1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
(******************************************************************************
* Core *
* *
* Copyright (C) 2008- Jane Street Holding, LLC *
* Contact: opensource@janestreet.com *
* WWW: http://www.janestreet.com/ocaml *
* *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Lesser General Public *
* License as published by the Free Software Foundation; either *
* version 2 of the License, or (at your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this library; if not, write to the Free Software *
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *
* *
******************************************************************************)
(* A hash-queue is a combination of a queue and a hashtable that
* supports constant-time lookup and removal of queue elements in addition to
* the usual queue operations (enqueue, dequeue). The queue elements are
* key-value pairs. The hashtable has one entry for each element of the queue.
*
* Calls to functions that would modify a hash-queue (e.g. enqueue, dequeue,
* remove, replace) detect if a client is in the middle of iterating over the
* queue (e.g. iter, fold, for_all, exists) and if so, raise an exception.
*)
(* for tail-recursive versions of List functions
Can't open Std_internal due to cyclic dependencies
*)
module List = Core_list
module Array = Core_array
module Hashtbl = Core_hashtbl
(* The key is used for the hashtable of queue elements. *)
module type Key = Hashtbl.Key
module type S = sig
module Key : Key
(** a hash-queue, where the values are of type 'a *)
type 'a t
include Container.S1 with type 'a container = 'a t
(** [invariant t] checks the invariants of the queue. *)
val invariant : 'a t -> unit
(** [create ()] returns an empty queue. *)
val create : unit -> 'a t
(** clear the queue *)
val clear : 'a t -> unit
(* Finding elements. *)
(** [mem q k] returns true iff there is some (k, v) in the queue. *)
val mem : 'a t -> Key.t -> bool
(** [lookup t k] returns the value of the key-value pair in the queue with
key k, if there is one. *)
val lookup : 'a t -> Key.t -> 'a option
val lookup_exn : 'a t -> Key.t -> 'a
(* Adding, removing, and replacing elements. *)
(** [enqueue t k v] adds the key-value pair (k, v) to the end of the queue,
returning `Ok if the pair was added, or `Key_already_present
if there is already a (k, v') in the queue.
*)
val enqueue : 'a t -> Key.t -> 'a -> [ `Ok | `Key_already_present ]
val enqueue_exn : 'a t -> Key.t -> 'a -> unit
(** [keys t] returns the keys in the order of the queue. *)
val keys : 'a t -> Key.t list
(** [dequeue t] returns the front element of the queue. *)
val dequeue : 'a t -> 'a option
val dequeue_exn : 'a t -> 'a
(** [dequeue_with_key t] returns the front element of the queue and its key *)
val dequeue_with_key : 'a t -> (Key.t * 'a) option
val dequeue_with_key_exn : 'a t -> (Key.t * 'a)
(** [dequeue_all t ~f] dequeues every element of the queue and applies f to each
one. *)
val dequeue_all : 'a t -> f:('a -> unit) -> unit
(** [remove q k] removes the key-value pair with key k from the queue. *)
val remove : 'a t -> Key.t -> [ `Ok | `No_such_key ]
val remove_exn : 'a t -> Key.t -> unit
(** [replace q k v] changes the value of key k in the queue to v. *)
val replace : 'a t -> Key.t -> 'a -> [ `Ok | `No_such_key ]
val replace_exn : 'a t -> Key.t -> 'a -> unit
(* Iterating over elements *)
(** [iter t ~f] applies f to each key and element of the queue. *)
val iteri : 'a t -> f:(key:Key.t -> data:'a -> unit) -> unit
val foldi : 'a t -> init:'b -> f:('b -> key:Key.t -> data:'a -> 'b) -> 'b
end
module Make (Key : Key) : S with module Key = Key = struct
module Key = Key
module Table = Hashtbl.Make (Key)
module Key_value = struct
module T = struct
type 'a t = {
key : Key.t;
mutable value : 'a;
}
end
include T
let equal (t : 'a t) t' = t == t'
let key t = t.key
let value t = t.value
end
open Key_value.T
module Elt = Doubly_linked.Elt
type 'a t = {
mutable num_readers : int;
queue : 'a Key_value.t Doubly_linked.t;
table : 'a Key_value.t Elt.t Table.t;
}
let invariant t =
assert (Doubly_linked.length t.queue = Hashtbl.length t.table);
(* Look at each element in the queue, checking:
* - every element in the queue is in the hash table
* - there are no duplicate keys
*)
let keys = Table.create ~size:(Hashtbl.length t.table) () in
Doubly_linked.iter t.queue ~f:(fun kv ->
let key = kv.key in
match Hashtbl.find t.table key with
| None -> assert false
| Some _ ->
assert (not (Hashtbl.mem keys key));
Hashtbl.replace keys ~key ~data:());
;;
let create () = {
num_readers = 0;
queue = Doubly_linked.create ();
table = Table.create ~size:16 ();
}
let read t f =
t.num_readers <- t.num_readers + 1;
Exn.protect ~f ~finally:(fun () -> t.num_readers <- t.num_readers - 1)
;;
let ensure_can_modify t =
if t.num_readers > 0 then
failwith "It is an error to modify a Hash_queue.t while iterating over it.";
;;
let clear t =
ensure_can_modify t;
Doubly_linked.clear t.queue;
Hashtbl.clear t.table;
;;
let length t = Hashtbl.length t.table
let is_empty t = length t = 0
let lookup t k =
match Hashtbl.find t.table k with
| None -> None
| Some elt -> Some (Elt.value elt).value
;;
let lookup_exn t k = (Elt.value (Hashtbl.find_exn t.table k)).value
let mem t k = Hashtbl.mem t.table k
type 'a container = 'a t
(* Note that this is the tail-recursive Core_list.map *)
let to_list t = List.map (Doubly_linked.to_list t.queue) ~f:Key_value.value
let to_array t = Array.map (Doubly_linked.to_array t.queue) ~f:Key_value.value
let for_all t ~f =
read t (fun () -> Doubly_linked.for_all t.queue ~f:(fun kv -> f kv.value))
;;
let exists t ~f =
read t (fun () -> Doubly_linked.exists t.queue ~f:(fun kv -> f kv.value))
let find t ~f =
read t (fun () ->
Option.map (Doubly_linked.find t.queue ~f:(fun kv -> f kv.value))
~f:Key_value.value)
;;
let enqueue t key value =
ensure_can_modify t;
if Hashtbl.mem t.table key then
`Key_already_present
else begin
let elt =
Doubly_linked.insert_last t.queue
{ Key_value.key = key; value = value; }
in
Hashtbl.replace t.table ~key ~data:elt;
`Ok
end
;;
exception Enqueue_duplicate_key of Key.t with sexp
let enqueue_exn t key value =
match enqueue t key value with
| `Key_already_present -> raise (Enqueue_duplicate_key key)
| `Ok -> ()
;;
let dequeue_with_key t =
ensure_can_modify t;
match Doubly_linked.remove_first t.queue with
| None -> None
| Some kv -> Hashtbl.remove t.table kv.key; Some (kv.key, kv.value)
;;
exception Dequeue_with_key_empty with sexp
let dequeue_with_key_exn t =
match dequeue_with_key t with
| None -> raise Dequeue_with_key_empty
| Some (k, v) -> (k, v)
;;
let dequeue t =
match dequeue_with_key t with
| None -> None
| Some (_, v) -> Some v
;;
exception Dequeue_empty with sexp
let dequeue_exn t =
match dequeue t with
| None -> raise Dequeue_empty
| Some v -> v
;;
let keys t =
(* Return the keys in the order of the queue. *)
List.map (Doubly_linked.to_list t.queue) ~f:Key_value.key
;;
let iteri t ~f =
read t (fun () ->
Doubly_linked.iter t.queue ~f:(fun kv -> f ~key:kv.key ~data:kv.value))
;;
let iter t ~f = iteri t ~f:(fun ~key:_ ~data -> f data)
let foldi t ~init ~f =
read t (fun () ->
Doubly_linked.fold t.queue ~init ~f:(fun ac kv ->
(f ac ~key:kv.key ~data:kv.value)))
;;
let fold t ~init ~f = foldi t ~init ~f:(fun ac ~key:_ ~data -> f ac data)
let dequeue_all t ~f =
let rec loop () =
match dequeue t with
| None -> ()
| Some v -> f v; loop ()
in
loop ()
let remove t k =
ensure_can_modify t;
match Hashtbl.find t.table k with
| None -> `No_such_key
| Some elt ->
Doubly_linked.remove t.queue elt;
Hashtbl.remove t.table (Elt.value elt).key;
`Ok
;;
exception Remove_unknown_key of Key.t with sexp
let remove_exn t k =
ensure_can_modify t;
match remove t k with
| `No_such_key -> raise (Remove_unknown_key k)
| `Ok -> ()
;;
let replace t k v =
ensure_can_modify t;
match Hashtbl.find t.table k with
| None -> `No_such_key
| Some elt ->
(Elt.value elt).value <- v;
`Ok
;;
exception Replace_unknown_key of Key.t with sexp
let replace_exn t k v =
ensure_can_modify t;
match replace t k v with
| `No_such_key -> raise (Replace_unknown_key k)
| `Ok -> ()
let container = {
Container.
length = length;
is_empty = is_empty;
iter = iter;
fold = fold;
exists = exists;
for_all = for_all;
find = find;
to_list = to_list;
to_array = to_array;
}
end
|