1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
/*
* Copyright 1993, 1995 Christopher Seiwald.
*
* This file is part of Jam - see jam.c for Copyright information.
*/
/*
* hash.c - simple in-memory hashing routines
*
* External routines:
*
* hashinit() - initialize a hash table, returning a handle
* hashitem() - find a record in the table, and optionally enter a new one
* hashdone() - free a hash table, given its handle
*
* Internal routines:
*
* hashrehash() - resize and rebuild hp->tab, the hash table
*
* 4/29/93 - ensure ITEM's are aligned
* 11/04/02 (seiwald) - const-ing for string literals
* 01/31/02 (seiwald) - keyval now unsigned (cray-ziness)
*/
# include "jam.h"
# include "hash.h"
/* Header attached to all data items entered into a hash table. */
struct hashhdr {
struct item *next;
unsigned int keyval; /* for quick comparisons */
} ;
/* This structure overlays the one handed to hashenter(). */
/* It's actual size is given to hashinit(). */
struct hashdata {
char *key;
/* rest of user data */
} ;
typedef struct item {
struct hashhdr hdr;
struct hashdata data;
} ITEM ;
# define MAX_LISTS 32
struct hash
{
/*
* the hash table, just an array of item pointers
*/
struct {
int nel;
ITEM **base;
} tab;
int bloat; /* tab.nel / items.nel */
int inel; /* initial number of elements */
/*
* the array of records, maintained by these routines
* essentially a microallocator
*/
struct {
int more; /* how many more ITEMs fit in lists[ list ] */
char *next; /* where to put more ITEMs in lists[ list ] */
int datalen; /* length of records in this hash table */
int size; /* sizeof( ITEM ) + aligned datalen */
int nel; /* total ITEMs held by all lists[] */
int list; /* index into lists[] */
struct {
int nel; /* total ITEMs held by this list */
char *base; /* base of ITEMs array */
} lists[ MAX_LISTS ];
} items;
const char *name; /* just for hashstats() */
} ;
static void hashrehash( struct hash *hp );
static void hashstat( struct hash *hp );
/*
* hashitem() - find a record in the table, and optionally enter a new one
*/
int
hashitem(
register struct hash *hp,
HASHDATA **data,
int enter )
{
ITEM **base;
register ITEM *i;
unsigned char *b = (unsigned char *)(*data)->key;
unsigned int keyval;
if( enter && !hp->items.more )
hashrehash( hp );
if( !enter && !hp->items.nel )
return 0;
keyval = *b;
while( *b )
keyval = keyval * 2147059363 + *b++;
base = hp->tab.base + ( keyval % hp->tab.nel );
for( i = *base; i; i = i->hdr.next )
if( keyval == i->hdr.keyval &&
!strcmp( i->data.key, (*data)->key ) )
{
*data = &i->data;
return !0;
}
if( enter )
{
i = (ITEM *)hp->items.next;
hp->items.next += hp->items.size;
hp->items.more--;
memcpy( (char *)&i->data, (char *)*data, hp->items.datalen );
i->hdr.keyval = keyval;
i->hdr.next = *base;
*base = i;
*data = &i->data;
}
return 0;
}
/*
* hashrehash() - resize and rebuild hp->tab, the hash table
*/
static void hashrehash( register struct hash *hp )
{
int i = ++hp->items.list;
hp->items.more = i ? 2 * hp->items.nel : hp->inel;
hp->items.next = (char *)malloc( hp->items.more * hp->items.size );
hp->items.lists[i].nel = hp->items.more;
hp->items.lists[i].base = hp->items.next;
hp->items.nel += hp->items.more;
if( hp->tab.base )
free( (char *)hp->tab.base );
hp->tab.nel = hp->items.nel * hp->bloat;
hp->tab.base = (ITEM **)malloc( hp->tab.nel * sizeof(ITEM **) );
memset( (char *)hp->tab.base, '\0', hp->tab.nel * sizeof( ITEM * ) );
for( i = 0; i < hp->items.list; i++ )
{
int nel = hp->items.lists[i].nel;
char *next = hp->items.lists[i].base;
for( ; nel--; next += hp->items.size )
{
register ITEM *i = (ITEM *)next;
ITEM **ip = hp->tab.base + i->hdr.keyval % hp->tab.nel;
i->hdr.next = *ip;
*ip = i;
}
}
}
/* --- */
# define ALIGNED(x) ( ( x + sizeof( ITEM ) - 1 ) & ~( sizeof( ITEM ) - 1 ) )
/*
* hashinit() - initialize a hash table, returning a handle
*/
struct hash *
hashinit(
int datalen,
const char *name )
{
struct hash *hp = (struct hash *)malloc( sizeof( *hp ) );
hp->bloat = 3;
hp->tab.nel = 0;
hp->tab.base = (ITEM **)0;
hp->items.more = 0;
hp->items.datalen = datalen;
hp->items.size = sizeof( struct hashhdr ) + ALIGNED( datalen );
hp->items.list = -1;
hp->items.nel = 0;
hp->inel = 11;
hp->name = name;
return hp;
}
/*
* hashdone() - free a hash table, given its handle
*/
void
hashdone( struct hash *hp )
{
int i;
if( !hp )
return;
if( DEBUG_MEM )
hashstat( hp );
if( hp->tab.base )
free( (char *)hp->tab.base );
for( i = 0; i <= hp->items.list; i++ )
free( hp->items.lists[i].base );
free( (char *)hp );
}
/* ---- */
static void
hashstat( struct hash *hp )
{
ITEM **tab = hp->tab.base;
int nel = hp->tab.nel;
int count = 0;
int sets = 0;
int run = ( tab[ nel - 1 ] != (ITEM *)0 );
int i, here;
for( i = nel; i > 0; i-- )
{
if( here = ( *tab++ != (ITEM *)0 ) )
count++;
if( here && !run )
sets++;
run = here;
}
printf( "%s table: %d+%d+%d (%dK+%dK) items+table+hash, %f density\n",
hp->name,
count,
hp->items.nel,
hp->tab.nel,
hp->items.nel * hp->items.size / 1024,
hp->tab.nel * (int)sizeof( ITEM ** ) / 1024,
(float)count / (float)sets );
}
|