1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
// ----------------------------------------------------------------------------
//
// Copyright (C) 2012-2018 Fons Adriaensen <fons@linuxaudio.org>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// ----------------------------------------------------------------------------
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "alsathread.h"
#include "timers.h"
Alsathread::Alsathread (Alsa_pcmi *alsadev, int mode) :
_alsadev (alsadev ),
_mode (mode),
_state (INIT),
_fsize (alsadev->fsize ()),
_audioq (0),
_commq (0),
_alsaq (0)
{
// Compute DLL filter coefficients.
_dt = (double) _fsize / _alsadev->fsamp ();
_w1 = 2 * M_PI * 0.1 * _dt;
_w2 = _w1 * _w1;
_w1 *= 1.6;
}
Alsathread::~Alsathread (void)
{
if (_state != INIT)
{
_state = TERM;
thr_wait ();
}
else
{
_alsadev->pcm_stop ();
}
}
int Alsathread::start (Lfq_audio *audioq, Lfq_int32 *commq, Lfq_adata *alsaq, int rtprio)
{
// Start the ALSA thread.
_audioq = audioq;
_commq = commq;
_alsaq = alsaq;
_state = WAIT;
if (thr_start (SCHED_FIFO, rtprio, 0x10000)) return 1;
return 0;
}
void Alsathread::send (int k, double t)
{
Adata *D;
// Send (state, frame count, timestamp) to Jack thread.
if (_alsaq->wr_avail ())
{
D = _alsaq->wr_datap ();
D->_state = _state;
D->_nsamp = k;
D->_timer = t;
_alsaq->wr_commit ();
}
}
// The following two functions transfer data between the audio queue
// and the ALSA device. Note that we do *not* check the queue's fill
// state, and it may overrun or underrun. It actually will in the first
// few iterations and in error conditions. This is entirely intentional.
// The queue keeps correct read and write counters even in that case,
// and the main control loop and error recovery depend on it working
// and being used in this way.
int Alsathread::capture (void)
{
int c, n, k;
float *p;
// Start reading from ALSA device.
_alsadev->capt_init (_fsize);
if (_state == PROC)
{
// Input frames from the ALSA device to the audio queue.
// The outer loop takes care of wraparound.
for (n = _fsize; n; n -= k)
{
p = _audioq->wr_datap (); // Audio queue write pointer.
k = _audioq->wr_linav (); // Number of frames that can be
if (k > n) k = n; // written without wraparound.
for (c = 0; c < _audioq->nchan (); c++)
{
// Copy and interleave one channel.
_alsadev->capt_chan (c, p + c, k, _audioq->nchan ());
}
_audioq->wr_commit (k); // Update audio queue state.
}
}
// Finish reading from ALSA device.
_alsadev->capt_done (_fsize);
return _fsize;
}
int Alsathread::playback (void)
{
int c, n, k;
float *p;
// Start writing to ALSA device.
_alsadev->play_init (_fsize);
c = 0;
if (_state == PROC)
{
// Output frames from the audio queue to the ALSA device.
// The outer loop takes care of wraparound.
for (n = _fsize; n; n -= k)
{
p = _audioq->rd_datap (); // Audio queue read pointer.
k = _audioq->rd_linav (); // Number of frames that can
if (k > n) k = n; // be read without wraparound.
for (c = 0; c < _audioq->nchan (); c++)
{
// De-interleave and copy one channel.
_alsadev->play_chan (c, p + c, k, _audioq->nchan ());
}
_audioq->rd_commit (k); // Update audio queue state.
}
}
// Clear all or remaining channels.
while (c < _alsadev->nplay ()) _alsadev->clear_chan (c++, _fsize);
// Finish writing to ALSA device.
_alsadev->play_done (_fsize);
return _fsize;
}
void Alsathread::thr_main (void)
{
int na, nu;
double tw, er;
_alsadev->pcm_start ();
while (_state != TERM)
{
// Wait for next cycle, then take timestamp.
na = _alsadev->pcm_wait ();
tw = tjack (jack_get_time ());
// Check for errors - requires restart.
if (_alsadev->state () && (na == 0))
{
_state = WAIT;
send (0, 0);
usleep (10000);
continue;
}
// Check for commands from the Jack thread.
if (_commq->rd_avail ())
{
_state = _commq->rd_int32 ();
if (_state == PROC) _first = true;
if (_state == TERM) send (0, 0);
}
// We could have more than one period.
nu = 0;
while (na >= _fsize)
{
// Transfer frames.
if (_mode == PLAY) nu += playback ();
else nu += capture ();
// Update loop condition.
na -= _fsize;
// Run the DLL if in PROC state.
if (_state == PROC)
{
if (_first)
{
// Init DLL in first iteration.
_first = false;
_dt = (double) _fsize / _alsadev->fsamp ();
_t0 = tw;
_t1 = tw + _dt;
}
else
{
// Update the DLL.
// If we have more than one period, use
// the time error only for the last one.
if (na >= _fsize) er = 0;
else er = tjack_diff (tw, _t1);
_t0 = _t1;
_t1 = tjack_diff (_t1 + _dt + _w1 * er, 0.0);
_dt += _w2 * er;
}
}
}
// Send number of frames used and timestamp to Jack thread.
if (_state == PROC) send (nu, _t1);
}
_alsadev->pcm_stop ();
}
|