1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
;; JACAL: Symbolic Mathematics System. -*-scheme-*-
;; Copyright 1989, 1990, 1991, 1992, 1993, 1997, 2019, 2020 Aubrey Jaffer.
;;
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or (at
;; your option) any later version.
;;
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, write to the Free Software
;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
(require 'sort)
(require 'common-list-functions)
;;; An algebraic extension is the root of a polynomial with more than
;;; one distinct value. These values are not linked; the difference
;;; between two algebraic extensions which are roots of identical
;;; polynomials is not 0. Radicals have an additional rule that
;;; exponents of "positive" radicands commute. For instance:
;;; (x^2)^(1/2) ==> x. Notice that ((-x)^2)^(1/2) ==> x also.
;;; (-x^2)^(1/2) ==> (-1)^(1/2)*x.
;;; algebraic extensions
;;; we want to find all extensions used by this poly except this poly.
(define (poly:exts poly)
(define elts '())
(poly:for-each-var
(lambda (v)
(let ((er (extrule v)))
(if (and er (not (eq? er poly)))
(set! elts (adjoin v elts)))))
poly)
elts)
(define (poly:aexts poly)
(define elts '())
(poly:for-each-var
(lambda (v)
(let ((er (extrule v)))
(if (and er
(not (eq? er poly))
(not (poly:find-var? er (var:differential v))))
(set! elts (adjoin v elts)))))
poly)
elts)
;;;alg:vars returns a list of all terminal vars used in this or in extensions
;;;used in this.
(define (alg:vars poly)
(define deps '())
(poly:for-each-var
(lambda (v)
(if (and (not (extrule v)) (null? (var:depends v)))
(set! deps (adjoin v deps)))
(set! deps (union (var:depends v) deps)))
poly)
deps)
(define (application? v)
(and (not (extrule v))
(pair? (var:sexp v))
;; (not (eq? 'differential (car (var:sexp v))))
))
;;; we want to find all functionals used by this poly except.
(define (var:funcs poly)
(define elts '())
(poly:for-each-var
(lambda (v)
(if (application? v)
(set! elts (adjoin v elts))))
poly)
elts)
;;; algebraic and applications
(define (chainables poly)
(define elts '())
(poly:for-each-var
(lambda (v)
(let ((er (extrule v)))
(if (or (and er (not (eq? er poly)))
(application? v))
(set! elts (adjoin v elts)))))
poly)
elts)
;;; This is for poleqn
;;; Don't simplify a rule with itself
;;; Don't simplify differential rules
(define (alg:simplify p)
(let ((vars (sort (poly:aexts p) var:>)))
(define exrls (map extrule vars))
(define ans p)
(for-each (lambda (r v) (set! ans (poly:prem ans r v))) exrls vars)
ans))
(define (alg:clear-leading-exts poly)
(define p poly)
;; (cond (math:trace (display-diag 'clear-leading-exts:) (newline-diag)))
(let loop ((lc (poly:leading-coeff p (car p))))
(define v (poly:find-var-if? lc potent-extrule))
(cond ((not v) p)
(else
(set! p (alg:simplify (poly:* p (alg:conjugate lc v))))
(loop (poly:leading-coeff p (car p)))))))
;;; This generates conjugates for any algebraic by a wonderful theorem of mine.
;;; 4/30/90 jaffer
(define (alg:conjugate poly extpoly)
(let* ((var (car extpoly))
(poly (poly:promote var poly))
(pdiv (if (univ:shorter? poly extpoly)
(univ:pdiv extpoly poly)
'(1 0)))
(pquo (car pdiv))
(prem (cadr pdiv)))
(if (zero? (univ:degree prem var))
(univ:demote pquo)
(poly:* (univ:demote pquo) (alg:conjugate prem extpoly)))))
;; (trace alg:simplify alg:clear-leading-exts alg:conjugate poly:aexts)
;;; This section attempts to implement an incremental version of
;;; Caviness, B.F., Fateman, R.:
;;; Simplification of Radical Expressions.
;;; SYMSAC 1976, 329-338
;;; as described in
;;; Buchberger, B., Collins, G.E., Loos, R.:
;;; Computer Algebra, Symbolic and Algebraic Computation. Second Edition
;;; Springer-Verlag/Wein 1983, 20-22
;;; This algorithm for canonical simplification of UNNESTED radical expressions
;;; also has the convention that (s * t)^r = s^r * t^r.
;;; If the variable LINKRADICALS is #f then a new multiple value expression
;;; is returned for each radical.
;;; this is actually alg:depth
;(define (rad:depth imp)
; (let ((exts (poly:aexts imp)))
; (if (null? exts)
; 0
; (+ 1 (apply max (map (lambda (x) (rad:depth (extrule x))) exts))))))
;;; Integer power of EXPR
(define (ipow a pow)
(if (not (integer? pow)) (math:error 'non-integer-power?- pow))
(cond ((expl? a) (if (< pow 0)
(make-rat 1 (poly:^ a (- pow)))
(poly:^ a pow)))
((rat? a) (if (< pow 0)
(make-rat (ipow (rat:denom a) (- pow))
(ipow (rat:num a) (- pow)))
(make-rat (ipow (rat:num a) pow)
(ipow (rat:denom a) pow))))
(else (if (< pow 0)
(app* (list $ 1 (univ:monomial -1 (- pow) $1)) a)
(app* (univ:monomial 1 pow $1) a)))))
(define (^ a pow)
(cond
((not (rat:number? pow)) (deferop _^ a pow))
((eqn? a) (math:error 'expt-of-equation?:- a))
(else
(set! pow (expr:normalize pow))
(let ((expnum (num pow))
(expdenom (denom pow)))
(cond
((eqv? 1 expdenom) (ipow a expnum))
(linkradicals
(set! a (expr:normalize a))
(cond ((expl? a) (ipow (make-radical-exts a expdenom) expnum))
((not (rat? a)) (math:error 'non-rational-radicand:- a))
((rat:unit-denom? a)
(ipow (make-radical-exts (poly:* (denom a) (num a)) expdenom)
expnum))
(else (ipow (make-rat (make-radical-exts (rat:num a) expdenom)
(make-radical-exts (rat:denom a) expdenom))
expnum))))
((> expnum 0)
(let ((tmp (univ:monomial -1 expdenom $)))
(set-car! (cdr tmp) (univ:monomial 1 expnum $1))
(app* tmp a)))
(else
(let ((tmp (univ:monomial (univ:monomial -1 (- expnum) $1) expdenom $)))
(set-car! (cdr tmp) 1)
(app* tmp a))))))))
;;; Generate extensions for radicals of polynomials
;;; Currently this does not split previously defined radicands.
;;; It will as soon as expression rework is added.
(define (make-radical-exts p r)
(reduce-init poly:* 1 (map (lambda (fact-exp)
(ipow (make-radical-ext (car fact-exp) r)
(cadr fact-exp)))
(factors-list->fact-exps (rat:factors-list p)))))
;; radical-defs is the list of radical extension defining poleqns
(define (make-radical-ext p r)
(set! p (licit->polxpr p))
(let ((e (member-if (lambda (e) (equal? p (cadr e))) radical-defs)))
(cond (e (if (divides? r (length (cddr (car e))))
(radpow (car e) r)
(var->expl (make-rad-var p r))))
(else (var->expl (make-rad-var p r))))))
(define (radpow radrule r)
(univ:monomial 1 (quotient (length (cddr radrule)) r) (car radrule)))
|