1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
|
/***********************************************************************
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Internet Society, IETF or IETF Trust, nor the
names of specific contributors, may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
/***********************************************************
* Pitch analyser function
********************************************************** */
#include "SigProc_FIX.h"
#include "pitch_est_defines.h"
#include "stack_alloc.h"
#include "debug.h"
#include "pitch.h"
#define SCRATCH_SIZE 22
#define SF_LENGTH_4KHZ ( PE_SUBFR_LENGTH_MS * 4 )
#define SF_LENGTH_8KHZ ( PE_SUBFR_LENGTH_MS * 8 )
#define MIN_LAG_4KHZ ( PE_MIN_LAG_MS * 4 )
#define MIN_LAG_8KHZ ( PE_MIN_LAG_MS * 8 )
#define MAX_LAG_4KHZ ( PE_MAX_LAG_MS * 4 )
#define MAX_LAG_8KHZ ( PE_MAX_LAG_MS * 8 - 1 )
#define CSTRIDE_4KHZ ( MAX_LAG_4KHZ + 1 - MIN_LAG_4KHZ )
#define CSTRIDE_8KHZ ( MAX_LAG_8KHZ + 3 - ( MIN_LAG_8KHZ - 2 ) )
#define D_COMP_MIN ( MIN_LAG_8KHZ - 3 )
#define D_COMP_MAX ( MAX_LAG_8KHZ + 4 )
#define D_COMP_STRIDE ( D_COMP_MAX - D_COMP_MIN )
typedef opus_int32 silk_pe_stage3_vals[ PE_NB_STAGE3_LAGS ];
/************************************************************/
/* Internally used functions */
/************************************************************/
static void silk_P_Ana_calc_corr_st3(
silk_pe_stage3_vals cross_corr_st3[], /* O 3 DIM correlation array */
const opus_int16 frame[], /* I vector to correlate */
opus_int start_lag, /* I lag offset to search around */
opus_int sf_length, /* I length of a 5 ms subframe */
opus_int nb_subfr, /* I number of subframes */
opus_int complexity, /* I Complexity setting */
int arch /* I Run-time architecture */
);
static void silk_P_Ana_calc_energy_st3(
silk_pe_stage3_vals energies_st3[], /* O 3 DIM energy array */
const opus_int16 frame[], /* I vector to calc energy in */
opus_int start_lag, /* I lag offset to search around */
opus_int sf_length, /* I length of one 5 ms subframe */
opus_int nb_subfr, /* I number of subframes */
opus_int complexity, /* I Complexity setting */
int arch /* I Run-time architecture */
);
/*************************************************************/
/* FIXED POINT CORE PITCH ANALYSIS FUNCTION */
/*************************************************************/
opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 voiced, 1 unvoiced */
const opus_int16 *frame_unscaled, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */
opus_int *pitch_out, /* O 4 pitch lag values */
opus_int16 *lagIndex, /* O Lag Index */
opus_int8 *contourIndex, /* O Pitch contour Index */
opus_int *LTPCorr_Q15, /* I/O Normalized correlation; input: value from previous frame */
opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */
const opus_int32 search_thres1_Q16, /* I First stage threshold for lag candidates 0 - 1 */
const opus_int search_thres2_Q13, /* I Final threshold for lag candidates 0 - 1 */
const opus_int Fs_kHz, /* I Sample frequency (kHz) */
const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */
const opus_int nb_subfr, /* I number of 5 ms subframes */
int arch /* I Run-time architecture */
)
{
VARDECL( opus_int16, frame_8kHz_buf );
VARDECL( opus_int16, frame_4kHz );
VARDECL( opus_int16, frame_scaled );
opus_int32 filt_state[ 6 ];
const opus_int16 *frame, *frame_8kHz;
opus_int i, k, d, j;
VARDECL( opus_int16, C );
VARDECL( opus_int32, xcorr32 );
const opus_int16 *target_ptr, *basis_ptr;
opus_int32 cross_corr, normalizer, energy, energy_basis, energy_target;
opus_int d_srch[ PE_D_SRCH_LENGTH ], Cmax, length_d_srch, length_d_comp, shift;
VARDECL( opus_int16, d_comp );
opus_int32 sum, threshold, lag_counter;
opus_int CBimax, CBimax_new, CBimax_old, lag, start_lag, end_lag, lag_new;
opus_int32 CC[ PE_NB_CBKS_STAGE2_EXT ], CCmax, CCmax_b, CCmax_new_b, CCmax_new;
VARDECL( silk_pe_stage3_vals, energies_st3 );
VARDECL( silk_pe_stage3_vals, cross_corr_st3 );
opus_int frame_length, frame_length_8kHz, frame_length_4kHz;
opus_int sf_length;
opus_int min_lag;
opus_int max_lag;
opus_int32 contour_bias_Q15, diff;
opus_int nb_cbk_search, cbk_size;
opus_int32 delta_lag_log2_sqr_Q7, lag_log2_Q7, prevLag_log2_Q7, prev_lag_bias_Q13;
const opus_int8 *Lag_CB_ptr;
SAVE_STACK;
/* Check for valid sampling frequency */
celt_assert( Fs_kHz == 8 || Fs_kHz == 12 || Fs_kHz == 16 );
/* Check for valid complexity setting */
celt_assert( complexity >= SILK_PE_MIN_COMPLEX );
celt_assert( complexity <= SILK_PE_MAX_COMPLEX );
silk_assert( search_thres1_Q16 >= 0 && search_thres1_Q16 <= (1<<16) );
silk_assert( search_thres2_Q13 >= 0 && search_thres2_Q13 <= (1<<13) );
/* Set up frame lengths max / min lag for the sampling frequency */
frame_length = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * Fs_kHz;
frame_length_4kHz = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * 4;
frame_length_8kHz = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * 8;
sf_length = PE_SUBFR_LENGTH_MS * Fs_kHz;
min_lag = PE_MIN_LAG_MS * Fs_kHz;
max_lag = PE_MAX_LAG_MS * Fs_kHz - 1;
/* Downscale input if necessary */
silk_sum_sqr_shift( &energy, &shift, frame_unscaled, frame_length );
shift += 3 - silk_CLZ32( energy ); /* at least two bits headroom */
ALLOC( frame_scaled, frame_length, opus_int16 );
if( shift > 0 ) {
shift = silk_RSHIFT( shift + 1, 1 );
for( i = 0; i < frame_length; i++ ) {
frame_scaled[ i ] = silk_RSHIFT( frame_unscaled[ i ], shift );
}
frame = frame_scaled;
} else {
frame = frame_unscaled;
}
ALLOC( frame_8kHz_buf, ( Fs_kHz == 8 ) ? 1 : frame_length_8kHz, opus_int16 );
/* Resample from input sampled at Fs_kHz to 8 kHz */
if( Fs_kHz == 16 ) {
silk_memset( filt_state, 0, 2 * sizeof( opus_int32 ) );
silk_resampler_down2( filt_state, frame_8kHz_buf, frame, frame_length );
frame_8kHz = frame_8kHz_buf;
} else if( Fs_kHz == 12 ) {
silk_memset( filt_state, 0, 6 * sizeof( opus_int32 ) );
silk_resampler_down2_3( filt_state, frame_8kHz_buf, frame, frame_length );
frame_8kHz = frame_8kHz_buf;
} else {
celt_assert( Fs_kHz == 8 );
frame_8kHz = frame;
}
/* Decimate again to 4 kHz */
silk_memset( filt_state, 0, 2 * sizeof( opus_int32 ) );/* Set state to zero */
ALLOC( frame_4kHz, frame_length_4kHz, opus_int16 );
silk_resampler_down2( filt_state, frame_4kHz, frame_8kHz, frame_length_8kHz );
/* Low-pass filter */
for( i = frame_length_4kHz - 1; i > 0; i-- ) {
frame_4kHz[ i ] = silk_ADD_SAT16( frame_4kHz[ i ], frame_4kHz[ i - 1 ] );
}
/******************************************************************************
* FIRST STAGE, operating in 4 khz
******************************************************************************/
ALLOC( C, nb_subfr * CSTRIDE_8KHZ, opus_int16 );
ALLOC( xcorr32, MAX_LAG_4KHZ-MIN_LAG_4KHZ+1, opus_int32 );
silk_memset( C, 0, (nb_subfr >> 1) * CSTRIDE_4KHZ * sizeof( opus_int16 ) );
target_ptr = &frame_4kHz[ silk_LSHIFT( SF_LENGTH_4KHZ, 2 ) ];
for( k = 0; k < nb_subfr >> 1; k++ ) {
/* Check that we are within range of the array */
celt_assert( target_ptr >= frame_4kHz );
celt_assert( target_ptr + SF_LENGTH_8KHZ <= frame_4kHz + frame_length_4kHz );
basis_ptr = target_ptr - MIN_LAG_4KHZ;
/* Check that we are within range of the array */
celt_assert( basis_ptr >= frame_4kHz );
celt_assert( basis_ptr + SF_LENGTH_8KHZ <= frame_4kHz + frame_length_4kHz );
celt_pitch_xcorr( target_ptr, target_ptr - MAX_LAG_4KHZ, xcorr32, SF_LENGTH_8KHZ, MAX_LAG_4KHZ - MIN_LAG_4KHZ + 1, arch );
/* Calculate first vector products before loop */
cross_corr = xcorr32[ MAX_LAG_4KHZ - MIN_LAG_4KHZ ];
normalizer = silk_inner_prod_aligned( target_ptr, target_ptr, SF_LENGTH_8KHZ, arch );
normalizer = silk_ADD32( normalizer, silk_inner_prod_aligned( basis_ptr, basis_ptr, SF_LENGTH_8KHZ, arch ) );
normalizer = silk_ADD32( normalizer, silk_SMULBB( SF_LENGTH_8KHZ, 4000 ) );
matrix_ptr( C, k, 0, CSTRIDE_4KHZ ) =
(opus_int16)silk_DIV32_varQ( cross_corr, normalizer, 13 + 1 ); /* Q13 */
/* From now on normalizer is computed recursively */
for( d = MIN_LAG_4KHZ + 1; d <= MAX_LAG_4KHZ; d++ ) {
basis_ptr--;
/* Check that we are within range of the array */
silk_assert( basis_ptr >= frame_4kHz );
silk_assert( basis_ptr + SF_LENGTH_8KHZ <= frame_4kHz + frame_length_4kHz );
cross_corr = xcorr32[ MAX_LAG_4KHZ - d ];
/* Add contribution of new sample and remove contribution from oldest sample */
normalizer = silk_ADD32( normalizer,
silk_SMULBB( basis_ptr[ 0 ], basis_ptr[ 0 ] ) -
silk_SMULBB( basis_ptr[ SF_LENGTH_8KHZ ], basis_ptr[ SF_LENGTH_8KHZ ] ) );
matrix_ptr( C, k, d - MIN_LAG_4KHZ, CSTRIDE_4KHZ) =
(opus_int16)silk_DIV32_varQ( cross_corr, normalizer, 13 + 1 ); /* Q13 */
}
/* Update target pointer */
target_ptr += SF_LENGTH_8KHZ;
}
/* Combine two subframes into single correlation measure and apply short-lag bias */
if( nb_subfr == PE_MAX_NB_SUBFR ) {
for( i = MAX_LAG_4KHZ; i >= MIN_LAG_4KHZ; i-- ) {
sum = (opus_int32)matrix_ptr( C, 0, i - MIN_LAG_4KHZ, CSTRIDE_4KHZ )
+ (opus_int32)matrix_ptr( C, 1, i - MIN_LAG_4KHZ, CSTRIDE_4KHZ ); /* Q14 */
sum = silk_SMLAWB( sum, sum, silk_LSHIFT( -i, 4 ) ); /* Q14 */
C[ i - MIN_LAG_4KHZ ] = (opus_int16)sum; /* Q14 */
}
} else {
/* Only short-lag bias */
for( i = MAX_LAG_4KHZ; i >= MIN_LAG_4KHZ; i-- ) {
sum = silk_LSHIFT( (opus_int32)C[ i - MIN_LAG_4KHZ ], 1 ); /* Q14 */
sum = silk_SMLAWB( sum, sum, silk_LSHIFT( -i, 4 ) ); /* Q14 */
C[ i - MIN_LAG_4KHZ ] = (opus_int16)sum; /* Q14 */
}
}
/* Sort */
length_d_srch = silk_ADD_LSHIFT32( 4, complexity, 1 );
celt_assert( 3 * length_d_srch <= PE_D_SRCH_LENGTH );
silk_insertion_sort_decreasing_int16( C, d_srch, CSTRIDE_4KHZ,
length_d_srch );
/* Escape if correlation is very low already here */
Cmax = (opus_int)C[ 0 ]; /* Q14 */
if( Cmax < SILK_FIX_CONST( 0.2, 14 ) ) {
silk_memset( pitch_out, 0, nb_subfr * sizeof( opus_int ) );
*LTPCorr_Q15 = 0;
*lagIndex = 0;
*contourIndex = 0;
RESTORE_STACK;
return 1;
}
threshold = silk_SMULWB( search_thres1_Q16, Cmax );
for( i = 0; i < length_d_srch; i++ ) {
/* Convert to 8 kHz indices for the sorted correlation that exceeds the threshold */
if( C[ i ] > threshold ) {
d_srch[ i ] = silk_LSHIFT( d_srch[ i ] + MIN_LAG_4KHZ, 1 );
} else {
length_d_srch = i;
break;
}
}
celt_assert( length_d_srch > 0 );
ALLOC( d_comp, D_COMP_STRIDE, opus_int16 );
for( i = D_COMP_MIN; i < D_COMP_MAX; i++ ) {
d_comp[ i - D_COMP_MIN ] = 0;
}
for( i = 0; i < length_d_srch; i++ ) {
d_comp[ d_srch[ i ] - D_COMP_MIN ] = 1;
}
/* Convolution */
for( i = D_COMP_MAX - 1; i >= MIN_LAG_8KHZ; i-- ) {
d_comp[ i - D_COMP_MIN ] +=
d_comp[ i - 1 - D_COMP_MIN ] + d_comp[ i - 2 - D_COMP_MIN ];
}
length_d_srch = 0;
for( i = MIN_LAG_8KHZ; i < MAX_LAG_8KHZ + 1; i++ ) {
if( d_comp[ i + 1 - D_COMP_MIN ] > 0 ) {
d_srch[ length_d_srch ] = i;
length_d_srch++;
}
}
/* Convolution */
for( i = D_COMP_MAX - 1; i >= MIN_LAG_8KHZ; i-- ) {
d_comp[ i - D_COMP_MIN ] += d_comp[ i - 1 - D_COMP_MIN ]
+ d_comp[ i - 2 - D_COMP_MIN ] + d_comp[ i - 3 - D_COMP_MIN ];
}
length_d_comp = 0;
for( i = MIN_LAG_8KHZ; i < D_COMP_MAX; i++ ) {
if( d_comp[ i - D_COMP_MIN ] > 0 ) {
d_comp[ length_d_comp ] = i - 2;
length_d_comp++;
}
}
/**********************************************************************************
** SECOND STAGE, operating at 8 kHz, on lag sections with high correlation
*************************************************************************************/
/*********************************************************************************
* Find energy of each subframe projected onto its history, for a range of delays
*********************************************************************************/
silk_memset( C, 0, nb_subfr * CSTRIDE_8KHZ * sizeof( opus_int16 ) );
target_ptr = &frame_8kHz[ PE_LTP_MEM_LENGTH_MS * 8 ];
for( k = 0; k < nb_subfr; k++ ) {
/* Check that we are within range of the array */
celt_assert( target_ptr >= frame_8kHz );
celt_assert( target_ptr + SF_LENGTH_8KHZ <= frame_8kHz + frame_length_8kHz );
energy_target = silk_ADD32( silk_inner_prod_aligned( target_ptr, target_ptr, SF_LENGTH_8KHZ, arch ), 1 );
for( j = 0; j < length_d_comp; j++ ) {
d = d_comp[ j ];
basis_ptr = target_ptr - d;
/* Check that we are within range of the array */
silk_assert( basis_ptr >= frame_8kHz );
silk_assert( basis_ptr + SF_LENGTH_8KHZ <= frame_8kHz + frame_length_8kHz );
cross_corr = silk_inner_prod_aligned( target_ptr, basis_ptr, SF_LENGTH_8KHZ, arch );
if( cross_corr > 0 ) {
energy_basis = silk_inner_prod_aligned( basis_ptr, basis_ptr, SF_LENGTH_8KHZ, arch );
matrix_ptr( C, k, d - ( MIN_LAG_8KHZ - 2 ), CSTRIDE_8KHZ ) =
(opus_int16)silk_DIV32_varQ( cross_corr,
silk_ADD32( energy_target,
energy_basis ),
13 + 1 ); /* Q13 */
} else {
matrix_ptr( C, k, d - ( MIN_LAG_8KHZ - 2 ), CSTRIDE_8KHZ ) = 0;
}
}
target_ptr += SF_LENGTH_8KHZ;
}
/* search over lag range and lags codebook */
/* scale factor for lag codebook, as a function of center lag */
CCmax = silk_int32_MIN;
CCmax_b = silk_int32_MIN;
CBimax = 0; /* To avoid returning undefined lag values */
lag = -1; /* To check if lag with strong enough correlation has been found */
if( prevLag > 0 ) {
if( Fs_kHz == 12 ) {
prevLag = silk_DIV32_16( silk_LSHIFT( prevLag, 1 ), 3 );
} else if( Fs_kHz == 16 ) {
prevLag = silk_RSHIFT( prevLag, 1 );
}
prevLag_log2_Q7 = silk_lin2log( (opus_int32)prevLag );
} else {
prevLag_log2_Q7 = 0;
}
silk_assert( search_thres2_Q13 == silk_SAT16( search_thres2_Q13 ) );
/* Set up stage 2 codebook based on number of subframes */
if( nb_subfr == PE_MAX_NB_SUBFR ) {
cbk_size = PE_NB_CBKS_STAGE2_EXT;
Lag_CB_ptr = &silk_CB_lags_stage2[ 0 ][ 0 ];
if( Fs_kHz == 8 && complexity > SILK_PE_MIN_COMPLEX ) {
/* If input is 8 khz use a larger codebook here because it is last stage */
nb_cbk_search = PE_NB_CBKS_STAGE2_EXT;
} else {
nb_cbk_search = PE_NB_CBKS_STAGE2;
}
} else {
cbk_size = PE_NB_CBKS_STAGE2_10MS;
Lag_CB_ptr = &silk_CB_lags_stage2_10_ms[ 0 ][ 0 ];
nb_cbk_search = PE_NB_CBKS_STAGE2_10MS;
}
for( k = 0; k < length_d_srch; k++ ) {
d = d_srch[ k ];
for( j = 0; j < nb_cbk_search; j++ ) {
CC[ j ] = 0;
for( i = 0; i < nb_subfr; i++ ) {
opus_int d_subfr;
/* Try all codebooks */
d_subfr = d + matrix_ptr( Lag_CB_ptr, i, j, cbk_size );
CC[ j ] = CC[ j ]
+ (opus_int32)matrix_ptr( C, i,
d_subfr - ( MIN_LAG_8KHZ - 2 ),
CSTRIDE_8KHZ );
}
}
/* Find best codebook */
CCmax_new = silk_int32_MIN;
CBimax_new = 0;
for( i = 0; i < nb_cbk_search; i++ ) {
if( CC[ i ] > CCmax_new ) {
CCmax_new = CC[ i ];
CBimax_new = i;
}
}
/* Bias towards shorter lags */
lag_log2_Q7 = silk_lin2log( d ); /* Q7 */
silk_assert( lag_log2_Q7 == silk_SAT16( lag_log2_Q7 ) );
silk_assert( nb_subfr * SILK_FIX_CONST( PE_SHORTLAG_BIAS, 13 ) == silk_SAT16( nb_subfr * SILK_FIX_CONST( PE_SHORTLAG_BIAS, 13 ) ) );
CCmax_new_b = CCmax_new - silk_RSHIFT( silk_SMULBB( nb_subfr * SILK_FIX_CONST( PE_SHORTLAG_BIAS, 13 ), lag_log2_Q7 ), 7 ); /* Q13 */
/* Bias towards previous lag */
silk_assert( nb_subfr * SILK_FIX_CONST( PE_PREVLAG_BIAS, 13 ) == silk_SAT16( nb_subfr * SILK_FIX_CONST( PE_PREVLAG_BIAS, 13 ) ) );
if( prevLag > 0 ) {
delta_lag_log2_sqr_Q7 = lag_log2_Q7 - prevLag_log2_Q7;
silk_assert( delta_lag_log2_sqr_Q7 == silk_SAT16( delta_lag_log2_sqr_Q7 ) );
delta_lag_log2_sqr_Q7 = silk_RSHIFT( silk_SMULBB( delta_lag_log2_sqr_Q7, delta_lag_log2_sqr_Q7 ), 7 );
prev_lag_bias_Q13 = silk_RSHIFT( silk_SMULBB( nb_subfr * SILK_FIX_CONST( PE_PREVLAG_BIAS, 13 ), *LTPCorr_Q15 ), 15 ); /* Q13 */
prev_lag_bias_Q13 = silk_DIV32( silk_MUL( prev_lag_bias_Q13, delta_lag_log2_sqr_Q7 ), delta_lag_log2_sqr_Q7 + SILK_FIX_CONST( 0.5, 7 ) );
CCmax_new_b -= prev_lag_bias_Q13; /* Q13 */
}
if( CCmax_new_b > CCmax_b && /* Find maximum biased correlation */
CCmax_new > silk_SMULBB( nb_subfr, search_thres2_Q13 ) && /* Correlation needs to be high enough to be voiced */
silk_CB_lags_stage2[ 0 ][ CBimax_new ] <= MIN_LAG_8KHZ /* Lag must be in range */
) {
CCmax_b = CCmax_new_b;
CCmax = CCmax_new;
lag = d;
CBimax = CBimax_new;
}
}
if( lag == -1 ) {
/* No suitable candidate found */
silk_memset( pitch_out, 0, nb_subfr * sizeof( opus_int ) );
*LTPCorr_Q15 = 0;
*lagIndex = 0;
*contourIndex = 0;
RESTORE_STACK;
return 1;
}
/* Output normalized correlation */
*LTPCorr_Q15 = (opus_int)silk_LSHIFT( silk_DIV32_16( CCmax, nb_subfr ), 2 );
silk_assert( *LTPCorr_Q15 >= 0 );
if( Fs_kHz > 8 ) {
/* Search in original signal */
CBimax_old = CBimax;
/* Compensate for decimation */
silk_assert( lag == silk_SAT16( lag ) );
if( Fs_kHz == 12 ) {
lag = silk_RSHIFT( silk_SMULBB( lag, 3 ), 1 );
} else if( Fs_kHz == 16 ) {
lag = silk_LSHIFT( lag, 1 );
} else {
lag = silk_SMULBB( lag, 3 );
}
lag = silk_LIMIT_int( lag, min_lag, max_lag );
start_lag = silk_max_int( lag - 2, min_lag );
end_lag = silk_min_int( lag + 2, max_lag );
lag_new = lag; /* to avoid undefined lag */
CBimax = 0; /* to avoid undefined lag */
CCmax = silk_int32_MIN;
/* pitch lags according to second stage */
for( k = 0; k < nb_subfr; k++ ) {
pitch_out[ k ] = lag + 2 * silk_CB_lags_stage2[ k ][ CBimax_old ];
}
/* Set up codebook parameters according to complexity setting and frame length */
if( nb_subfr == PE_MAX_NB_SUBFR ) {
nb_cbk_search = (opus_int)silk_nb_cbk_searchs_stage3[ complexity ];
cbk_size = PE_NB_CBKS_STAGE3_MAX;
Lag_CB_ptr = &silk_CB_lags_stage3[ 0 ][ 0 ];
} else {
nb_cbk_search = PE_NB_CBKS_STAGE3_10MS;
cbk_size = PE_NB_CBKS_STAGE3_10MS;
Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ];
}
/* Calculate the correlations and energies needed in stage 3 */
ALLOC( energies_st3, nb_subfr * nb_cbk_search, silk_pe_stage3_vals );
ALLOC( cross_corr_st3, nb_subfr * nb_cbk_search, silk_pe_stage3_vals );
silk_P_Ana_calc_corr_st3( cross_corr_st3, frame, start_lag, sf_length, nb_subfr, complexity, arch );
silk_P_Ana_calc_energy_st3( energies_st3, frame, start_lag, sf_length, nb_subfr, complexity, arch );
lag_counter = 0;
silk_assert( lag == silk_SAT16( lag ) );
contour_bias_Q15 = silk_DIV32_16( SILK_FIX_CONST( PE_FLATCONTOUR_BIAS, 15 ), lag );
target_ptr = &frame[ PE_LTP_MEM_LENGTH_MS * Fs_kHz ];
energy_target = silk_ADD32( silk_inner_prod_aligned( target_ptr, target_ptr, nb_subfr * sf_length, arch ), 1 );
for( d = start_lag; d <= end_lag; d++ ) {
for( j = 0; j < nb_cbk_search; j++ ) {
cross_corr = 0;
energy = energy_target;
for( k = 0; k < nb_subfr; k++ ) {
cross_corr = silk_ADD32( cross_corr,
matrix_ptr( cross_corr_st3, k, j,
nb_cbk_search )[ lag_counter ] );
energy = silk_ADD32( energy,
matrix_ptr( energies_st3, k, j,
nb_cbk_search )[ lag_counter ] );
silk_assert( energy >= 0 );
}
if( cross_corr > 0 ) {
CCmax_new = silk_DIV32_varQ( cross_corr, energy, 13 + 1 ); /* Q13 */
/* Reduce depending on flatness of contour */
diff = silk_int16_MAX - silk_MUL( contour_bias_Q15, j ); /* Q15 */
silk_assert( diff == silk_SAT16( diff ) );
CCmax_new = silk_SMULWB( CCmax_new, diff ); /* Q14 */
} else {
CCmax_new = 0;
}
if( CCmax_new > CCmax && ( d + silk_CB_lags_stage3[ 0 ][ j ] ) <= max_lag ) {
CCmax = CCmax_new;
lag_new = d;
CBimax = j;
}
}
lag_counter++;
}
for( k = 0; k < nb_subfr; k++ ) {
pitch_out[ k ] = lag_new + matrix_ptr( Lag_CB_ptr, k, CBimax, cbk_size );
pitch_out[ k ] = silk_LIMIT( pitch_out[ k ], min_lag, PE_MAX_LAG_MS * Fs_kHz );
}
*lagIndex = (opus_int16)( lag_new - min_lag);
*contourIndex = (opus_int8)CBimax;
} else { /* Fs_kHz == 8 */
/* Save Lags */
for( k = 0; k < nb_subfr; k++ ) {
pitch_out[ k ] = lag + matrix_ptr( Lag_CB_ptr, k, CBimax, cbk_size );
pitch_out[ k ] = silk_LIMIT( pitch_out[ k ], MIN_LAG_8KHZ, PE_MAX_LAG_MS * 8 );
}
*lagIndex = (opus_int16)( lag - MIN_LAG_8KHZ );
*contourIndex = (opus_int8)CBimax;
}
celt_assert( *lagIndex >= 0 );
/* return as voiced */
RESTORE_STACK;
return 0;
}
/***********************************************************************
* Calculates the correlations used in stage 3 search. In order to cover
* the whole lag codebook for all the searched offset lags (lag +- 2),
* the following correlations are needed in each sub frame:
*
* sf1: lag range [-8,...,7] total 16 correlations
* sf2: lag range [-4,...,4] total 9 correlations
* sf3: lag range [-3,....4] total 8 correltions
* sf4: lag range [-6,....8] total 15 correlations
*
* In total 48 correlations. The direct implementation computed in worst
* case 4*12*5 = 240 correlations, but more likely around 120.
***********************************************************************/
static void silk_P_Ana_calc_corr_st3(
silk_pe_stage3_vals cross_corr_st3[], /* O 3 DIM correlation array */
const opus_int16 frame[], /* I vector to correlate */
opus_int start_lag, /* I lag offset to search around */
opus_int sf_length, /* I length of a 5 ms subframe */
opus_int nb_subfr, /* I number of subframes */
opus_int complexity, /* I Complexity setting */
int arch /* I Run-time architecture */
)
{
const opus_int16 *target_ptr;
opus_int i, j, k, lag_counter, lag_low, lag_high;
opus_int nb_cbk_search, delta, idx, cbk_size;
VARDECL( opus_int32, scratch_mem );
VARDECL( opus_int32, xcorr32 );
const opus_int8 *Lag_range_ptr, *Lag_CB_ptr;
SAVE_STACK;
celt_assert( complexity >= SILK_PE_MIN_COMPLEX );
celt_assert( complexity <= SILK_PE_MAX_COMPLEX );
if( nb_subfr == PE_MAX_NB_SUBFR ) {
Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ];
Lag_CB_ptr = &silk_CB_lags_stage3[ 0 ][ 0 ];
nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ];
cbk_size = PE_NB_CBKS_STAGE3_MAX;
} else {
celt_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1);
Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ];
Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ];
nb_cbk_search = PE_NB_CBKS_STAGE3_10MS;
cbk_size = PE_NB_CBKS_STAGE3_10MS;
}
ALLOC( scratch_mem, SCRATCH_SIZE, opus_int32 );
ALLOC( xcorr32, SCRATCH_SIZE, opus_int32 );
target_ptr = &frame[ silk_LSHIFT( sf_length, 2 ) ]; /* Pointer to middle of frame */
for( k = 0; k < nb_subfr; k++ ) {
lag_counter = 0;
/* Calculate the correlations for each subframe */
lag_low = matrix_ptr( Lag_range_ptr, k, 0, 2 );
lag_high = matrix_ptr( Lag_range_ptr, k, 1, 2 );
celt_assert(lag_high-lag_low+1 <= SCRATCH_SIZE);
celt_pitch_xcorr( target_ptr, target_ptr - start_lag - lag_high, xcorr32, sf_length, lag_high - lag_low + 1, arch );
for( j = lag_low; j <= lag_high; j++ ) {
silk_assert( lag_counter < SCRATCH_SIZE );
scratch_mem[ lag_counter ] = xcorr32[ lag_high - j ];
lag_counter++;
}
delta = matrix_ptr( Lag_range_ptr, k, 0, 2 );
for( i = 0; i < nb_cbk_search; i++ ) {
/* Fill out the 3 dim array that stores the correlations for */
/* each code_book vector for each start lag */
idx = matrix_ptr( Lag_CB_ptr, k, i, cbk_size ) - delta;
for( j = 0; j < PE_NB_STAGE3_LAGS; j++ ) {
silk_assert( idx + j < SCRATCH_SIZE );
silk_assert( idx + j < lag_counter );
matrix_ptr( cross_corr_st3, k, i, nb_cbk_search )[ j ] =
scratch_mem[ idx + j ];
}
}
target_ptr += sf_length;
}
RESTORE_STACK;
}
/********************************************************************/
/* Calculate the energies for first two subframes. The energies are */
/* calculated recursively. */
/********************************************************************/
static void silk_P_Ana_calc_energy_st3(
silk_pe_stage3_vals energies_st3[], /* O 3 DIM energy array */
const opus_int16 frame[], /* I vector to calc energy in */
opus_int start_lag, /* I lag offset to search around */
opus_int sf_length, /* I length of one 5 ms subframe */
opus_int nb_subfr, /* I number of subframes */
opus_int complexity, /* I Complexity setting */
int arch /* I Run-time architecture */
)
{
const opus_int16 *target_ptr, *basis_ptr;
opus_int32 energy;
opus_int k, i, j, lag_counter;
opus_int nb_cbk_search, delta, idx, cbk_size, lag_diff;
VARDECL( opus_int32, scratch_mem );
const opus_int8 *Lag_range_ptr, *Lag_CB_ptr;
SAVE_STACK;
celt_assert( complexity >= SILK_PE_MIN_COMPLEX );
celt_assert( complexity <= SILK_PE_MAX_COMPLEX );
if( nb_subfr == PE_MAX_NB_SUBFR ) {
Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ];
Lag_CB_ptr = &silk_CB_lags_stage3[ 0 ][ 0 ];
nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ];
cbk_size = PE_NB_CBKS_STAGE3_MAX;
} else {
celt_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1);
Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ];
Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ];
nb_cbk_search = PE_NB_CBKS_STAGE3_10MS;
cbk_size = PE_NB_CBKS_STAGE3_10MS;
}
ALLOC( scratch_mem, SCRATCH_SIZE, opus_int32 );
target_ptr = &frame[ silk_LSHIFT( sf_length, 2 ) ];
for( k = 0; k < nb_subfr; k++ ) {
lag_counter = 0;
/* Calculate the energy for first lag */
basis_ptr = target_ptr - ( start_lag + matrix_ptr( Lag_range_ptr, k, 0, 2 ) );
energy = silk_inner_prod_aligned( basis_ptr, basis_ptr, sf_length, arch );
silk_assert( energy >= 0 );
scratch_mem[ lag_counter ] = energy;
lag_counter++;
lag_diff = ( matrix_ptr( Lag_range_ptr, k, 1, 2 ) - matrix_ptr( Lag_range_ptr, k, 0, 2 ) + 1 );
for( i = 1; i < lag_diff; i++ ) {
/* remove part outside new window */
energy -= silk_SMULBB( basis_ptr[ sf_length - i ], basis_ptr[ sf_length - i ] );
silk_assert( energy >= 0 );
/* add part that comes into window */
energy = silk_ADD_SAT32( energy, silk_SMULBB( basis_ptr[ -i ], basis_ptr[ -i ] ) );
silk_assert( energy >= 0 );
silk_assert( lag_counter < SCRATCH_SIZE );
scratch_mem[ lag_counter ] = energy;
lag_counter++;
}
delta = matrix_ptr( Lag_range_ptr, k, 0, 2 );
for( i = 0; i < nb_cbk_search; i++ ) {
/* Fill out the 3 dim array that stores the correlations for */
/* each code_book vector for each start lag */
idx = matrix_ptr( Lag_CB_ptr, k, i, cbk_size ) - delta;
for( j = 0; j < PE_NB_STAGE3_LAGS; j++ ) {
silk_assert( idx + j < SCRATCH_SIZE );
silk_assert( idx + j < lag_counter );
matrix_ptr( energies_st3, k, i, nb_cbk_search )[ j ] =
scratch_mem[ idx + j ];
silk_assert(
matrix_ptr( energies_st3, k, i, nb_cbk_search )[ j ] >= 0 );
}
}
target_ptr += sf_length;
}
RESTORE_STACK;
}
|