1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
# Implementations of algorithms found in joint paper by Eder and Perry
# Copyright (C) 2010-2011, the University of Southern Mississippi
# released into the public domain
#
# Originally from http://www.math.usm.edu/perry/Research/basic_sigbased_gb.py
# slightly changed for JAS compatibility, changes are labled with JAS
# $Id: basic_sigbased_gb.py 3804 2011-10-16 21:57:47Z kredel $
# this implementation has one significant difference from the paper:
# the paper maintains monic signatures, but
# this implementation maintains monic polynomials
class sigbased_gb:
# the base class from which all other classes are derived
def basis_sig(self,F):
# incremental basis computation
# F is a container of generators of an ideal
F.sort(key=lambda x: -x.lm().degree()) # JAS
#print "JAS F = " + str([ str(g) for g in F]);
G = list()
for f in F:
G = self.incremental_basis(G,f)
Gnew = [g[1] for g in G]
R = f.parent()
print "size before reduction", len(G)
G = R.ideal(Gnew).interreduced_basis()
return G
def spoly_multipliers(self,f,g):
# multipliers for the s-polynomial of f and g
# returns uf,ug such that
# that is, spoly(f,g) = uf.f - ug.g
tf = f.lm(); tg = g.lm()
tfg = tf.lcm(tg)
R = self.R
return (R.monomial_quotient(tfg,tf),R.monomial_quotient(tfg,tg))
def subset(self,S,criterion):
# this should be changed to use Python's filter() command
result = set()
for s in S:
if criterion(s):
result.add(s)
return result
def min_sig_degree(self,P):
# determines the minimal degree of a signature in P
return min([p[0].degree() for p in P])
def new_pair(self,sig,p,q,G):
# creates a new critical pair from p and q, with signature sig
# it needs G for the sake of F5; see derived class below
return (sig,p,q)
def spoly(self,s,G):
# computes the spolynomial
# assumes that s has the form (signature, poly, poly)
f = s[1]; g = s[2]
tf = f.lm(); tg = g.lm()
tfg = tf.lcm(tg)
R = f.parent()
uf = R.monomial_quotient(tfg,tf); ug = R.monomial_quotient(tfg,tg)
return uf*f - ug*g
def initialize_Syz(self,F,G):
# initializes Syz; initially, this does nothing
return set()
def prune_P(self,P,Syz):
# prunes P using Syz; initially, this does nothing
return P
def prune_S(self,S,Syz,Done,G):
# prunes S using Syz, Done, and G; initially, this does nothing
# (Done is used as a shortcut)
return S
def update_Syz(self,Syz,sigma,r):
# updates Syz using sigma and r
# some algorithms use this; some don't
return Syz
def sigsafe_reduction(self,s,sigma,G,F,Syz):
# computes a complete sigma-reduction of s modulo G
# F is assumed to be a subset of G that represents the previous GB incrementally
# Syz is sent but not used (I should probably remove this)
r = s
r_sigma = sigma
R = self.R
reduced = True
while (r != 0) and reduced:
reduced = False
r = r.reduce(F)
if any(g[1] != 0 and R.monomial_divides(g[1].lm(),r.lm()) for g in G):
for g in G:
if g[1] != 0 and R.monomial_divides(g[1].lm(),r.lm()):
u = self.R.monomial_quotient(r.lt(),g[1].lt(),coeff=True)
sig_ug = u*g[0]
if (sig_ug < r_sigma) or ((sig_ug.lm() == r_sigma.lm()) and (sig_ug.lc() != r_sigma.lc())):
reduced = True
r -= u*g[1]
if (sig_ug.lm() == r_sigma.lm()):
r_sigma -= sig_ug
# ensure that r is monic
if r != 0:
c = r.lc()
r *= c**(-1)
r_sigma *= c**(-1)
return r_sigma, r
def sig_redundant(self,sigma,r,G):
# test whether (sigma,r) is signature-redundant wrt G
R = self.R
return any(g[0] != 0 and R.monomial_divides(g[0].lm(),sigma.lm()) and R.monomial_quotient(sigma.lm(),g[0].lm())*g[1].lm()==r.lm() for g in G)
#if any ((g[0] != 0 and R.monomial_divides(g[0].lm(),sigma.lm())) and (g[1] != 0 and R.monomial_divides(g[1].lm(),r.lm())) and not R.monomial_quotient(sigma.lm(),g[0].lm())*g[1].lm()==r.lm() for g in G):
# print "counterexample at", (sigma, r.lm())
return any ((g[0] != 0 and R.monomial_divides(g[0].lm(),sigma.lm())) and (g[1] != 0 and R.monomial_divides(g[1].lm(),r.lm())) for g in G)
def incremental_basis(self,F,g):
# assuming that F is a Groebner basis of the ideal generated by F,
# compute a Groebner basis of F+[g]
self.R = g.parent(); R = self.R
# to record a signature, we use only the leading monomial of a minimal representation
# so that elements of F have "signature" 0 and g has "signature" 1
G = [(R(0),F[i]) for i in xrange(len(F))] + [(R(1),g)]
#print "JAS G = " + str([ str(gg[0])+","+str(gg[1]) for gg in G]);
# the structure of a pair can vary, except for its first entry,
# which should be the signature
P = set([self.new_pair(self.spoly_multipliers(g,f)[0],g,f,G) for f in F])
Syz = self.initialize_Syz(F,G)
# Done will track new polynomials computed by the algorithm
Done = list()
while len(P) != 0:
P = self.prune_P(P,Syz)
if len(P) != 0:
S = list(self.subset(P,lambda x: x[0].degree() == self.min_sig_degree(P)))
print "treating", len(S), "signatures of degree", self.min_sig_degree(P)
P.difference_update(S)
while len(S) != 0:
S = self.prune_S(S,Syz,Done,G)
if len(S) != 0:
# sort by signature
S.sort(key=lambda x:x[0]); s = S.pop(0)
sigma,r = self.sigsafe_reduction(self.spoly(s,G),s[0],G,F,Syz)
if (r != 0) and (not self.sig_redundant(sigma,r,G)):
#print "new polynomial", (sigma,r.lm())
for (tau,g) in G:
if (g != 0):
rmul,gmul = self.spoly_multipliers(r,g)
if rmul*sigma.lm() != gmul*tau.lm():
if rmul*sigma.lm() > gmul*tau.lm():
p = self.new_pair(rmul*sigma,r,g,G)
else:
p = self.new_pair(gmul*tau,g,r,G)
if p[0].degree() == sigma.degree():
S.append(p)
else:
P.add(p)
G.append((sigma,r))
Done.append((sigma,r))
elif r == 0:
#print "zero reduction at", (sigma,r.lm())
self.update_Syz(Syz,sigma,r)
Done.append((sigma,r))
#else:
#print "sig-redundant at", sigma
return list(self.subset(G,lambda x: x[1] != 0))
class ggv(sigbased_gb):
# the plugin implementation of ggv
def new_pair(self,sig,p,q,G):
# creates a new critical pair from p and q, with signature sig
# it needs G for the sake of F5; see derived class below
i = -1; j = -1; k = 0
up,uq = self.spoly_multipliers(p,q)
while (i<0 or j<0) and k < len(G):
if p == G[k][1]:
i = k
elif q == G[k][1]:
j = k
k += 1;
if (i == -1):
i=len(G)
elif (j == -1):
j = len(G)
return (sig,i,j)
def initialize_Syz(self,F,G):
# recognize trivial syzygies
return set([f.lm() for f in F])
def spoly(self,s,G):
# ggv only computes part of an S-polynomial
# (as if it were computing a row of the Macaulay matrix
# and not subsequently triangularizing)
f = G[s[1]][1]; g = G[s[2]][1]
tf = f.lm(); tg = g.lm()
tfg = tf.lcm(tg)
uf = self.R.monomial_quotient(tfg,tf)
return uf*f
def prune_P(self,P,Syz):
# remove any pair whose signature is divisible by an element of Syz
result = set()
R = self.R
for p in P:
if not any(R.monomial_divides(t,p[0]) for t in Syz):
result.add(p)
return result
def prune_S(self,S,Syz,Done,G):
# watch out for new syzygies discovered, and allow only one polynomial
# per signature
result = list()
R = self.R
for s in S:
if not any(R.monomial_divides(t,s[0]) for t in Syz):
if not any(s[0].lm()==sig[0].lm() and s[1]<sig[1] for sig in S):
if not any(s[0].lm()==sig[0].lm() for sig in result):
result.append(s)
return result
def update_Syz(self,Syz,sigma,r):
# add non-trivial syzygies to the basis
# polynomials that reduce to zero indicate non-trivial syzygies
if r == 0:
Syz.add(sigma.lm())
return Syz
class ggv_first_implementation(ggv):
def new_pair(self,sig,p,q,G):
# creates a new critical pair from p and q, with signature sig
# it needs G for the sake of F5; see derived class below
i = -1; j = -1; k = 0
return (sig,p,q)
def spoly(self,s,G):
# ggv only computes part of an S-polynomial
# (as if it were computing a row of the Macaulay matrix
# and not subsequently triangularizing)
# -- at least, that's how I read "(t_i,m+1)" on p. 6 of that paper
f = s[1]; g = s[2]
tf = f.lm(); tg = g.lm()
tfg = tf.lcm(tg)
uf = self.R.monomial_quotient(tfg,tf)
return uf*f
def prune_S(self,S,Syz,Done,G):
# watch out for new syzygies discovered, and allow only one polynomial
# per signature
result = list()
R = self.R
for s in S:
if not any(R.monomial_divides(t,s[0]) for t in Syz):
if not any(s[0].lm()==sig[0].lm() for sig in Done):
result.append(s)
return result
class coeff_free_sigbased_gb(sigbased_gb):
# child class of sigbased_gb that implements semi-complete reduction
def sigsafe_reduction(self,s,sigma,G,F,Syz):
# see sigbased_gb.sigsafe_reduction
r = s
r_sigma = sigma
R = self.R
reduced = True
while (r != 0) and reduced:
reduced = False
r = r.reduce(F)
if any( g[1] != 0 and R.monomial_divides(g[1].lm(),r.lm()) for g in G ):
for g in G:
if g[1] != 0 and R.monomial_divides(g[1].lm(),r.lm()):
u = self.R.monomial_quotient(r.lt(),g[1].lt(),coeff=True)
sig_ug = u*g[0]
if sig_ug.lm() < r_sigma:
reduced = True
r -= u*g[1]
# ensure that r is monic
if r != 0:
c = r.lc()
r *= c**(-1)
return r_sigma, r
class arris_algorithm(coeff_free_sigbased_gb):
# the plugin implementation of arri's algorithm
def initialize_Syz(self,F,G):
# recognize trivial syzygies
return set([f.lm() for f in F])
def update_Syz(self,Syz,sigma,r):
# add non-trivial syzygies to the basis
# polynomials that reduce to zero indicate non-trivial syzygies
if r == 0:
Syz.add(sigma.lm())
return Syz
def prune_P(self,P,Syz):
# remove any pair whose signature is divisible by an element of Syz
result = set()
for p in P:
if not any(self.R.monomial_divides(t,p[0]) for t in Syz):
result.add(p)
return result
def prune_S(self,S,Syz,Done,G):
# watch out for new syzygies discovered, and apply arri's rewritable criterion:
# for any s-polynomial of a given signature, if there exists another (s-)polynomial
# in S or Done of identical signature but lower lm, discard the first
result = list()
for s in S:
if not any(self.R.monomial_divides(t,s[0]) for t in Syz):
if not any(s[0]==sig[0] and s[1].lm()>sig[1].lm() for sig in S):
for (sig,f) in Done:
if self.R.monomial_divides(sig,s[0]):
u = self.R.monomial_quotient(s[0],sig)
if u*f.lm() < s[1].lm():
break
else:
result.append(s)
return result
def new_pair(self,sig,p,q,G):
# in arri's algorithm, each pair is (sigma,s) where s is the s-polynomial
# and sigma is its natural signature
tp = p.lm(); tq = q.lm()
tpq = tp.lcm(tq)
R = p.parent() #JAS tpq.parent()
up = R.monomial_quotient(tpq,tp); uq = R.monomial_quotient(tpq,tq)
return (sig,up*p-uq*q)
def spoly(self,s,G):
return s[1]
class f5(coeff_free_sigbased_gb):
# the plugin implementation of arri's algorithm
def initialize_Syz(self,F,G):
# recognize trivial syzygies
return set([f.lm() for f in F])
def update_Syz(self,Syz,sigma,r):
# recognize trivial syzygies
# see class f5z for a more thorough update_Syz in line w/arri and ggv
return Syz
def prune_P(self,P,Syz):
# remove any pair whose signature is divisible by an element of Syz
result = set()
for p in P:
if not any(self.R.monomial_divides(t,p[0]) for t in Syz):
result.add(p)
return result
def prune_S(self,S,Syz,Done,G):
# watch out for new syzygies discovered, and apply faugere's rewritable criterion:
# for any (sigma,p,q) in S, if there exists (tau,g) such that tau divides sigma
# but g was generated after p, discard (sigma,p,q)
result = list()
for (sig,u,j,v,k) in S:
if not any(self.R.monomial_divides(t,sig) for t in Syz):
if G[j][0] == 0 or not any(self.R.monomial_divides(Done[i][0],G[j][0]*u) and Done[i][0] > G[j][0] for i in xrange(len(Done))):
result.append((sig,u,j,v,k))
return result
def new_pair(self,sig,p,q,G):
# it's easier to deal with faugere's criterion if one creates pairs
# using indices rather than polynomials
# note that this while look gives f5 a disadvantage
i = -1; j = -1; k = 0
up,uq = self.spoly_multipliers(p,q)
while (i<0 or j<0) and k < len(G):
if p == G[k][1]:
i = k
elif q == G[k][1]:
j = k
k += 1;
if (i == -1):
i=len(G)
elif (j == -1):
j = len(G)
return (sig,up,i,uq,j)
def spoly(self,s,G):
# since s has the structure (sigma,up,i,uq,j)
# we have to compute the s-polynomial by looking up f and g
f = G[s[2]][1]; g = G[s[4]][1]
uf = s[1]; ug = s[3]
return uf*f - ug*g
class f5z(f5):
def update_Syz(self,Syz,sigma,r):
# recognize trivial syzygies
if r == 0:
Syz.add(sigma.lm())
return Syz
class min_size_mons(arris_algorithm):
# the plugin implementation of arri's algorithm
def prune_S(self,S,Syz,Done,G):
# watch out for new syzygies discovered, and apply the minimal "number of monomials" criterion:
# for any s-polynomial of a given signature, if there exists another polynomial
# in Done of identical signature but fewer monomials, replace this s-polynomial
# by the multiple of the polynomial with fewer monomials
result = list()
R = G[0][1].parent()
for (sigma,s) in S:
if not any(R.monomial_divides(tau,sigma) for tau in Syz):
if not any(tau == sigma for (tau,g) in result):
for (tau,g) in Done:
if tau.divides(sigma) and len(g.monomials()) < len(s.monomials()):
u = R.monomial_quotient(sigma,tau)
result.append((u*tau,u*g))
break
else:
result.append((sigma,s))
return result
|