1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
(******************************************************************************
* Core *
* *
* Copyright (C) 2008- Jane Street Holding, LLC *
* Contact: opensource@janestreet.com *
* WWW: http://www.janestreet.com/ocaml *
* *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Lesser General Public *
* License as published by the Free Software Foundation; either *
* version 2 of the License, or (at your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this library; if not, write to the Free Software *
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *
* *
******************************************************************************)
type 'a t = 'a array
include Binable.S1 with type 'a binable = 'a t
include Container.S1 with type 'a container = 'a t
include Sexpable.S1 with type 'a sexpable = 'a t
(** [Array.get a n] returns the element number [n] of array [a].
The first element has number 0.
The last element has number [Array.length a - 1].
You can also write [a.(n)] instead of [Array.get a n].
Raise [Invalid_argument "index out of bounds"]
if [n] is outside the range 0 to [(Array.length a - 1)]. *)
external get : 'a t -> int -> 'a = "%array_safe_get"
(** [Array.set a n x] modifies array [a] in place, replacing
element number [n] with [x].
You can also write [a.(n) <- x] instead of [Array.set a n x].
Raise [Invalid_argument "index out of bounds"]
if [n] is outside the range 0 to [Array.length a - 1]. *)
external set : 'a t -> int -> 'a -> unit = "%array_safe_set"
(** Unsafe version of [get]. Can cause arbitrary behavior when used to for an
out-of-bounds array access *)
external unsafe_get : 'a t -> int -> 'a = "%array_unsafe_get"
(** Unsafe version of [set]. Can cause arbitrary behavior when used to for an
out-of-bounds array access *)
external unsafe_set : 'a t -> int -> 'a -> unit = "%array_unsafe_set"
(** [create n x] creates an array of length [n] with the value [x] populated in each
element *)
val create : int -> 'a -> 'a t
(** [init n ~f] creates an array of length [n] where the [i]th element is initialized with
[f i] (starting at zero) *)
val init : int -> f:(int -> 'a) -> 'a t
(** [Array.make_matrix dimx dimy e] returns a two-dimensional array
(an array of arrays) with first dimension [dimx] and
second dimension [dimy]. All the elements of this new matrix
are initially physically equal to [e].
The element ([x,y]) of a matrix [m] is accessed
with the notation [m.(x).(y)].
Raise [Invalid_argument] if [dimx] or [dimy] is negative or
greater than [Sys.max_array_length].
If the value of [e] is a floating-point number, then the maximum
size is only [Sys.max_array_length / 2]. *)
val make_matrix : dimx:int -> dimy:int -> 'a -> 'a t t
(** [Array.append v1 v2] returns a fresh array containing the
concatenation of the arrays [v1] and [v2]. *)
val append : 'a t -> 'a t -> 'a t
(** Same as [Array.append], but concatenates a list of arrays. *)
val concat : 'a t list -> 'a t
(** [Array.sub a start len] returns a fresh array of length [len],
containing the elements number [start] to [start + len - 1]
of array [a].
Raise [Invalid_argument "Array.sub"] if [start] and [len] do not
designate a valid subarray of [a]; that is, if
[start < 0], or [len < 0], or [start + len > Array.length a]. *)
val sub : 'a t -> pos:int -> len:int -> 'a t
(** [Array.copy a] returns a copy of [a], that is, a fresh array
containing the same elements as [a]. *)
val copy : 'a t -> 'a t
(** [Array.fill a ofs len x] modifies the array [a] in place,
storing [x] in elements number [ofs] to [ofs + len - 1].
Raise [Invalid_argument "Array.fill"] if [ofs] and [len] do not
designate a valid subarray of [a]. *)
val fill : 'a t -> pos:int -> len:int -> 'a -> unit
(** [Array.blit v1 o1 v2 o2 len] copies [len] elements
from array [v1], starting at element number [o1], to array [v2],
starting at element number [o2]. It works correctly even if
[v1] and [v2] are the same array, and the source and
destination chunks overlap.
Raise [Invalid_argument "Array.blit"] if [o1] and [len] do not
designate a valid subarray of [v1], or if [o2] and [len] do not
designate a valid subarray of [v2]. *)
val blit : src:'a t -> src_pos:int -> dst:'a t -> dst_pos:int -> len:int -> unit
(** [Array.of_list l] returns a fresh array containing the elements
of [l]. *)
val of_list : 'a list -> 'a t
(** [Array.map ~f a] applies function [f] to all the elements of [a],
and builds an array with the results returned by [f]:
[[| f a.(0); f a.(1); ...; f a.(Array.length a - 1) |]]. *)
val map : f:('a -> 'b) -> 'a t -> 'b t
(** Same as {!Array.iter}, but the
function is applied to the index of the element as first argument,
and the element itself as second argument. *)
val iteri : f:(int -> 'a -> unit) -> 'a t -> unit
(** Same as {!Array.map}, but the
function is applied to the index of the element as first argument,
and the element itself as second argument. *)
val mapi : f:(int -> 'a -> 'b) -> 'a t -> 'b t
(** [Array.fold_right f a ~init] computes
[f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...))],
where [n] is the length of the array [a]. *)
val fold_right : f:('b -> 'a -> 'a) -> 'b t -> init:'a -> 'a
(* constant heap space, slow *)
val sort : cmp:('a -> 'a -> int) -> 'a t -> unit
(* linear heap space, stable, fast *)
val stable_sort : cmp:('a -> 'a -> int) -> 'a t -> unit
(**
----------------------------------------------------------------------
Extensions
----------------------------------------------------------------------
*)
(* same as [List.concat_map] *)
val concat_map : 'a t -> f:('a -> 'b array) -> 'b array
(** Array lengths [l] satisfy [0 <= l < max_length]. *)
val max_length : int
val cartesian_product : 'a t -> 'b t -> ('a * 'b) t
(** [normalize array index] returns a new index into the array such that if index is less
than zero, the returned index will "wrap around" -- i.e. array.(normalize array (-1))
returns the last element of the array. *)
val normalize : 'a t -> int -> int
(** [slice array start stop] returns a fresh array including elements [array.(start)] through
[array.(stop-1)] with the small tweak that the start and stop positions are normalized
and a stop index of 0 means the same thing a stop index of [Array.length array]. In
summary, it's like the slicing in Python or Matlab. *)
val slice : 'a t -> int -> int -> 'a t
(** Array access with [normalize]d index. *)
val nget : 'a t -> int -> 'a
(** Array modification with [normalize]d index. *)
val nset : 'a t -> int -> 'a -> unit
(** [filter_opt array] returns a new array where [None] entries are omitted and [Some x]
entries are replaced with [x]. Note that this changes the index at which elements
will appear. *)
val filter_opt : 'a option t -> 'a t
(** [filter_map ~f array] maps [f] over [array] and filters [None] out of the results. *)
val filter_map : 'a t -> f:('a -> 'b option) -> 'b t
(** Same as [filter_map] but uses {!Array.mapi}. *)
val filter_mapi : 'a t -> f:(int -> 'a -> 'b option) -> 'b t
(* Functions with 2 suffix raise an exception if the lengths aren't the same. *)
val iter2 : 'a t -> 'b t -> f:('a -> 'b -> unit) -> unit
val map2 : 'a t -> 'b t -> f:('a -> 'b -> 'c) -> 'c t
(** [for_all2 t1 t2 ~f] fails if [length t1 <> length t2]. *)
val for_all2 : 'a t -> 'b t -> f:('a -> 'b -> bool) -> bool
(** [filter ~f array] removes the elements for which [f] returns false. *)
val filter : f:('a -> bool) -> 'a t -> 'a t
(** Like [filter] except [f] also receives the index. *)
val filteri : f:(int -> 'a -> bool) -> 'a t -> 'a t
(** [swap arr i j] swaps the value at index [i] with that at index [j]. *)
val swap : 'a t -> int -> int -> unit
(** [mem el arr] returns true iff [arr.(i) = el] for some i *)
val mem : 'a -> 'a t -> bool
(** [rev_inplace t] reverses [t] in place *)
val rev_inplace : 'a t -> unit
(** [of_list_rev l] converts from list then reverses in place *)
val of_list_rev : 'a list -> 'a t
(** [replace t i ~f] = [t.(i) <- f (t.(i))]. *)
val replace : 'a t -> int -> f:('a -> 'a) -> unit
(** modifies an array in place -- [ar.(i)] will be set to [f(ar.(i))] *)
val replace_all : 'a t -> f:('a -> 'a) -> unit
(** [find_exn f t] returns the first [a] in [t] for which [f t.(i)] is true.
It raises [Not_found] if there is no such [a].
*)
val find_exn : 'a t -> f:('a -> bool) -> 'a
(** [findi f ar] returns the first index [i] of [ar] for which [f ar.(i)] is true *)
val findi : 'a t -> f:('a -> bool) -> int option
(** [findi_exn f ar] returns the first index [i] of [ar] for which [f ar.(i)] is
true. It raises [Not_found] if there is no such element. *)
val findi_exn : 'a t -> f:('a -> bool) -> int
(** [reduce f [a1; ...; an]] is [f (... (f (f a1 a2) a3) ...) an]. *)
val reduce : 'a t -> f:('a -> 'a -> 'a) -> 'a option
val reduce_exn : 'a t -> f:('a -> 'a -> 'a) -> 'a
(** [permute ar] randomly permutes [ar] in place *)
val permute : ?random_state:Random.State.t -> 'a t -> unit
(** [combine ar] combines two arrays to an array of pairs. *)
val combine : 'a t -> 'b t -> ('a * 'b) t
(** [split ar] splits an array of pairs into two arrays of single elements. *)
val split : ('a * 'b) t -> 'a t * 'b t
(** [sorted_copy ar cmp] returns a shallow copy of [ar] that is sorted. Similar to
List.sort *)
val sorted_copy : 'a t -> cmp:('a -> 'a -> int) -> 'a t
val last : 'a t -> 'a
(** [empty ()] creates an empty array *)
val empty : unit -> 'a t
module Infix : sig
val ( <|> ) : 'a t -> int * int -> 'a t
end
|