons elt tuple))
			   choice))
		    (cart-prod (cdr choices)))))))

;;;; From Mike Thomas:
;;; Return all the unique subsets of size n obtainable from the list l

(define (combinations l n)
  (define (combs1 l1 l2 n acc)
    (let* ((l1l (length l1))
	   (l2l (length l2))
	   (sumls (+ l1l l2l)))
      (cond ((< sumls n) acc)
	    ((= sumls n) (append acc (list (append l1 l2))))
	    ((= l1l (+ -1 n))
	     (append acc (map (lambda (x) (append l1 (list x))) l2)))
	    (else (apply append
			 (map (lambda (x y)
				(combs1 (append l1 (list x)) y n acc))
			      l2 (make-ends (cdr l2) '())))))))
  (define (make-ends l acc)
    (if (null? l)
	(append acc '(()))
	(make-ends (cdr l) (append acc (list l)))))
  (combs1 '() l n '()))

;;; (UNIQUES L) removes any element in each member of a list of lists
;;; that is present in any other member of the list of lists,
;;; preserving order.

;;; (BUILD-UNIQUE-ITEMS L1 L2) builds a list of the members of l1
;;; which are not members of each list in the list l2.

(define (uniques l)
  (define (unis a b c)
    (cond ((null? b) c)
	  (else (unis (cons a (list (car b)))
		      (cdr b)
		      (let ((l1 (car b))
			    (l2 (append a (cdr b))))
			(for-each
			 (lambda (x)
			   (if (some (lambda (sl) (member x sl)) l2)
			       (set! l1 (remove x l1)))) l1)
			(append
			 c (list l1)))))))
  (unis '() l '()))