File: test_float.ml

package info (click to toggle)
janest-base 0.17.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,632 kB
  • sloc: ml: 48,653; ansic: 281; javascript: 126; makefile: 14
file content (1307 lines) | stat: -rw-r--r-- 49,070 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
open! Import
open! Float
open! Float.Private

let%expect_test ("hash coherence" [@tags "64-bits-only"]) =
  check_hash_coherence [%here] (module Float) [ min_value; 0.; 37.; max_value ];
  [%expect {| |}]
;;

let%expect_test "of_string_opt" =
  print_s [%sexp (of_string_opt "1." : float option)];
  [%expect "(1)"];
  print_s [%sexp (of_string_opt "1.a" : float option)];
  [%expect "()"];
  print_s [%sexp (of_string_opt "1e10000" : float option)];
  [%expect "(INF)"]
;;

let exponent_bits = 11
let mantissa_bits = 52
let exponent_mask64 = Int64.(shift_left one exponent_bits - one)
let exponent_mask = Int64.to_int_exn exponent_mask64
let mantissa_mask = Int63.(shift_left one mantissa_bits - one)
let _mantissa_mask64 = Int63.to_int64 mantissa_mask

let%test_unit "upper/lower_bound_for_int" =
  assert (
    [%compare.equal: (int * t * t) list]
      ([ 8; 16; 31; 32; 52; 53; 54; 62; 63; 64 ]
       |> List.map ~f:(fun x -> x, lower_bound_for_int x, upper_bound_for_int x))
      [ 8, -128.99999999999997, 127.99999999999999
      ; 16, -32768.999999999993, 32767.999999999996
      ; 31, -1073741824.9999998, 1073741823.9999999
      ; 32, -2147483648.9999995, 2147483647.9999998
      ; 52, -2251799813685248.5, 2251799813685247.8
      ; 53, -4503599627370496., 4503599627370495.5
      ; 54, -9007199254740992., 9007199254740991.
      ; 62, -2305843009213693952., 2305843009213693696.
      ; 63, -4611686018427387904., 4611686018427387392.
      ; 64, -9223372036854775808., 9223372036854774784.
      ])
;;

let%test_unit _ =
  (* on 64-bit platform ppx_hash hashes floats exactly the same as polymorphic hash *)
  match Word_size.word_size with
  | W32 -> ()
  | W64 ->
    List.iter
      ~f:(fun float ->
        let hash1 = Stdlib.Hashtbl.hash float in
        let hash2 = [%hash: float] float in
        let hash3 = specialized_hash float in
        if not Int.(hash1 = hash2 && hash1 = hash3)
        then
          raise_s
            [%message "bad" (hash1 : Int.Hex.t) (hash2 : Int.Hex.t) (hash3 : Int.Hex.t)])
      [ 0.926038888360971146; 34.1638588598232076 ]
;;

let test_both_ways (a : t) (b : int64) =
  Int64.( = ) (to_int64_preserve_order_exn a) b
  && Float.( = ) (of_int64_preserve_order b) a
;;

let%test _ = test_both_ways 0. 0L
let%test _ = test_both_ways (-0.) 0L
let%test _ = test_both_ways 1. Int64.(shift_left 1023L 52)
let%test _ = test_both_ways (-2.) Int64.(neg (shift_left 1024L 52))
let%test _ = test_both_ways infinity Int64.(shift_left 2047L 52)
let%test _ = test_both_ways neg_infinity Int64.(neg (shift_left 2047L 52))
let%test _ = one_ulp `Down infinity = max_finite_value
let%test _ = is_nan (one_ulp `Up infinity)
let%test _ = is_nan (one_ulp `Down neg_infinity)
let%test _ = one_ulp `Up neg_infinity = ~-.max_finite_value

(* Some tests to make sure that the compiler is generating code for handling subnormal
   numbers at runtime accurately. *)
let x () = min_positive_subnormal_value
let y () = min_positive_normal_value
let%test _ = test_both_ways (x ()) 1L
let%test _ = test_both_ways (y ()) Int64.(shift_left 1L 52)
let%test _ = x () > 0.
let%test_unit _ = [%test_result: float] (x () /. 2.) ~expect:0.
let%test _ = one_ulp `Up 0. = x ()
let%test _ = one_ulp `Down 0. = ~-.(x ())
let are_one_ulp_apart a b = one_ulp `Up a = b
let%test _ = are_one_ulp_apart (x ()) (2. *. x ())
let%test _ = are_one_ulp_apart (2. *. x ()) (3. *. x ())
let one_ulp_below_y () = y () -. x ()
let%test _ = one_ulp_below_y () < y ()
let%test _ = y () -. one_ulp_below_y () = x ()
let%test _ = are_one_ulp_apart (one_ulp_below_y ()) (y ())
let one_ulp_above_y () = y () +. x ()
let%test _ = y () < one_ulp_above_y ()
let%test _ = one_ulp_above_y () -. y () = x ()
let%test _ = are_one_ulp_apart (y ()) (one_ulp_above_y ())
let%test _ = not (are_one_ulp_apart (one_ulp_below_y ()) (one_ulp_above_y ()))

(* [2 * min_positive_normal_value] is where the ulp increases for the first time. *)
let z () = 2. *. y ()
let one_ulp_below_z () = z () -. x ()
let%test _ = one_ulp_below_z () < z ()
let%test _ = z () -. one_ulp_below_z () = x ()
let%test _ = are_one_ulp_apart (one_ulp_below_z ()) (z ())
let one_ulp_above_z () = z () +. (2. *. x ())
let%test _ = z () < one_ulp_above_z ()
let%test _ = one_ulp_above_z () -. z () = 2. *. x ()
let%test _ = are_one_ulp_apart (z ()) (one_ulp_above_z ())

let%test_module "clamp" =
  (module struct
    let%test _ = clamp_exn 1.0 ~min:2. ~max:3. = 2.
    let%test _ = clamp_exn 2.5 ~min:2. ~max:3. = 2.5
    let%test _ = clamp_exn 3.5 ~min:2. ~max:3. = 3.

    let%test_unit "clamp" =
      [%test_result: float Or_error.t] (clamp 3.5 ~min:2. ~max:3.) ~expect:(Ok 3.)
    ;;

    let%test_unit "clamp nan" =
      [%test_result: float Or_error.t] (clamp nan ~min:2. ~max:3.) ~expect:(Ok nan)
    ;;

    let%test "clamp bad" = Or_error.is_error (clamp 2.5 ~min:3. ~max:2.)
    let%test "clamp also bad" = Or_error.is_error (clamp 2.5 ~min:nan ~max:3.)
    let%test "clamp also bad 2" = Or_error.is_error (clamp 2.5 ~min:2. ~max:nan)
    let%test "clamp also bad 3" = Or_error.is_error (clamp 2.5 ~min:nan ~max:nan)
    let%test "clamp also bad 4" = Or_error.is_error (clamp nan ~min:nan ~max:nan)

    let%test_unit "clamp_exn bad" =
      Expect_test_helpers_base.require_does_raise [%here] (fun () ->
        clamp_exn 2.5 ~min:3. ~max:2.)
    ;;

    let%test_unit "clamp_exn also bad" =
      Expect_test_helpers_base.require_does_raise [%here] (fun () ->
        clamp_exn 2.5 ~min:nan ~max:3.)
    ;;

    let%test_unit "clamp_exn also bad 2" =
      Expect_test_helpers_base.require_does_raise [%here] (fun () ->
        clamp_exn 2.5 ~min:2. ~max:nan)
    ;;

    let%test_unit "clamp_exn also bad 3" =
      Expect_test_helpers_base.require_does_raise [%here] (fun () ->
        clamp_exn 2.5 ~min:nan ~max:nan)
    ;;

    let%test_unit "clamp_exn also bad 4" =
      Expect_test_helpers_base.require_does_raise [%here] (fun () ->
        clamp_exn nan ~min:nan ~max:nan)
    ;;
  end)
;;

let%test_unit _ =
  [%test_result: Int64.t]
    (Int64.bits_of_float 1.1235582092889474E+307)
    ~expect:0x7fb0000000000000L
;;

let%test_module "IEEE" =
  (module struct
    (* Note: IEEE 754 defines NaN values to be those where the exponent is all 1s and the
       mantissa is nonzero.  test_result<t> sees nan values as equal because it is based
       on [compare] rather than [=].  (If [x] and [x'] are nan, [compare x x'] returns 0,
       whereas [x = x'] returns [false].  This is the case regardless of whether or not
       [x] and [x'] are bit-identical values of nan.)  *)
    let f (t : t) (negative : bool) (exponent : int) (mantissa : Int63.t) : unit =
      let str = to_string t in
      let is_nan = is_nan t in
      (* the sign doesn't matter when nan *)
      if not is_nan
      then
        [%test_result: bool]
          ~message:("ieee_negative " ^ str)
          (ieee_negative t)
          ~expect:negative;
      [%test_result: int]
        ~message:("ieee_exponent " ^ str)
        (ieee_exponent t)
        ~expect:exponent;
      if is_nan
      then assert (Int63.(zero <> ieee_mantissa t))
      else
        [%test_result: Int63.t]
          ~message:("ieee_mantissa " ^ str)
          (ieee_mantissa t)
          ~expect:mantissa;
      [%test_result: t]
        ~message:
          (Printf.sprintf
             !"create_ieee ~negative:%B ~exponent:%d ~mantissa:%{Int63}"
             negative
             exponent
             mantissa)
        (create_ieee_exn ~negative ~exponent ~mantissa)
        ~expect:t
    ;;

    let%test_unit _ =
      let ( !! ) x = Int63.of_int x in
      f zero false 0 !!0;
      f min_positive_subnormal_value false 0 !!1;
      f min_positive_normal_value false 1 !!0;
      f epsilon_float false Int.(1023 - mantissa_bits) !!0;
      f one false 1023 !!0;
      f minus_one true 1023 !!0;
      f max_finite_value false Int.(exponent_mask - 1) mantissa_mask;
      f infinity false exponent_mask !!0;
      f neg_infinity true exponent_mask !!0;
      f nan false exponent_mask !!1
    ;;

    (* test the normalized case, that is, 1 <= exponent <= 2046 *)
    let%test_unit _ =
      let g ~negative ~exponent ~mantissa =
        assert (
          create_ieee_exn ~negative ~exponent ~mantissa:(Int63.of_int64_exn mantissa)
          = (if negative then -1. else 1.)
            * (2. **. (Float.of_int exponent - 1023.))
            * (1. + ((2. **. -52.) * Int64.to_float mantissa)))
      in
      g ~negative:false ~exponent:1 ~mantissa:147L;
      g ~negative:true ~exponent:137 ~mantissa:13L;
      g ~negative:false ~exponent:1015 ~mantissa:1370001L;
      g ~negative:true ~exponent:2046 ~mantissa:137000100945L
    ;;
  end)
;;

let%test_module _ =
  (module struct
    let test f expect =
      let actual = to_padded_compact_string f in
      if String.(actual <> expect)
      then raise_s [%message "failure" (f : t) (expect : string) (actual : string)]
    ;;

    let both f expect =
      assert (f > 0.);
      test f expect;
      test ~-.f ("-" ^ expect)
    ;;

    let decr = one_ulp `Down
    let incr = one_ulp `Up

    let boundary f ~closer_to_zero ~at =
      assert (f > 0.);
      (* If [f] looks like an odd multiple of 0.05, it might be slightly under-represented
         as a float, e.g.

         1. -. 0.95 = 0.0500000000000000444

         In such case, sadly, the right way for [to_padded_compact_string], just as for
         [sprintf "%.1f"], is to round it down.  However, the next representable number
         should be rounded up:

         # let x = 0.95 in sprintf "%.0f / %.1f / %.2f / %.3f / %.20f" x x x x x;;
         - : string = "1 / 0.9 / 0.95 / 0.950 / 0.94999999999999995559"

         # let x = incr 0.95 in sprintf "%.0f / %.1f / %.2f / %.3f / %.20f" x x x x x ;;
         - : string = "1 / 1.0 / 0.95 / 0.950 / 0.95000000000000006661"
      *)
      let f =
        if f >= 1000.
        then f
        else (
          let x = Printf.sprintf "%.20f" f in
          let spot = String.index_exn x '.' in
          (* the following condition is only meant to work for small multiples of 0.05 *)
          let ( + ) = Int.( + ) in
          let ( = ) = Char.( = ) in
          if x.[spot + 2] = '4' && x.[spot + 3] = '9' && x.[spot + 4] = '9'
          then (* something like 0.94999999999999995559 *)
            incr f
          else f)
      in
      both (decr f) closer_to_zero;
      both f at
    ;;

    let%test_unit _ = test nan "nan  "
    let%test_unit _ = test 0.0 "0  "
    let%test_unit _ = both min_positive_subnormal_value "0  "
    let%test_unit _ = both infinity "inf  "
    let%test_unit _ = boundary 0.05 ~closer_to_zero:"0  " ~at:"0.1"
    let%test_unit _ = boundary 0.15 ~closer_to_zero:"0.1" ~at:"0.2"

    (* glibc printf resolves ties to even, cf.
       http://www.exploringbinary.com/inconsistent-rounding-of-printed-floating-point-numbers/
       Ties are resolved differently in JavaScript - mark some tests as no running with JavaScript.
    *)
    let%test_unit (_ [@tags "no-js"]) =
      boundary (* tie *) 0.25 ~closer_to_zero:"0.2" ~at:"0.2"
    ;;

    let%test_unit (_ [@tags "no-js"]) =
      boundary (incr 0.25) ~closer_to_zero:"0.2" ~at:"0.3"
    ;;

    let%test_unit _ = boundary 0.35 ~closer_to_zero:"0.3" ~at:"0.4"
    let%test_unit _ = boundary 0.45 ~closer_to_zero:"0.4" ~at:"0.5"
    let%test_unit _ = both 0.50 "0.5"
    let%test_unit _ = boundary 0.55 ~closer_to_zero:"0.5" ~at:"0.6"
    let%test_unit _ = boundary 0.65 ~closer_to_zero:"0.6" ~at:"0.7"

    (* this time tie-to-even means round away from 0 *)
    let%test_unit _ = boundary (* tie *) 0.75 ~closer_to_zero:"0.7" ~at:"0.8"
    let%test_unit _ = boundary 0.85 ~closer_to_zero:"0.8" ~at:"0.9"
    let%test_unit _ = boundary 0.95 ~closer_to_zero:"0.9" ~at:"1  "
    let%test_unit _ = boundary 1.05 ~closer_to_zero:"1  " ~at:"1.1"
    let%test_unit (_ [@tags "no-js"]) = boundary 3.25 ~closer_to_zero:"3.2" ~at:"3.2"

    let%test_unit (_ [@tags "no-js"]) =
      boundary (incr 3.25) ~closer_to_zero:"3.2" ~at:"3.3"
    ;;

    let%test_unit _ = boundary 3.75 ~closer_to_zero:"3.7" ~at:"3.8"
    let%test_unit _ = boundary 9.95 ~closer_to_zero:"9.9" ~at:"10  "
    let%test_unit _ = boundary 10.05 ~closer_to_zero:"10  " ~at:"10.1"
    let%test_unit _ = boundary 100.05 ~closer_to_zero:"100  " ~at:"100.1"

    let%test_unit (_ [@tags "no-js"]) =
      boundary (* tie *) 999.25 ~closer_to_zero:"999.2" ~at:"999.2"
    ;;

    let%test_unit (_ [@tags "no-js"]) =
      boundary (incr 999.25) ~closer_to_zero:"999.2" ~at:"999.3"
    ;;

    let%test_unit _ = boundary 999.75 ~closer_to_zero:"999.7" ~at:"999.8"
    let%test_unit _ = boundary 999.95 ~closer_to_zero:"999.9" ~at:"1k "
    let%test_unit _ = both 1000. "1k "

    (* some ties which we resolve manually in [iround_ratio_exn] *)
    let%test_unit _ = boundary 1050. ~closer_to_zero:"1k " ~at:"1k "
    let%test_unit _ = boundary (incr 1050.) ~closer_to_zero:"1k " ~at:"1k1"
    let%test_unit _ = boundary 1950. ~closer_to_zero:"1k9" ~at:"2k "
    let%test_unit _ = boundary 3250. ~closer_to_zero:"3k2" ~at:"3k2"
    let%test_unit _ = boundary (incr 3250.) ~closer_to_zero:"3k2" ~at:"3k3"
    let%test_unit _ = boundary 9950. ~closer_to_zero:"9k9" ~at:"10k "
    let%test_unit _ = boundary 33_250. ~closer_to_zero:"33k2" ~at:"33k2"
    let%test_unit _ = boundary (incr 33_250.) ~closer_to_zero:"33k2" ~at:"33k3"
    let%test_unit _ = boundary 33_350. ~closer_to_zero:"33k3" ~at:"33k4"
    let%test_unit _ = boundary 33_750. ~closer_to_zero:"33k7" ~at:"33k8"
    let%test_unit _ = boundary 333_250. ~closer_to_zero:"333k2" ~at:"333k2"
    let%test_unit _ = boundary (incr 333_250.) ~closer_to_zero:"333k2" ~at:"333k3"
    let%test_unit _ = boundary 333_750. ~closer_to_zero:"333k7" ~at:"333k8"
    let%test_unit _ = boundary 999_850. ~closer_to_zero:"999k8" ~at:"999k8"
    let%test_unit _ = boundary (incr 999_850.) ~closer_to_zero:"999k8" ~at:"999k9"
    let%test_unit _ = boundary 999_950. ~closer_to_zero:"999k9" ~at:"1m "
    let%test_unit _ = boundary 1_050_000. ~closer_to_zero:"1m " ~at:"1m "
    let%test_unit _ = boundary (incr 1_050_000.) ~closer_to_zero:"1m " ~at:"1m1"
    let%test_unit _ = boundary 999_950_000. ~closer_to_zero:"999m9" ~at:"1g "
    let%test_unit _ = boundary 999_950_000_000. ~closer_to_zero:"999g9" ~at:"1t "
    let%test_unit _ = boundary 999_950_000_000_000. ~closer_to_zero:"999t9" ~at:"1p "

    let%test_unit _ =
      boundary 999_950_000_000_000_000. ~closer_to_zero:"999p9" ~at:"1.0e+18"
    ;;

    (* Test the boundary between the subnormals and the normals. *)
    let%test_unit _ = boundary min_positive_normal_value ~closer_to_zero:"0  " ~at:"0  "
  end)
;;

let%test "int_pow" =
  let tol = 1e-15 in
  let test (x, n) =
    let reference_value = x **. of_int n in
    let relative_error = (int_pow x n -. reference_value) /. reference_value in
    abs relative_error < tol
  in
  List.for_all
    ~f:test
    [ 1.5, 17
    ; 1.5, 42
    ; 0.99, 64
    ; 2., -5
    ; 2., -1
    ; -1.3, 2
    ; -1.3, -1
    ; -1.3, -2
    ; 5., 0
    ; nan, 0
    ; 0., 0
    ; infinity, 0
    ]
;;

let%test "int_pow misc" =
  int_pow 0. (-1) = infinity
  && int_pow (-0.) (-1) = neg_infinity
  && int_pow (-0.) (-2) = infinity
  && int_pow 1.5 5000 = infinity
  && int_pow 1.5 (-5000) = 0.
  && int_pow (-1.) Int.max_value = -1.
  && int_pow (-1.) Int.min_value = 1.
;;

(* some ugly corner cases with extremely large exponents and some serious precision loss *)
let%test ("int_pow bad cases" [@tags "64-bits-only"]) =
  let a = one_ulp `Down 1. in
  let b = one_ulp `Up 1. in
  let large = 1 lsl 61 in
  let small = Int.neg large in
  (* this huge discrepancy comes from the fact that [1 / a = b] but this is a very poor
     approximation, and in particular [1 / b = one_ulp `Down a = a * a]. *)
  a **. of_int small = 1.5114276650041252e+111
  && int_pow a small = 2.2844048619719663e+222
  && int_pow b large = 2.2844048619719663e+222
  && b **. of_int large = 2.2844135865396268e+222
;;

let%test_unit "sign_exn" =
  List.iter
    ~f:(fun (input, expect) -> assert (Sign.equal (sign_exn input) expect))
    [ 1e-30, Sign.Pos; -0., Zero; 0., Zero; neg_infinity, Neg ]
;;

let%test _ =
  match sign_exn nan with
  | Neg | Zero | Pos -> false
  | exception _ -> true
;;

let%test_unit "sign_or_nan" =
  List.iter
    ~f:(fun (input, expect) -> assert (Sign_or_nan.equal (sign_or_nan input) expect))
    [ 1e-30, Sign_or_nan.Pos; -0., Zero; 0., Zero; neg_infinity, Neg; nan, Nan ]
;;

let%test_module _ =
  (module struct
    (* Some of the following tests used to live in lib_test/core_float_test.ml. *)

    let () = Random.init 137

    (* round:
       ...  <-)[-><-)[-><-)[-><-)[-><-)[-><-)[->   ...
       ... -+-----+-----+-----+-----+-----+-----+- ...
       ... -3    -2    -1     0     1     2     3  ...
       so round x -. x should be in (-0.5,0.5]
    *)
    let round_test x =
      let y = round x in
      -0.5 < y -. x && y -. x <= 0.5
    ;;

    let iround_up_vs_down_test x =
      let expected_difference = if Parts.fractional (modf x) = 0. then 0 else 1 in
      match iround_up x, iround_down x with
      | Some x, Some y -> Int.(x - y = expected_difference)
      | _, _ -> true
    ;;

    let test_all_six
      x
      ~specialized_iround
      ~specialized_iround_exn
      ~float_rounding
      ~dir
      ~validate
      =
      let result1 = iround x ~dir in
      let result2 = Option.try_with (fun () -> iround_exn x ~dir) in
      let result3 = specialized_iround x in
      let result4 = Option.try_with (fun () -> specialized_iround_exn x) in
      let result5 = Option.try_with (fun () -> Int.of_float (float_rounding x)) in
      let result6 = Option.try_with (fun () -> Int.of_float (round ~dir x)) in
      let ( = ) = Stdlib.( = ) in
      if result1 = result2
         && result2 = result3
         && result3 = result4
         && result4 = result5
         && result5 = result6
      then validate result1
      else false
    ;;

    (* iround ~dir:`Nearest built so this should always be true *)
    let iround_nearest_test x =
      test_all_six
        x
        ~specialized_iround:iround_nearest
        ~specialized_iround_exn:iround_nearest_exn
        ~float_rounding:round_nearest
        ~dir:`Nearest
        ~validate:(function
        | None -> true
        | Some y ->
          let y = of_int y in
          -0.5 < y -. x && y -. x <= 0.5)
    ;;

    (* iround_down:
       ... )[<---)[<---)[<---)[<---)[<---)[<---)[  ...
       ... -+-----+-----+-----+-----+-----+-----+- ...
       ... -3    -2    -1     0     1     2     3  ...
       so x -. iround_down x should be in [0,1)
    *)
    let iround_down_test x =
      test_all_six
        x
        ~specialized_iround:iround_down
        ~specialized_iround_exn:iround_down_exn
        ~float_rounding:round_down
        ~dir:`Down
        ~validate:(function
        | None -> true
        | Some y ->
          let y = of_int y in
          0. <= x -. y && x -. y < 1.)
    ;;

    (* iround_up:
       ...  ](--->](--->](--->](--->](--->](--->]( ...
       ... -+-----+-----+-----+-----+-----+-----+- ...
       ... -3    -2    -1     0     1     2     3  ...
       so iround_up x -. x should be in [0,1)
    *)
    let iround_up_test x =
      test_all_six
        x
        ~specialized_iround:iround_up
        ~specialized_iround_exn:iround_up_exn
        ~float_rounding:round_up
        ~dir:`Up
        ~validate:(function
        | None -> true
        | Some y ->
          let y = of_int y in
          0. <= y -. x && y -. x < 1.)
    ;;

    (* iround_towards_zero:
       ...  ](--->](--->](---><--->)[<---)[<---)[  ...
       ... -+-----+-----+-----+-----+-----+-----+- ...
       ... -3    -2    -1     0     1     2     3  ...
       so abs x -. abs (iround_towards_zero x) should be in [0,1)
    *)
    let iround_towards_zero_test x =
      test_all_six
        x
        ~specialized_iround:iround_towards_zero
        ~specialized_iround_exn:iround_towards_zero_exn
        ~float_rounding:round_towards_zero
        ~dir:`Zero
        ~validate:(function
        | None -> true
        | Some y ->
          let x = abs x in
          let y = abs (of_int y) in
          0. <= x -. y && x -. y < 1. && (Sign.(sign_exn x = sign_exn y) || y = 0.0))
    ;;

    (* Easy cases that used to live inline with the code above. *)
    let%test_unit _ = [%test_result: int option] (iround_up (-3.4)) ~expect:(Some (-3))
    let%test_unit _ = [%test_result: int option] (iround_up 0.0) ~expect:(Some 0)
    let%test_unit _ = [%test_result: int option] (iround_up 3.4) ~expect:(Some 4)
    let%test_unit _ = [%test_result: int] (iround_up_exn (-3.4)) ~expect:(-3)
    let%test_unit _ = [%test_result: int] (iround_up_exn 0.0) ~expect:0
    let%test_unit _ = [%test_result: int] (iround_up_exn 3.4) ~expect:4
    let%test_unit _ = [%test_result: int option] (iround_down (-3.4)) ~expect:(Some (-4))
    let%test_unit _ = [%test_result: int option] (iround_down 0.0) ~expect:(Some 0)
    let%test_unit _ = [%test_result: int option] (iround_down 3.4) ~expect:(Some 3)
    let%test_unit _ = [%test_result: int] (iround_down_exn (-3.4)) ~expect:(-4)
    let%test_unit _ = [%test_result: int] (iround_down_exn 0.0) ~expect:0
    let%test_unit _ = [%test_result: int] (iround_down_exn 3.4) ~expect:3

    let%test_unit _ =
      [%test_result: int option] (iround_towards_zero (-3.4)) ~expect:(Some (-3))
    ;;

    let%test_unit _ =
      [%test_result: int option] (iround_towards_zero 0.0) ~expect:(Some 0)
    ;;

    let%test_unit _ =
      [%test_result: int option] (iround_towards_zero 3.4) ~expect:(Some 3)
    ;;

    let%test_unit _ = [%test_result: int] (iround_towards_zero_exn (-3.4)) ~expect:(-3)
    let%test_unit _ = [%test_result: int] (iround_towards_zero_exn 0.0) ~expect:0
    let%test_unit _ = [%test_result: int] (iround_towards_zero_exn 3.4) ~expect:3

    let%test_unit _ =
      [%test_result: int option] (iround_nearest (-3.6)) ~expect:(Some (-4))
    ;;

    let%test_unit _ =
      [%test_result: int option] (iround_nearest (-3.5)) ~expect:(Some (-3))
    ;;

    let%test_unit _ =
      [%test_result: int option] (iround_nearest (-3.4)) ~expect:(Some (-3))
    ;;

    let%test_unit _ = [%test_result: int option] (iround_nearest 0.0) ~expect:(Some 0)
    let%test_unit _ = [%test_result: int option] (iround_nearest 3.4) ~expect:(Some 3)
    let%test_unit _ = [%test_result: int option] (iround_nearest 3.5) ~expect:(Some 4)
    let%test_unit _ = [%test_result: int option] (iround_nearest 3.6) ~expect:(Some 4)
    let%test_unit _ = [%test_result: int] (iround_nearest_exn (-3.6)) ~expect:(-4)
    let%test_unit _ = [%test_result: int] (iround_nearest_exn (-3.5)) ~expect:(-3)
    let%test_unit _ = [%test_result: int] (iround_nearest_exn (-3.4)) ~expect:(-3)
    let%test_unit _ = [%test_result: int] (iround_nearest_exn 0.0) ~expect:0
    let%test_unit _ = [%test_result: int] (iround_nearest_exn 3.4) ~expect:3
    let%test_unit _ = [%test_result: int] (iround_nearest_exn 3.5) ~expect:4
    let%test_unit _ = [%test_result: int] (iround_nearest_exn 3.6) ~expect:4

    let special_values_test () =
      [%test_result: float] (round (-1.50001)) ~expect:(-2.);
      [%test_result: float] (round (-1.5)) ~expect:(-1.);
      [%test_result: float] (round (-0.50001)) ~expect:(-1.);
      [%test_result: float] (round (-0.5)) ~expect:0.;
      [%test_result: float] (round 0.49999) ~expect:0.;
      [%test_result: float] (round 0.5) ~expect:1.;
      [%test_result: float] (round 1.49999) ~expect:1.;
      [%test_result: float] (round 1.5) ~expect:2.;
      [%test_result: int] (iround_exn ~dir:`Up (-2.)) ~expect:(-2);
      [%test_result: int] (iround_exn ~dir:`Up (-1.9999)) ~expect:(-1);
      [%test_result: int] (iround_exn ~dir:`Up (-1.)) ~expect:(-1);
      [%test_result: int] (iround_exn ~dir:`Up (-0.9999)) ~expect:0;
      [%test_result: int] (iround_exn ~dir:`Up 0.) ~expect:0;
      [%test_result: int] (iround_exn ~dir:`Up 0.00001) ~expect:1;
      [%test_result: int] (iround_exn ~dir:`Up 1.) ~expect:1;
      [%test_result: int] (iround_exn ~dir:`Up 1.00001) ~expect:2;
      [%test_result: int] (iround_up_exn (-2.)) ~expect:(-2);
      [%test_result: int] (iround_up_exn (-1.9999)) ~expect:(-1);
      [%test_result: int] (iround_up_exn (-1.)) ~expect:(-1);
      [%test_result: int] (iround_up_exn (-0.9999)) ~expect:0;
      [%test_result: int] (iround_up_exn 0.) ~expect:0;
      [%test_result: int] (iround_up_exn 0.00001) ~expect:1;
      [%test_result: int] (iround_up_exn 1.) ~expect:1;
      [%test_result: int] (iround_up_exn 1.00001) ~expect:2;
      [%test_result: int] (iround_exn ~dir:`Down (-1.00001)) ~expect:(-2);
      [%test_result: int] (iround_exn ~dir:`Down (-1.)) ~expect:(-1);
      [%test_result: int] (iround_exn ~dir:`Down (-0.00001)) ~expect:(-1);
      [%test_result: int] (iround_exn ~dir:`Down 0.) ~expect:0;
      [%test_result: int] (iround_exn ~dir:`Down 0.99999) ~expect:0;
      [%test_result: int] (iround_exn ~dir:`Down 1.) ~expect:1;
      [%test_result: int] (iround_exn ~dir:`Down 1.99999) ~expect:1;
      [%test_result: int] (iround_exn ~dir:`Down 2.) ~expect:2;
      [%test_result: int] (iround_down_exn (-1.00001)) ~expect:(-2);
      [%test_result: int] (iround_down_exn (-1.)) ~expect:(-1);
      [%test_result: int] (iround_down_exn (-0.00001)) ~expect:(-1);
      [%test_result: int] (iround_down_exn 0.) ~expect:0;
      [%test_result: int] (iround_down_exn 0.99999) ~expect:0;
      [%test_result: int] (iround_down_exn 1.) ~expect:1;
      [%test_result: int] (iround_down_exn 1.99999) ~expect:1;
      [%test_result: int] (iround_down_exn 2.) ~expect:2;
      [%test_result: int] (iround_exn ~dir:`Zero (-2.)) ~expect:(-2);
      [%test_result: int] (iround_exn ~dir:`Zero (-1.99999)) ~expect:(-1);
      [%test_result: int] (iround_exn ~dir:`Zero (-1.)) ~expect:(-1);
      [%test_result: int] (iround_exn ~dir:`Zero (-0.99999)) ~expect:0;
      [%test_result: int] (iround_exn ~dir:`Zero 0.99999) ~expect:0;
      [%test_result: int] (iround_exn ~dir:`Zero 1.) ~expect:1;
      [%test_result: int] (iround_exn ~dir:`Zero 1.99999) ~expect:1;
      [%test_result: int] (iround_exn ~dir:`Zero 2.) ~expect:2
    ;;

    let is_64_bit_platform = of_int Int.max_value >= 2. **. 60.

    (* Tests for values close to [iround_lbound] and [iround_ubound]. *)
    let extremities_test ~round =
      let ( + ) = Int.( + ) in
      let ( - ) = Int.( - ) in
      if is_64_bit_platform
      then (
        (* 64 bits *)
        [%test_result: int option]
          (round ((2.0 **. 62.) -. 512.))
          ~expect:(Some (Int.max_value - 511));
        [%test_result: int option]
          (round ((2.0 **. 62.) -. 1024.))
          ~expect:(Some (Int.max_value - 1023));
        [%test_result: int option] (round (-.(2.0 **. 62.))) ~expect:(Some Int.min_value);
        [%test_result: int option]
          (round (-.((2.0 **. 62.) -. 512.)))
          ~expect:(Some (Int.min_value + 512));
        [%test_result: int option] (round (2.0 **. 62.)) ~expect:None;
        [%test_result: int option] (round (-.((2.0 **. 62.) +. 1024.))) ~expect:None)
      else (
        let int_size_minus_one = of_int (Int.num_bits - 1) in
        (* 32 bits *)
        [%test_result: int option]
          (round ((2.0 **. int_size_minus_one) -. 1.))
          ~expect:(Some Int.max_value);
        [%test_result: int option]
          (round ((2.0 **. int_size_minus_one) -. 2.))
          ~expect:(Some (Int.max_value - 1));
        [%test_result: int option]
          (round (-.(2.0 **. int_size_minus_one)))
          ~expect:(Some Int.min_value);
        [%test_result: int option]
          (round (-.((2.0 **. int_size_minus_one) -. 1.)))
          ~expect:(Some (Int.min_value + 1));
        [%test_result: int option] (round (2.0 **. int_size_minus_one)) ~expect:None;
        [%test_result: int option]
          (round (-.((2.0 **. int_size_minus_one) +. 1.)))
          ~expect:None)
    ;;

    let%test_unit _ = extremities_test ~round:iround_down
    let%test_unit _ = extremities_test ~round:iround_up
    let%test_unit _ = extremities_test ~round:iround_nearest
    let%test_unit _ = extremities_test ~round:iround_towards_zero

    (* test values beyond the integers range *)
    let large_value_test x =
      [%test_result: int option] (iround_down x) ~expect:None;
      [%test_result: int option] (iround ~dir:`Down x) ~expect:None;
      [%test_result: int option] (iround_up x) ~expect:None;
      [%test_result: int option] (iround ~dir:`Up x) ~expect:None;
      [%test_result: int option] (iround_towards_zero x) ~expect:None;
      [%test_result: int option] (iround ~dir:`Zero x) ~expect:None;
      [%test_result: int option] (iround_nearest x) ~expect:None;
      [%test_result: int option] (iround ~dir:`Nearest x) ~expect:None;
      assert (Exn.does_raise (fun () -> iround_down_exn x));
      assert (Exn.does_raise (fun () -> iround_exn ~dir:`Down x));
      assert (Exn.does_raise (fun () -> iround_up_exn x));
      assert (Exn.does_raise (fun () -> iround_exn ~dir:`Up x));
      assert (Exn.does_raise (fun () -> iround_towards_zero_exn x));
      assert (Exn.does_raise (fun () -> iround_exn ~dir:`Zero x));
      assert (Exn.does_raise (fun () -> iround_nearest_exn x));
      assert (Exn.does_raise (fun () -> iround_exn ~dir:`Nearest x));
      [%test_result: float] (round_down x) ~expect:x;
      [%test_result: float] (round ~dir:`Down x) ~expect:x;
      [%test_result: float] (round_up x) ~expect:x;
      [%test_result: float] (round ~dir:`Up x) ~expect:x;
      [%test_result: float] (round_towards_zero x) ~expect:x;
      [%test_result: float] (round ~dir:`Zero x) ~expect:x;
      [%test_result: float] (round_nearest x) ~expect:x;
      [%test_result: float] (round ~dir:`Nearest x) ~expect:x
    ;;

    let large_numbers =
      let ( + ) = Int.( + ) in
      let ( - ) = Int.( - ) in
      List.concat
        (List.init (1024 - 64) ~f:(fun x ->
           let x = of_int (x + 64) in
           let y =
             [ 2. **. x
             ; (2. **. x) -. (2. **. (x -. 53.))
             ; (* one ulp down *)
               (2. **. x) +. (2. **. (x -. 52.))
             ]
             (* one ulp up *)
           in
           y @ List.map y ~f:neg))
      @ [ infinity; neg_infinity ]
    ;;

    let%test_unit _ = List.iter large_numbers ~f:large_value_test

    let numbers_near_powers_of_two =
      List.concat
        (List.init 64 ~f:(fun i ->
           let pow2 = 2. **. of_int i in
           let x =
             [ pow2
             ; one_ulp `Down (pow2 +. 0.5)
             ; pow2 +. 0.5
             ; one_ulp `Down (pow2 +. 1.0)
             ; pow2 +. 1.0
             ; one_ulp `Down (pow2 +. 1.5)
             ; pow2 +. 1.5
             ; one_ulp `Down (pow2 +. 2.0)
             ; pow2 +. 2.0
             ; one_ulp `Down ((pow2 *. 2.0) -. 1.0)
             ; one_ulp `Down pow2
             ; one_ulp `Up pow2
             ]
           in
           x @ List.map x ~f:neg))
    ;;

    let%test _ = List.for_all numbers_near_powers_of_two ~f:iround_up_vs_down_test
    let%test _ = List.for_all numbers_near_powers_of_two ~f:iround_nearest_test
    let%test _ = List.for_all numbers_near_powers_of_two ~f:iround_down_test
    let%test _ = List.for_all numbers_near_powers_of_two ~f:iround_up_test
    let%test _ = List.for_all numbers_near_powers_of_two ~f:iround_towards_zero_test
    let%test _ = List.for_all numbers_near_powers_of_two ~f:round_test

    (* code for generating random floats on which to test functions *)
    let rec absirand () =
      let open Int.O in
      let rec aux acc cnt =
        if cnt = 0
        then acc
        else (
          let bit = if Random.bool () then 1 else 0 in
          aux ((2 * acc) + bit) (cnt - 1))
      in
      let result = aux 0 (if is_64_bit_platform then 62 else 30) in
      if result >= Int.max_value - 255
      then
        (* On a 64-bit box, [float x > Int.max_value] when [x >= Int.max_value - 255], so
           [iround (float x)] would be out of bounds.  So we try again.  This branch of code
           runs with probability 6e-17 :-)  As such, we have some fixed tests in
           [extremities_test] above, to ensure that we do always check some examples in
           that range. *)
        absirand ()
      else result
    ;;

    (* -Int.max_value <= frand () <= Int.max_value *)
    let frand () =
      let x = of_int (absirand ()) +. Random.float 1.0 in
      if Random.bool () then -1.0 *. x else x
    ;;

    let randoms = List.init ~f:(fun _ -> frand ()) 10_000
    let%test _ = List.for_all randoms ~f:iround_up_vs_down_test
    let%test _ = List.for_all randoms ~f:iround_nearest_test
    let%test _ = List.for_all randoms ~f:iround_down_test
    let%test _ = List.for_all randoms ~f:iround_up_test
    let%test _ = List.for_all randoms ~f:iround_towards_zero_test
    let%test _ = List.for_all randoms ~f:round_test
    let%test_unit _ = special_values_test ()
    let%test _ = iround_nearest_test (of_int Int.max_value)
    let%test _ = iround_nearest_test (of_int Int.min_value)
  end)
;;

module Test_bounds (I : sig
  type t

  val num_bits : int
  val of_float : float -> t
  val to_int64 : t -> Int64.t
  val max_value : t
  val min_value : t
end) =
struct
  open I

  let float_lower_bound = lower_bound_for_int num_bits
  let float_upper_bound = upper_bound_for_int num_bits
  let%test_unit "lower bound is valid" = ignore (of_float float_lower_bound : t)
  let%test_unit "upper bound is valid" = ignore (of_float float_upper_bound : t)

  let%test "smaller than lower bound is not valid" =
    Exn.does_raise (fun () -> of_float (one_ulp `Down float_lower_bound))
  ;;

  let%test "bigger than upper bound is not valid" =
    Exn.does_raise (fun () -> of_float (one_ulp `Up float_upper_bound))
  ;;

  (* We use [Caml.Int64.of_float] in the next two tests because [Int64.of_float] rejects
     out-of-range inputs, whereas [Caml.Int.of_float] simply overflows (returns
     [Int64.min_int]). *)

  let%test "smaller than lower bound overflows" =
    let lower_bound = Int64.of_float float_lower_bound in
    let lower_bound_minus_epsilon =
      Stdlib.Int64.of_float (one_ulp `Down float_lower_bound)
    in
    let min_value = to_int64 min_value in
    if Int.( = ) num_bits 64
       (* We cannot detect overflow because on Intel overflow results in min_value. *)
    then true
    else (
      assert (Int64.( <= ) lower_bound_minus_epsilon lower_bound);
      (* a value smaller than min_value would overflow if converted to [t] *)
      Int64.( < ) lower_bound_minus_epsilon min_value)
  ;;

  let%test "bigger than upper bound overflows" =
    let upper_bound = Int64.of_float float_upper_bound in
    let upper_bound_plus_epsilon =
      Stdlib.Int64.of_float (one_ulp `Up float_upper_bound)
    in
    let max_value = to_int64 max_value in
    if Int.( = ) num_bits 64
       (* upper_bound_plus_epsilon is not representable as a Int64.t, it has overflowed *)
    then Int64.( < ) upper_bound_plus_epsilon upper_bound
    else (
      assert (Int64.( >= ) upper_bound_plus_epsilon upper_bound);
      (* a value greater than max_value would overflow if converted to [t] *)
      Int64.( > ) upper_bound_plus_epsilon max_value)
  ;;
end

let%test_module "Int" = (module Test_bounds (Int))
let%test_module "Int32" = (module Test_bounds (Int32))
let%test_module "Int63" = (module Test_bounds (Int63))
let%test_module "Int63_emul" = (module Test_bounds (Base.Int63.Private.Emul))
let%test_module "Int64" = (module Test_bounds (Int64))
let%test_module "Nativeint" = (module Test_bounds (Nativeint))
let%test_unit _ = [%test_result: string] (to_string 3.14) ~expect:"3.14"
let%test_unit _ = [%test_result: string] (to_string 3.1400000000000001) ~expect:"3.14"

let%test_unit _ =
  [%test_result: string] (to_string 3.1400000000000004) ~expect:"3.1400000000000006"
;;

let%test_unit _ =
  [%test_result: string] (to_string 8.000000000000002) ~expect:"8.0000000000000018"
;;

let%test_unit _ = [%test_result: string] (to_string 9.992) ~expect:"9.992"

let%test_unit _ =
  [%test_result: string]
    (to_string ((2. **. 63.) *. (1. +. (2. **. -52.))))
    ~expect:"9.2233720368547779e+18"
;;

let%test_unit _ = [%test_result: string] (to_string (-3.)) ~expect:"-3."
let%test_unit _ = [%test_result: string] (to_string nan) ~expect:"nan"
let%test_unit _ = [%test_result: string] (to_string infinity) ~expect:"inf"
let%test_unit _ = [%test_result: string] (to_string neg_infinity) ~expect:"-inf"
let%test_unit _ = [%test_result: string] (to_string 3e100) ~expect:"3e+100"

let%test_unit _ =
  [%test_result: string] (to_string max_finite_value) ~expect:"1.7976931348623157e+308"
;;

let%test_unit _ =
  [%test_result: string]
    (to_string min_positive_subnormal_value)
    ~expect:"4.94065645841247e-324"
;;

let%test _ = epsilon_float = one_ulp `Up 1. -. 1.
let%test _ = one_ulp_less_than_half = 0.49999999999999994
let%test _ = round_down 3.6 = 3. && round_down (-3.6) = -4.
let%test _ = round_up 3.6 = 4. && round_up (-3.6) = -3.
let%test _ = round_towards_zero 3.6 = 3. && round_towards_zero (-3.6) = -3.
let%test _ = round_nearest_half_to_even 0. = 0.
let%test _ = round_nearest_half_to_even 0.5 = 0.
let%test _ = round_nearest_half_to_even (-0.5) = 0.
let%test _ = round_nearest_half_to_even (one_ulp `Up 0.5) = 1.
let%test _ = round_nearest_half_to_even (one_ulp `Down 0.5) = 0.
let%test _ = round_nearest_half_to_even (one_ulp `Up (-0.5)) = 0.
let%test _ = round_nearest_half_to_even (one_ulp `Down (-0.5)) = -1.
let%test _ = round_nearest_half_to_even 3.5 = 4.
let%test _ = round_nearest_half_to_even 4.5 = 4.
let%test _ = round_nearest_half_to_even (one_ulp `Up (-5.5)) = -5.
let%test _ = round_nearest_half_to_even 5.5 = 6.
let%test _ = round_nearest_half_to_even 6.5 = 6.
let%test _ = round_nearest_half_to_even (one_ulp `Up (-.(2. **. 52.))) = -.(2. **. 52.)
let%test _ = round_nearest (one_ulp `Up (-.(2. **. 52.))) = 1. -. (2. **. 52.)
let%test _ = is_integer 1.
let%test _ = is_integer 0.
let%test _ = is_integer (-0.)
let%test _ = is_integer (-1.)
let%test _ = is_integer 8.98e307
let%test _ = is_integer ((2. ** 53.) -. 0.5)
let%test _ = not (is_integer ((2. ** 52.) -. 0.5))
let%test _ = not (is_integer 0.0000000000000001)
let%test _ = not (is_integer (-0.0000000000000001))
let%test _ = not (is_integer 0.9999999999999999)
let%test _ = not (is_integer nan)
let%test _ = not (is_integer infinity)
let%test _ = not (is_integer neg_infinity)

let%test_module _ =
  (module struct
    (* check we raise on invalid input *)
    let must_fail f x = Exn.does_raise (fun () -> f x)

    let must_succeed f x =
      ignore (f x : _);
      true
    ;;

    let%test _ = must_fail int63_round_nearest_portable_alloc_exn nan
    let%test _ = must_fail int63_round_nearest_portable_alloc_exn max_value
    let%test _ = must_fail int63_round_nearest_portable_alloc_exn min_value
    let%test _ = must_fail int63_round_nearest_portable_alloc_exn (2. **. 63.)
    let%test _ = must_fail int63_round_nearest_portable_alloc_exn ~-.(2. **. 63.)
    let%test _ = must_succeed int63_round_nearest_portable_alloc_exn ((2. **. 62.) -. 512.)
    let%test _ = must_fail int63_round_nearest_portable_alloc_exn (2. **. 62.)

    let%test _ =
      must_fail int63_round_nearest_portable_alloc_exn (~-.(2. **. 62.) -. 1024.)
    ;;

    let%test _ = must_succeed int63_round_nearest_portable_alloc_exn ~-.(2. **. 62.)
  end)
;;

let%test _ = round_nearest 3.6 = 4. && round_nearest (-3.6) = -4.

(* The redefinition of [sexp_of_t] in float.ml assumes sexp conversion uses E rather than
   e. *)
let%test_unit "e vs E" =
  [%test_result: Sexp.t] [%sexp (1.4e100 : t)] ~expect:(Atom "1.4E+100")
;;

let%test_module _ =
  (module struct
    let test ?delimiter ~decimals f s s_strip_zero =
      let s' = to_string_hum ?delimiter ~decimals ~strip_zero:false f in
      if String.(s' <> s)
      then
        raise_s
          [%message
            "to_string_hum ~strip_zero:false"
              ~input:(f : float)
              (decimals : int)
              ~got:(s' : string)
              ~expected:(s : string)];
      let s_strip_zero' = to_string_hum ?delimiter ~decimals ~strip_zero:true f in
      if String.(s_strip_zero' <> s_strip_zero)
      then
        raise_s
          [%message
            "to_string_hum ~strip_zero:true"
              ~input:(f : float)
              (decimals : int)
              ~got:(s_strip_zero : string)
              ~expected:(s_strip_zero' : string)]
    ;;

    let%test_unit _ = test ~decimals:3 0.99999 "1.000" "1"
    let%test_unit _ = test ~decimals:3 0.00001 "0.000" "0"
    let%test_unit _ = test ~decimals:3 ~-.12345.1 "-12_345.100" "-12_345.1"
    let%test_unit _ = test ~delimiter:',' ~decimals:3 ~-.12345.1 "-12,345.100" "-12,345.1"
    let%test_unit _ = test ~decimals:0 0.99999 "1" "1"
    let%test_unit _ = test ~decimals:0 0.00001 "0" "0"
    let%test_unit _ = test ~decimals:0 ~-.12345.1 "-12_345" "-12_345"
    let%test_unit _ = test ~decimals:0 (5.0 /. 0.0) "inf" "inf"
    let%test_unit _ = test ~decimals:0 (-5.0 /. 0.0) "-inf" "-inf"
    let%test_unit _ = test ~decimals:0 (0.0 /. 0.0) "nan" "nan"
    let%test_unit _ = test ~decimals:2 (5.0 /. 0.0) "inf" "inf"
    let%test_unit _ = test ~decimals:2 (-5.0 /. 0.0) "-inf" "-inf"
    let%test_unit _ = test ~decimals:2 (0.0 /. 0.0) "nan" "nan"
    let%test_unit _ = test ~decimals:5 (10_000.0 /. 3.0) "3_333.33333" "3_333.33333"
    let%test_unit _ = test ~decimals:2 ~-.0.00001 "-0.00" "-0"

    let rand_test n =
      let go () =
        let f = Random.float 1_000_000.0 -. 500_000.0 in
        let repeatable to_str =
          let s = to_str f in
          if String.( <> )
               (String.split s ~on:',' |> String.concat |> of_string |> to_str)
               s
          then raise_s [%message "failed" (f : t)]
        in
        repeatable (to_string_hum ~decimals:3 ~strip_zero:false)
      in
      try
        for _ = 0 to Int.( - ) n 1 do
          go ()
        done;
        true
      with
      | e ->
        eprintf "%s\n%!" (Exn.to_string e);
        false
    ;;

    let%test _ = rand_test 10_000
  end)
;;

let%test_module "Hexadecimal syntax" =
  (module struct
    let should_fail str = Exn.does_raise (fun () -> Stdlib.float_of_string str)
    let test_equal str g = Stdlib.float_of_string str = g
    let%test _ = should_fail "0x"
    let%test _ = should_fail "0x.p0"
    let%test _ = test_equal "0x0" 0.
    let%test _ = test_equal "0x1.b7p-1" 0.857421875
    let%test _ = test_equal "0x1.999999999999ap-4" 0.1
  end)
;;

let%expect_test "square" =
  printf "%f\n" (square 1.5);
  printf "%f\n" (square (-2.5));
  [%expect {|
    2.250000
    6.250000
    |}]
;;

let%expect_test "mathematical constants" =
  (* Compare to the from-string conversion of numbers from Wolfram Alpha *)
  let eq x s = assert (x = of_string s) in
  eq pi "3.141592653589793238462643383279502884197169399375105820974";
  eq sqrt_pi "1.772453850905516027298167483341145182797549456122387128213";
  eq sqrt_2pi "2.506628274631000502415765284811045253006986740609938316629";
  eq euler "0.577215664901532860606512090082402431042159335939923598805";
  (* Check size of diff from  ordinary computation. *)
  printf "sqrt pi diff  : %.20f\n" (sqrt_pi - sqrt pi);
  printf "sqrt 2pi diff : %.20f\n" (sqrt_2pi - sqrt (2. * pi));
  [%expect
    {|
    sqrt pi diff  : 0.00000000000000022204
    sqrt 2pi diff : 0.00000000000000044409
    |}]
;;

let%test _ = not (is_negative Float.nan)
let%test _ = not (is_non_positive Float.nan)
let%test _ = is_non_negative (-0.)

let%test_unit "int to float conversion consistency" =
  let test_int63 x =
    [%test_result: float] (Float.of_int63 x) ~expect:(Float.of_int64 (Int63.to_int64 x))
  in
  let test_int x =
    [%test_result: float] (Float.of_int x) ~expect:(Float.of_int63 (Int63.of_int x));
    test_int63 (Int63.of_int x)
  in
  test_int 0;
  test_int 35;
  test_int (-1);
  test_int Int.max_value;
  test_int Int.min_value;
  test_int63 Int63.zero;
  test_int63 Int63.min_value;
  test_int63 Int63.max_value;
  let rand = Random.State.make [| Hashtbl.hash "int to float conversion consistency" |] in
  for _i = 0 to 100 do
    let x = Random.State.int rand Int.max_value in
    test_int x
  done;
  ()
;;

let%expect_test "min and max" =
  let nan = Float.nan in
  let inf = Float.infinity in
  let ninf = Float.neg_infinity in
  List.iter
    [ 0.1, 0.3; 71., -7.; nan, 0.3; nan, ninf; nan, inf; nan, nan; ninf, inf; 0., -0. ]
    ~f:(fun (a, b) ->
      printf
        "%5g%5g%5g%5g%5g%5g\n"
        a
        b
        (Float.min a b)
        (Float.min b a)
        (Float.max a b)
        (Float.max b a));
  [%expect
    {|
     0.1  0.3  0.1  0.1  0.3  0.3
      71   -7   -7   -7   71   71
     nan  0.3  nan  nan  nan  nan
     nan -inf  nan  nan  nan  nan
     nan  inf  nan  nan  nan  nan
     nan  nan  nan  nan  nan  nan
    -inf  inf -inf -inf  inf  inf
       0   -0   -0    0   -0    0
    |}]
;;

let%expect_test "is_nan, is_inf, and is_finite" =
  List.iter
    ~f:(fun x ->
      printf
        !"%24s %5s %5s %5s\n"
        (to_string x)
        (Bool.to_string (is_nan x))
        (Bool.to_string (is_inf x))
        (Bool.to_string (is_finite x)))
    [ nan
    ; neg_infinity
    ; -.max_finite_value
    ; -1.
    ; -.min_positive_subnormal_value
    ; -0.
    ; 0.
    ; min_positive_subnormal_value
    ; 1.
    ; max_finite_value
    ; infinity
    ];
  [%expect
    {|
                         nan  true false false
                        -inf false  true false
    -1.7976931348623157e+308 false false  true
                         -1. false false  true
      -4.94065645841247e-324 false false  true
                         -0. false false  true
                          0. false false  true
       4.94065645841247e-324 false false  true
                          1. false false  true
     1.7976931348623157e+308 false false  true
                         inf false  true false
    |}]
;;

let%expect_test "nan" =
  require [%here] (Float.is_nan (Float.min 1. Float.nan));
  require [%here] (Float.is_nan (Float.min Float.nan 0.));
  require [%here] (Float.is_nan (Float.min Float.nan Float.nan));
  require [%here] (Float.is_nan (Float.max 1. Float.nan));
  require [%here] (Float.is_nan (Float.max Float.nan 0.));
  require [%here] (Float.is_nan (Float.max Float.nan Float.nan));
  require_equal [%here] (module Float) 1. (Float.min_inan 1. Float.nan);
  require_equal [%here] (module Float) 0. (Float.min_inan Float.nan 0.);
  require [%here] (Float.is_nan (Float.min_inan Float.nan Float.nan));
  require_equal [%here] (module Float) 1. (Float.max_inan 1. Float.nan);
  require_equal [%here] (module Float) 0. (Float.max_inan Float.nan 0.);
  require [%here] (Float.is_nan (Float.max_inan Float.nan Float.nan))
;;

let%expect_test "iround_exn" =
  require_equal [%here] (module Int) 0 (Float.iround_exn ~dir:`Nearest 0.2);
  require_equal [%here] (module Int) 0 (Float.iround_exn ~dir:`Nearest (-0.2));
  require_equal [%here] (module Int) 3 (Float.iround_exn ~dir:`Nearest 3.4);
  require_equal [%here] (module Int) (-3) (Float.iround_exn ~dir:`Nearest (-3.4))
;;

let%expect_test "log" =
  let test float =
    let log2 = Float.log2 float in
    let log10 = Float.log10 float in
    let ratio = log2 /. log10 in
    let ratio =
      (* NAN behavior differs in js_of_ocaml *)
      if Float.is_nan ratio
      then Float.nan
      else (
        assert (Float.(abs ratio - (1. / log10 2.) < 1e-15));
        ratio)
    in
    print_s [%sexp { log2 : float; log10 : float; ratio : float }]
  in
  test (-1.);
  [%expect {|
    ((log2  NAN)
     (log10 NAN)
     (ratio NAN))
    |}];
  test 0.;
  [%expect {|
    ((log2  -INF)
     (log10 -INF)
     (ratio NAN))
    |}];
  test 1.;
  [%expect {|
    ((log2  0)
     (log10 0)
     (ratio NAN))
    |}];
  test 2.;
  [%expect
    {|
    ((log2  1)
     (log10 0.3010299956639812)
     (ratio 3.3219280948873622))
    |}];
  test 10.;
  [%expect
    {|
    ((log2  3.3219280948873622)
     (log10 1)
     (ratio 3.3219280948873622))
    |}];
  test Float.min_positive_subnormal_value;
  [%expect
    {|
    ((log2  -1074)
     (log10 -323.30621534311581)
     (ratio 3.3219280948873622))
    |}];
  test Float.epsilon_float;
  [%expect
    {|
    ((log2  -52)
     (log10 -15.653559774527022)
     (ratio 3.3219280948873626))
    |}];
  test Float.pi;
  [%expect
    {|
    ((log2  1.6514961294723187)
     (log10 0.4971498726941338)
     (ratio 3.3219280948873626))
    |}];
  test Float.max_finite_value;
  [%expect
    {|
    ((log2  1024)
     (log10 308.25471555991675)
     (ratio 3.3219280948873622))
    |}];
  test Float.infinity;
  [%expect {|
    ((log2  INF)
     (log10 INF)
     (ratio NAN))
    |}]
;;

let%expect_test "float comparisons permit both local and global arguments" =
  let (_ : float -> float -> bool) = Float.( < ) in
  let (_ : float -> float -> bool) = Float.( < ) in
  [%expect {| |}]
;;