File: ext.scm

package info (click to toggle)
jacal 1c8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,064 kB
  • sloc: lisp: 6,648; sh: 419; makefile: 315
file content (211 lines) | stat: -rw-r--r-- 7,154 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
;; JACAL: Symbolic Mathematics System.        -*-scheme-*-
;; Copyright 1989, 1990, 1991, 1992, 1993, 1997, 2019, 2020 Aubrey Jaffer.
;;
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or (at
;; your option) any later version.
;; 
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; General Public License for more details.
;; 
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, write to the Free Software
;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

(require 'sort)
(require 'common-list-functions)

;;; An algebraic extension is the root of a polynomial with more than
;;; one distinct value.  These values are not linked;  the difference
;;; between two algebraic extensions which are roots of identical
;;; polynomials is not 0.  Radicals have an additional rule that
;;; exponents of "positive" radicands commute.  For instance:
;;; (x^2)^(1/2) ==> x.  Notice that ((-x)^2)^(1/2) ==> x also.
;;; (-x^2)^(1/2) ==> (-1)^(1/2)*x.

;;; algebraic extensions
;;; we want to find all extensions used by this poly except this poly.
(define (poly:exts poly)
  (define elts '())
  (poly:for-each-var
   (lambda (v)
     (let ((er (extrule v)))
       (if (and er (not (eq? er poly)))
	   (set! elts (adjoin v elts)))))
   poly)
  elts)

(define (poly:aexts poly)
  (define elts '())
  (poly:for-each-var
   (lambda (v)
     (let ((er (extrule v)))
       (if (and er
		(not (eq? er poly))
		(not (poly:find-var? er (var:differential v))))
	   (set! elts (adjoin v elts)))))
   poly)
  elts)

;;;alg:vars returns a list of all terminal vars used in this or in extensions
;;;used in this.
(define (alg:vars poly)
  (define deps '())
  (poly:for-each-var
   (lambda (v)
     (if (and (not (extrule v)) (null? (var:depends v)))
	 (set! deps (adjoin v deps)))
     (set! deps (union (var:depends v) deps)))
   poly)
  deps)

(define (application? v)
  (and (not (extrule v))
       (pair? (var:sexp v))
       ;; (not (eq? 'differential (car (var:sexp v))))
       ))

;;; we want to find all functionals used by this poly except.
(define (var:funcs poly)
  (define elts '())
  (poly:for-each-var
   (lambda (v)
     (if (application? v)
	 (set! elts (adjoin v elts))))
   poly)
  elts)

;;; algebraic and applications
(define (chainables poly)
  (define elts '())
  (poly:for-each-var
   (lambda (v)
     (let ((er (extrule v)))
       (if (or (and er (not (eq? er poly)))
	       (application? v))
	   (set! elts (adjoin v elts)))))
   poly)
  elts)

;;; This is for poleqn
;;; Don't simplify a rule with itself
;;; Don't simplify differential rules
(define (alg:simplify p)
  (let ((vars (sort (poly:aexts p) var:>)))
    (define exrls (map extrule vars))
    (define ans p)
    (for-each (lambda (r v) (set! ans (poly:prem ans r v))) exrls vars)
    ans))

(define (alg:clear-leading-exts poly)
  (define p poly)
  ;; (cond (math:trace (display-diag 'clear-leading-exts:) (newline-diag)))
  (let loop ((lc (poly:leading-coeff p (car p))))
    (define v (poly:find-var-if? lc potent-extrule))
    (cond ((not v) p)
	  (else
	   (set! p (alg:simplify (poly:* p (alg:conjugate lc v))))
	   (loop (poly:leading-coeff p (car p)))))))

;;; This generates conjugates for any algebraic by a wonderful theorem of mine.
;;; 4/30/90 jaffer
(define (alg:conjugate poly extpoly)
  (let* ((var (car extpoly))
	 (poly (poly:promote var poly))
	 (pdiv (if (univ:shorter? poly extpoly)
		   (univ:pdiv extpoly poly)
		   '(1 0)))
	 (pquo (car pdiv))
	 (prem (cadr pdiv)))
    (if (zero? (univ:degree prem var))
	(univ:demote pquo)
	(poly:* (univ:demote pquo) (alg:conjugate prem extpoly)))))
;; (trace alg:simplify alg:clear-leading-exts alg:conjugate poly:aexts)

;;; This section attempts to implement an incremental version of
;;; Caviness, B.F., Fateman, R.:
;;; Simplification of Radical Expressions.
;;; SYMSAC 1976, 329-338
;;; as described in
;;; Buchberger, B., Collins, G.E., Loos, R.:
;;; Computer Algebra, Symbolic and Algebraic Computation. Second Edition
;;; Springer-Verlag/Wein 1983, 20-22
;;; This algorithm for canonical simplification of UNNESTED radical expressions
;;; also has the convention that (s * t)^r = s^r * t^r.
;;; If the variable LINKRADICALS is #f then a new multiple value expression
;;; is returned for each radical.

;;; this is actually alg:depth
;(define (rad:depth imp)
;  (let ((exts (poly:aexts imp)))
;    (if (null? exts)
;	0
;      (+ 1 (apply max (map (lambda (x) (rad:depth (extrule x))) exts))))))

;;; Integer power of EXPR
(define (ipow a pow)
  (if (not (integer? pow)) (math:error 'non-integer-power?- pow))
  (cond ((expl? a) (if (< pow 0)
		       (make-rat 1 (poly:^ a (- pow)))
		       (poly:^ a pow)))
	((rat? a) (if (< pow 0)
		      (make-rat (ipow (rat:denom a) (- pow))
				(ipow (rat:num a) (- pow)))
		      (make-rat (ipow (rat:num a) pow)
				(ipow (rat:denom a) pow))))
	(else (if (< pow 0)
		  (app* (list $ 1 (univ:monomial -1 (- pow) $1)) a)
		  (app* (univ:monomial 1 pow $1) a)))))

(define (^ a pow)
  (cond
   ((not (rat:number? pow)) (deferop _^ a pow))
   ((eqn? a) (math:error 'expt-of-equation?:- a))
   (else
    (set! pow (expr:normalize pow))
    (let ((expnum (num pow))
	  (expdenom (denom pow)))
      (cond
       ((eqv? 1 expdenom) (ipow a expnum))
       (linkradicals
	(set! a (expr:normalize a))
	(cond ((expl? a) (ipow (make-radical-exts a expdenom) expnum))
	      ((not (rat? a)) (math:error 'non-rational-radicand:- a))
	      ((rat:unit-denom? a)
	       (ipow (make-radical-exts (poly:* (denom a) (num a)) expdenom)
		     expnum))
	      (else (ipow (make-rat (make-radical-exts (rat:num a) expdenom)
				    (make-radical-exts (rat:denom a) expdenom))
			  expnum))))
       ((> expnum 0)
	(let ((tmp (univ:monomial -1 expdenom $)))
	  (set-car! (cdr tmp) (univ:monomial 1 expnum $1))
	  (app* tmp a)))
       (else
	(let ((tmp (univ:monomial (univ:monomial -1 (- expnum) $1) expdenom $)))
	  (set-car! (cdr tmp) 1)
	  (app* tmp a))))))))

;;; Generate extensions for radicals of polynomials
;;; Currently this does not split previously defined radicands.
;;; It will as soon as expression rework is added.
(define (make-radical-exts p r)
  (reduce-init poly:* 1 (map (lambda (fact-exp)
			       (ipow (make-radical-ext (car fact-exp) r)
				     (cadr fact-exp)))
			     (factors-list->fact-exps (rat:factors-list p)))))

;; radical-defs is the list of radical extension defining poleqns
(define (make-radical-ext p r)
  (set! p (licit->polxpr p))
  (let ((e (member-if (lambda (e) (equal? p (cadr e))) radical-defs)))
    (cond (e (if (divides? r (length (cddr (car e))))
		 (radpow (car e) r)
		 (var->expl (make-rad-var p r))))
	  (else (var->expl (make-rad-var p r))))))

(define (radpow radrule r)
  (univ:monomial 1 (quotient (length (cddr radrule)) r) (car radrule)))