1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
/*
* simdtests.c -- test accuracy and performance of simd optimizations
*
* Copyright (C) 2017 Andreas Mueller.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* We must include all headers memops.c includes to avoid trouble with
* out namespace game below.
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <memory.h>
#include <stdlib.h>
#include <stdint.h>
#include <limits.h>
#ifdef __linux__
#include <endian.h>
#endif
#include "memops.h"
#if defined (__SSE2__) && !defined (__sun__)
#include <emmintrin.h>
#ifdef __SSE4_1__
#include <smmintrin.h>
#endif
#endif
#if defined (__ARM_NEON__) || defined (__ARM_NEON)
#include <arm_neon.h>
#endif
// our additional headers
#include <time.h>
/* Dirty: include mempos.c twice the second time with SIMD disabled
* so we can compare aceelerated non accelerated
*/
namespace accelerated {
#include "../common/memops.c"
}
namespace origerated {
#ifdef __SSE2__
#undef __SSE2__
#endif
#ifdef __ARM_NEON__
#undef __ARM_NEON__
#endif
#ifdef __ARM_NEON
#undef __ARM_NEON
#endif
#include "../common/memops.c"
}
// define conversion function types
typedef void (*t_jack_to_integer)(
char *dst,
jack_default_audio_sample_t *src,
unsigned long nsamples,
unsigned long dst_skip,
dither_state_t *state);
typedef void (*t_integer_to_jack)(
jack_default_audio_sample_t *dst,
char *src,
unsigned long nsamples,
unsigned long src_skip);
// define/setup test case data
typedef struct test_case_data {
uint32_t frame_size;
uint32_t sample_size;
bool reverse;
t_jack_to_integer jack_to_integer_accel;
t_jack_to_integer jack_to_integer_orig;
t_integer_to_jack integer_to_jack_accel;
t_integer_to_jack integer_to_jack_orig;
dither_state_t *ditherstate;
const char *name;
} test_case_data_t;
test_case_data_t test_cases[] = {
{
4,
3,
true,
accelerated::sample_move_d32u24_sSs,
origerated::sample_move_d32u24_sSs,
accelerated::sample_move_dS_s32u24s,
origerated::sample_move_dS_s32u24s,
NULL,
"32u24s" },
{
4,
3,
false,
accelerated::sample_move_d32u24_sS,
origerated::sample_move_d32u24_sS,
accelerated::sample_move_dS_s32u24,
origerated::sample_move_dS_s32u24,
NULL,
"32u24" },
{
4,
3,
true,
accelerated::sample_move_d32l24_sSs,
origerated::sample_move_d32l24_sSs,
accelerated::sample_move_dS_s32l24s,
origerated::sample_move_dS_s32l24s,
NULL,
"32l24s" },
{
4,
3,
false,
accelerated::sample_move_d32l24_sS,
origerated::sample_move_d32l24_sS,
accelerated::sample_move_dS_s32l24,
origerated::sample_move_dS_s32l24,
NULL,
"32l24" },
{
3,
3,
true,
accelerated::sample_move_d24_sSs,
origerated::sample_move_d24_sSs,
accelerated::sample_move_dS_s24s,
origerated::sample_move_dS_s24s,
NULL,
"24s" },
{
3,
3,
false,
accelerated::sample_move_d24_sS,
origerated::sample_move_d24_sS,
accelerated::sample_move_dS_s24,
origerated::sample_move_dS_s24,
NULL,
"24" },
{
2,
2,
true,
accelerated::sample_move_d16_sSs,
origerated::sample_move_d16_sSs,
accelerated::sample_move_dS_s16s,
origerated::sample_move_dS_s16s,
NULL,
"16s" },
{
2,
2,
false,
accelerated::sample_move_d16_sS,
origerated::sample_move_d16_sS,
accelerated::sample_move_dS_s16,
origerated::sample_move_dS_s16,
NULL,
"16" },
};
// we need to repeat for better accuracy at time measurement
const uint32_t retry_per_case = 1000;
// setup test buffers
#define TESTBUFF_SIZE 1024
jack_default_audio_sample_t jackbuffer_source[TESTBUFF_SIZE];
// integer buffers: max 4 bytes per value / * 2 for stereo
char integerbuffer_accel[TESTBUFF_SIZE*4*2];
char integerbuffer_orig[TESTBUFF_SIZE*4*2];
// float buffers
jack_default_audio_sample_t jackfloatbuffer_accel[TESTBUFF_SIZE];
jack_default_audio_sample_t jackfloatbuffer_orig[TESTBUFF_SIZE];
// comparing unsigned makes life easier
uint32_t extract_integer(
char* buff,
uint32_t offset,
uint32_t frame_size,
uint32_t sample_size,
bool big_endian)
{
uint32_t retval = 0;
unsigned char* curr;
uint32_t mult = 1;
if(big_endian) {
curr = (unsigned char*)buff + offset + sample_size-1;
for(uint32_t i=0; i<sample_size; i++) {
retval += *(curr--) * mult;
mult*=256;
}
}
else {
curr = (unsigned char*)buff + offset + frame_size-sample_size;
for(uint32_t i=0; i<sample_size; i++) {
retval += *(curr++) * mult;
mult*=256;
}
}
return retval;
}
int main(int argc, char *argv[])
{
// parse_arguments(argc, argv);
uint32_t maxerr_displayed = 10;
// fill jackbuffer
for(int i=0; i<TESTBUFF_SIZE; i++) {
// ramp
jack_default_audio_sample_t value =
((jack_default_audio_sample_t)((i % TESTBUFF_SIZE) - TESTBUFF_SIZE/2)) / (TESTBUFF_SIZE/2);
// force clipping
value *= 1.02;
jackbuffer_source[i] = value;
}
for(uint32_t testcase=0; testcase<sizeof(test_cases)/sizeof(test_case_data_t); testcase++) {
// test mono/stereo
for(uint32_t channels=1; channels<=2; channels++) {
//////////////////////////////////////////////////////////////////////////////
// jackfloat -> integer
// clean target buffers
memset(integerbuffer_accel, 0, sizeof(integerbuffer_accel));
memset(integerbuffer_orig, 0, sizeof(integerbuffer_orig));
// accel
clock_t time_to_integer_accel = clock();
for(uint32_t repetition=0; repetition<retry_per_case; repetition++)
{
test_cases[testcase].jack_to_integer_accel(
integerbuffer_accel,
jackbuffer_source,
TESTBUFF_SIZE,
test_cases[testcase].frame_size*channels,
test_cases[testcase].ditherstate);
}
float timediff_to_integer_accel = ((float)(clock() - time_to_integer_accel)) / CLOCKS_PER_SEC;
// orig
clock_t time_to_integer_orig = clock();
for(uint32_t repetition=0; repetition<retry_per_case; repetition++)
{
test_cases[testcase].jack_to_integer_orig(
integerbuffer_orig,
jackbuffer_source,
TESTBUFF_SIZE,
test_cases[testcase].frame_size*channels,
test_cases[testcase].ditherstate);
}
float timediff_to_integer_orig = ((float)(clock() - time_to_integer_orig)) / CLOCKS_PER_SEC;
// output performance results
printf(
"JackFloat->Integer @%7.7s/%u: Orig %7.6f sec / Accel %7.6f sec -> Win: %5.2f %%\n",
test_cases[testcase].name,
channels,
timediff_to_integer_orig,
timediff_to_integer_accel,
(timediff_to_integer_orig/timediff_to_integer_accel-1)*100.0);
uint32_t int_deviation_max = 0;
uint32_t int_error_count = 0;
// output error (avoid spam -> limit error lines per test case)
for(uint32_t sample=0; sample<TESTBUFF_SIZE; sample++) {
uint32_t sample_offset = sample*test_cases[testcase].frame_size*channels;
// compare both results
uint32_t intval_accel=extract_integer(
integerbuffer_accel,
sample_offset,
test_cases[testcase].frame_size,
test_cases[testcase].sample_size,
#if __BYTE_ORDER == __BIG_ENDIAN
!test_cases[testcase].reverse);
#else
test_cases[testcase].reverse);
#endif
uint32_t intval_orig=extract_integer(
integerbuffer_orig,
sample_offset,
test_cases[testcase].frame_size,
test_cases[testcase].sample_size,
#if __BYTE_ORDER == __BIG_ENDIAN
!test_cases[testcase].reverse);
#else
test_cases[testcase].reverse);
#endif
// allow a deviation of 1
if(intval_accel>intval_orig+1 || intval_orig>intval_accel+1) {
if(int_error_count<maxerr_displayed) {
printf("Value error sample %u:", sample);
printf(" Orig 0x");
char formatstr[10];
sprintf(formatstr, "%%0%uX", test_cases[testcase].sample_size*2);
printf(formatstr, intval_orig);
printf(" Accel 0x");
printf(formatstr, intval_accel);
printf("\n");
}
int_error_count++;
uint32_t int_deviation;
if(intval_accel > intval_orig)
int_deviation = intval_accel-intval_orig;
else
int_deviation = intval_orig-intval_accel;
if(int_deviation > int_deviation_max)
int_deviation_max = int_deviation;
}
}
printf(
"JackFloat->Integer @%7.7s/%u: Errors: %u Max deviation %u\n",
test_cases[testcase].name,
channels,
int_error_count,
int_deviation_max);
//////////////////////////////////////////////////////////////////////////////
// integer -> jackfloat
// clean target buffers
memset(jackfloatbuffer_accel, 0, sizeof(jackfloatbuffer_accel));
memset(jackfloatbuffer_orig, 0, sizeof(jackfloatbuffer_orig));
// accel
clock_t time_to_float_accel = clock();
for(uint32_t repetition=0; repetition<retry_per_case; repetition++)
{
test_cases[testcase].integer_to_jack_accel(
jackfloatbuffer_accel,
integerbuffer_orig,
TESTBUFF_SIZE,
test_cases[testcase].frame_size*channels);
}
float timediff_to_float_accel = ((float)(clock() - time_to_float_accel)) / CLOCKS_PER_SEC;
// orig
clock_t time_to_float_orig = clock();
for(uint32_t repetition=0; repetition<retry_per_case; repetition++)
{
test_cases[testcase].integer_to_jack_orig(
jackfloatbuffer_orig,
integerbuffer_orig,
TESTBUFF_SIZE,
test_cases[testcase].frame_size*channels);
}
float timediff_to_float_orig = ((float)(clock() - time_to_float_orig)) / CLOCKS_PER_SEC;
// output performance results
printf(
"Integer->JackFloat @%7.7s/%u: Orig %7.6f sec / Accel %7.6f sec -> Win: %5.2f %%\n",
test_cases[testcase].name,
channels,
timediff_to_float_orig,
timediff_to_float_accel,
(timediff_to_float_orig/timediff_to_float_accel-1)*100.0);
jack_default_audio_sample_t float_deviation_max = 0.0;
uint32_t float_error_count = 0;
// output error (avoid spam -> limit error lines per test case)
for(uint32_t sample=0; sample<TESTBUFF_SIZE; sample++) {
// For easier estimation/readability we scale floats back to integer
jack_default_audio_sample_t sample_scaling;
switch(test_cases[testcase].sample_size) {
case 2:
sample_scaling = SAMPLE_16BIT_SCALING;
break;
default:
sample_scaling = SAMPLE_24BIT_SCALING;
break;
}
jack_default_audio_sample_t floatval_accel = jackfloatbuffer_accel[sample] * sample_scaling;
jack_default_audio_sample_t floatval_orig = jackfloatbuffer_orig[sample] * sample_scaling;
// compare both results
jack_default_audio_sample_t float_deviation;
if(floatval_accel > floatval_orig)
float_deviation = floatval_accel-floatval_orig;
else
float_deviation = floatval_orig-floatval_accel;
if(float_deviation > float_deviation_max)
float_deviation_max = float_deviation;
// deviation > half bit => error
if(float_deviation > 0.5) {
if(float_error_count<maxerr_displayed) {
printf("Value error sample %u:", sample);
printf(" Orig %8.1f Accel %8.1f\n", floatval_orig, floatval_accel);
}
float_error_count++;
}
}
printf(
"Integer->JackFloat @%7.7s/%u: Errors: %u Max deviation %f\n",
test_cases[testcase].name,
channels,
float_error_count,
float_deviation_max);
printf("\n");
}
}
return 0;
}
|