File: design.html

package info (click to toggle)
jas 2.5.4408-1
  • links: PTS, VCS
  • area: main
  • in suites: buster, jessie, jessie-kfreebsd, sid, stretch
  • size: 10,976 kB
  • ctags: 15,216
  • sloc: java: 111,905; python: 11,461; ruby: 9,204; makefile: 401; xml: 240; sh: 194
file content (1348 lines) | stat: -rw-r--r-- 48,551 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <link rel="stylesheet" type="text/css" href="html.css" />
    <title>JAS - API Design</title>
  </head>
  <body class="main">
    <h1>API usage and design overview</h1>

<p>
In ths document we give an overview on the structure 
of the interfaces, classes and packages of JAS.
In the first section we show how to compute Legendre polynomials 
with the JAS API.
In the next three sections we focus on the structure 
of the required types and the creation of the corresponding objects.
In the following three sections we focus on the functional aspects of 
the types, i.e. their constructors and methods.
For a discussion of other design alternatives see
the <a href="problems.html">problems</a> document.
Further programming issues and bugs are listed in the 
<a href="doc/findbugs.html" target="fb">Findbugs report</a>.
</p>


<h2>1. Getting started</h2>


<h3>1.1. Computation of the Legendre polynomials</h3>

At first we present an example for the usage of the JAS API
with the computation of the Legendre polynomials.
The Legendre polynomials can be defined by the following recursion
<ul>
<li>P[0](x) = 1
</li>
<li>P[1](x) = x
</li>
<li>P[n](x) = 1/n ( (2n-1) x P[n-1] - (n-1) P[n-2] ).
</li>
</ul>
The first 10 Legendre polynomials are:
<pre style="background-color: #FFFFF5;">
P[0] = 1 
P[1] = x
P[2] = 3/2 x^2 - 1/2 
P[3] = 5/2 x^3 - 3/2 x
P[4] = 35/8 x^4 - 15/4 x^2 + 3/8 
P[5] = 63/8 x^5 - 35/4 x^3 + 15/8 x
P[6] = 231/16 x^6 - 315/16 x^4 + 105/16 x^2 - 5/16 
P[7] = 429/16 x^7 - 693/16 x^5 + 315/16 x^3 - 35/16 x
P[8] = 6435/128 x^8 - 3003/32 x^6 + 3465/64 x^4 - 315/32 x^2 + 35/128 
P[9] = 12155/128 x^9 - 6435/32 x^7 + 9009/64 x^5 - 1155/32 x^3 + 315/128 x
</pre>

<p>
The polynomials have been computed with the following Java program.
First we need a polynomial ring <code>ring</code> over the rational numbers, 
in one variable <code>"x"</code> and a list <code>P</code> to store the
computed polynomials.
The polynomial factory object itself needs at least a factory for
the creation of coefficients and the number of variables.
Additionally the term order and names for the variables can be
specified. With this information the polynomial ring factory
can be created by 
<code>new GenPolynomialRing &lt;BigRational&gt;(fac,1,var)</code>,
where <code>fac</code> is the coefficient factory,
<code>1</code> is the number of variables, and
<!--<code>to</code> is the term order object and-->
<code>var</code> is an <code>String</code> array of names.
</p>
<pre>
    BigRational fac = new BigRational();
    String[] var = new String[]{ "x" };
    GenPolynomialRing&lt;BigRational&gt; ring
        = new GenPolynomialRing&lt;BigRational&gt;(fac,1,var);

    int n = 10;
    List&lt;GenPolynomial&lt;BigRational&gt;&gt; P 
       = new ArrayList&lt;GenPolynomial&lt;BigRational&gt;&gt;(n);
    GenPolynomial&lt;BigRational&gt; t, one, x, xc;
    BigRational n21, nn;

    one = ring.getONE();
    x   = ring.univariate(0);

    P.add( one );
    P.add( x );
    for ( int i = 2; i &lt; n; i++ ) {
        n21 = new BigRational( 2*i-1 );
        xc = x.multiply( n21 );
        t = xc.multiply( P.get(i-1) );  // (2n-1) x P[n-1]
        nn = new BigRational( i-1 );
        xc = P.get(i-2).multiply( nn ); // (n-1) P[n-2]
        t = t.subtract( xc );
        nn = new BigRational(1,i);      
        t = t.multiply( nn );           // 1/n t
        P.add( t );
    }
    for ( int i = 0; i &lt; n; i++ ) {
        System.out.println("P["+i+"] = " + P.get(i).toString(var) );
        System.out.println();
    }
</pre>
<p>
The polynomials for the recursion base are <code>one</code> and <code>x</code>.
Both are generated from the polynomial ring factory
with method <code>ring.getONE()</code> and <code>ring.univariate(0)</code>,
respectively. 
The polynomial <code>(2n-1)x</code> is produced in the for-loop by 
<code>n21 = new BigRational( 2*i-1 );</code> and
<code>xc = x.multiply( n21 );</code>.
The polynomial <code>(n-1) P[n-2]</code> is computed by
<code>nn = new BigRational( i-1 );</code> and
<code>xc = P.get(i-2).multiply( nn )</code>.
Finally we have to multiply the difference of the 
intermediate polynomials by <code>1/i</code> as 
<code>nn = new BigRational( 1, i );</code> and
<code>t = t.multiply( nn )</code>.
Then, in the for-loop, the polynomials <code>P[i]</code> are computed
using the definition, and stored in the list <code>P</code> for further use.
In the last for-loop, the polynomials are printed, producing the
output shown above.
The string representation of the polynomial object can be created,
as expected, by <code>toString()</code>,
or by using names for the variables with <code>toString(var)</code>.
The imports required are
</p>
<pre>
import java.util.ArrayList;
import java.util.List;
import edu.jas.arith.BigRational;
import edu.jas.poly.GenPolynomial;
import edu.jas.poly.GenPolynomialRing;
</pre>
<p>
To use other coefficient rings, one simply changes the
generic type parameter, say, from <code>BigRational</code> to
<code>BigComplex</code> and adjusts the coefficient factory.
The factory would then be created as
<code>c = new BigComplex()</code>, followed by
<code>new GenPolynomialRing&lt;BigComplex&gt; (c,1,var)</code>.
This small example shows that this library can easily be used,
just as any other Java package or library.
</p>
<!--
The string argument of method <code>parse()</code> can be the
TeX-representation of the polynomial,
except that no subscripts may appear.
-->
<p>
In the following sections we describe the 
central classes and interfaces for the polynomial API.
</p>

<h3>1.2. Algebraic structures overview</h3>

<p>
To get an idea of the scope of JAS we summarize 
the implemented algebraic structures and 
of the implemented algebraic algorithms.
</p>

<table border="1" cellpadding="3" summary="JAS AS summary" >
<tr>
<td>class</td>
<td>factory</td>
<td>structure</td>
<td>methods</td>
</tr>

<tr>
<td><code>BigInteger</code></td>
<td>self</td>
<td>ring of arbitrary precision integers,
    a facade for <code>java.math.BigInteger</code>
</td>
<td>arithmetic, gcd, primality test</td>
</tr>

<tr>
<td><code>BigRational</code></td>
<td>self</td>
<td>ring of arbitrary precision rational numbers,
    i.e. fractions of integers,
    with Henrici optimizations for gcds
</td>
<td>arithmetic</td>
</tr>

<tr>
<td><code>ModInteger</code></td>
<td><code>ModIntegerRing</code></td>
<td>ring of integers modulo some fixed (arbitrary precision) integer <code>n</code>,
    if <code>n</code> is a prime number, the ring is a field
</td>
<td>arithmetic, chinese remainder</td>
</tr>

<tr>
<td><code>BigDecimal</code></td>
<td>self</td>
<td>ring of arbitrary precision floating point numbers,
    a facade for <code>java.math.BigDecimal</code>
</td>
<td>arithmetic, <code>compareTo()</code> with given precision</td>
</tr>

<tr>
<td><code>BigComplex</code></td>
<td>self</td>
<td>ring of arbitrary precision complex numbers,
    i.e. pairs of rational numbers
</td>
<td>arithmetic</td>
</tr>

<tr>
<td><code>BigQuaternion</code></td>
<td>self</td>
<td>ring of arbitrary precision quaternion numbers,
    i.e. quadruples of rational numbers
</td>
<td>arithmetic</td>
</tr>

<tr>
<td><code>BigOctonion</code></td>
<td>self</td>
<td>ring of arbitrary precision octonion numbers,
    i.e. implemented as pairs of quaternion numbers
</td>
<td>arithmetic</td>
</tr>

<tr>
<td><code>GenPolynomial</code></td>
<td><code>GenPolynomialRing</code></td>
<td>ring of polynomials in <code>r</code> variables 
    over any implemented coefficient ring
    with respect to any implemented term ordering
</td>
<td>arithmetic, univariate gcd, norms, 
    chinese remainders for coefficients, evaluation</td>
</tr>

<tr>
<td><code>AlgebraicNumber</code></td>
<td><code>AlgebraicNumber- Ring</code></td>
<td>ring of algebraic numbers, represented as 
    univariate polynomials 
    over any implemented coefficient field
</td>
<td>arithmetic
</td>
</tr>

<tr>
<td><code>Real- AlgebraicNumber</code></td>
<td><code>RealAlgebraicRing</code></td>
<td>ring of real algebraic numbers, represented as 
    algebraic number and an isolating interval for a real root
    over rational numbers or real algebraic numbers 
</td>
<td>arithmetic, real sign, magnitude
</td>
</tr>

<tr>
<td><code>Complex- AlgebraicNumber</code></td>
<td><code>ComplexAlgebraicRing</code></td>
<td>ring of complex algebraic numbers, represented as 
    algebraic number and an isolating rectangle for a complex root
    over rational numbers as base ring
</td>
<td>arithmetic, sign invariant rectangle, magnitude
</td>
</tr>

<tr>
<td><code>GenSolvable- Polynomial</code></td>
<td><code>GenSolvable- PolynomialRing</code></td>
<td>ring of non-commutative, solvable polynomials in <code>r</code> variables 
    over any implemented coefficient ring
    with respect to any implemented term ordering
    (compatible with the multiplication)
</td>
<td>arithmetic</td>
</tr>

<tr>
<td><code>GenWordPolynomial</code></td>
<td><code>GenWordPolynomialRing</code></td>
<td>ring of free non-commutative polynomials in <code>r</code> letters 
    over any implemented coefficient ring
    with respect to a graded term ordering
</td>
<td>arithmetic</td>
</tr>

<tr>
<td><code>Quotient</code></td>
<td><code>QuotientRing</code></td>
<td>ring of rational functions, 
    i.e. fractions of multivariate polynomials
    over any implemented commutative unique factorization coefficient domain
</td>
<td>arithmetic
</td>
</tr>

<tr>
<td><code>SolvableQuotient</code></td>
<td><code>SolvableQuotientRing</code></td>
<td>ring of rational functions, 
    i.e. fractions of multivariate solvable polynomials
    (satisfying the left-, right-Ore condition)
    over some implemented coefficient domains
</td>
<td>arithmetic
</td>
</tr>

<tr>
<td><code>Residue</code></td>
<td><code>ResidueRing</code></td>
<td>ring of polynomials modulo a given polynomial ideal,
    over any implemented commutative coefficient ring
</td>
<td>arithmetic
</td>
</tr>

<tr>
<td><code>SolvableResidue</code></td>
<td><code>SolvableResidueRing</code></td>
<td>ring of polynomials modulo a given polynomial ideal,
    over some implemented coefficient domains
</td>
<td>arithmetic
</td>
</tr>

<tr>
<td><code>Local</code></td>
<td><code>LocalRing</code></td>
<td>ring of polynomials fractions localized with respect to a given polynomial ideal,
    over any implemented commutative coefficient ring
</td>
<td>arithmetic
</td>
</tr>

<tr>
<td><code>Product</code></td>
<td><code>ProductRing</code></td>
<td>(finite) direct product of fields and rings 
    over any implemented coefficient ring
</td>
<td>arithmetic, idempotent elements
</td>
</tr>

<tr>
<td><code>GenVector</code></td>
<td><code>GenVectorModule</code></td>
<td>tuples (vectors) of any implemented 
    ring elements
</td>
<td>arithmetic, scalar product
</td>
</tr>

<tr>
<td><code>GenMatrix</code></td>
<td><code>GenMatrixModule</code></td>
<td>matrices of any implemented ring elements
</td>
<td>arithmetic, scalar product
</td>
</tr>

<tr>
<td><code>UnivPowerSeries</code></td>
<td><code>UnivPowerSeriesRing</code></td>
<td>ring of univariate power series 
    over any implemented coefficient ring
</td>
<td>arithmetic, gcd, evaluation, integration, fixed points</td>
</tr>

<tr>
<td><code>MultiVarPowerSeries</code></td>
<td><code>MultiVarPowerSeriesRing</code></td>
<td>ring of multivatiate power series 
    over any implemented coefficient ring
</td>
<td>arithmetic, evaluation, integration, fixed points</td>
</tr>

<tr>
<td><code>Quotient</code></td>
<td><code>QuotientRing</code></td>
<td>ring of fractions 
    over any implemented (unique factorization domain) ring
</td>
<td>arithmetic
</td>
</tr>

<tr>
<td><code>Residue</code></td>
<td><code>ResidueRing</code></td>
<td>ring of elements modulo a given (main) ideal,
    over any implemented ring
</td>
<td>arithmetic
</td>
</tr>

<tr>
<td><code>Local</code></td>
<td><code>LocalRing</code></td>
<td>ring of fractions localized with respect to a given (main) ideal,
    over any implemented ring
</td>
<td>arithmetic
</td>
</tr>

<tr>
<td><code>Complex</code></td>
<td><code>ComplexRing</code></td>
<td>ring of complex numbers over any implemented ring (with gcd)
</td>
<td>arithmetic
</td>
</tr>

</table>

<p>
"Arithmetic" means implementation of the methods 
defined in the interface <code>RingElem</code>.
As of 2013-04 there are 25 rings implemented. To be continued.
</p>


<h3>1.3. Algebraic algorithms overview</h3>

<p>
The following table contains an overview of 
implemented algebraic algorithms.
</p>

<table border="1" cellpadding="3" summary="JAS AA summary" >
<tr>
<td>class / interface</td>
<td>algorithm&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
<td>methods</td>
</tr>

<tr>
<td><code>Reduction</code>,
    <code>Reduction- Abstract</code>,
    <code>ReductionSeq</code>,
    <code>ReductionPar</code>,
    <code>PseudoReduction</code>
</td>
<td>Iterated subtraction of polynomials to eliminate terms from a given polynomial, 
    i.e. reduction of polynomial(s) wrt. a set of polynomials.
    Coefficients of polynomials must be from a field and for the 
    Pseudo* version from a ring with gcd.
    For *Par the list of polynomials can concurrently be modified.
</td>
<td>normalform,
    S-polynomial,
    criterions,
    extended normalform
</td>
</tr>

<tr>
<td><code>DReduction</code>
    <code>EReduction</code>
    <code>DReductionSeq</code>
    <code>EReductionSeq</code>
</td>
<td>Reduction of polynomial(s) wrt. a set of polynomials.
    Coefficients of polynomials must be from a 
    principial ideal domain (PID) or from an Euclidean domain.
</td>
<td>normalform,
    S-polynomial,
    G-polynomial,
    criterions,
    extended normalform
</td>
</tr>

<tr>
<td><code>SolvableReduction</code>
    <code>SolvableReduction- Abstract</code>
    <code>Solvable- ReductionSeq</code>
    <code>Solvable- ReductionPar</code>
</td>
<td>Left and right reduction of solvable polynomial(s) wrt. a 
    set of solvable polynomials.
    Coefficients of polynomials must be from a field.
</td>
<td>left/right normalform,
    left/right S-polynomial,
    criterions,
    extended left normalform
</td>
</tr>

<tr>
<td><code>RReduction</code>,
    <code>RPseudoReduction</code>,
    <code>RReductionSeq</code>,
    <code>RPseudoReductionSeq</code>
</td>
<td>Iterated subtraction of polynomials to eliminate terms from a given polynomial, 
    i.e. reduction of polynomial(s) wrt. a set of polynomials.
    Coefficients of polynomials must be from a regular ring and for the 
    Pseudo* version from a regular ring with gcd.
    Boolean closure and boolean remainder of polynomials.
</td>
<td>normalform,
    S-polynomial,
    <!--extended normalform,-->
    boolean closure
</td>
</tr>

<tr>
<td><code>CReductionSeq</code>,
    <code>Condition</code>,
    <code>ColorPolynomial</code>
</td>
<td>Iterated subtraction of polynomials to eliminate terms from a given polynomial, 
    i.e. reduction of polynomial(s) wrt. a set of polynomials.
    Coefficients of polynomials must be from a polynomial ring.
    Case distinction and determination of polynomaials with respect to conditions 
    leading to colored polynomials.
</td>
<td>normalform,
    S-polynomial,
    <!--extended normalform,-->
    color, determine
</td>
</tr>

<tr>
<td><code>GroebnerBase</code>,
    <code>GroebnerBase- Abstract</code>,
    <code>GroebnerBaseSeq</code>,
    <code>GroebnerBase- Parallel</code>,
    <code>GroebnerBase- Distributed</code>,
    <code>GroebnerBase- PseudoSeq</code>,
    etc.
</td>
<td>Buchberger algorithm to compute Groebner bases 
    of sets of polynomials.
    Coefficients of polynomials must be from a field.
    <code>*Parallel</code> is a multi-threaded and 
    <code>*Distributed</code> is a message passing implementation.  
    The <code>*Pseudo</code> version is for non-field coefficients.
</td>
<td>GB, isGB, extended GB, minimal GB
</td>
</tr>

<tr>
<td><code>DGroebnerBaseSeq</code>,
    <code>EGroebnerBaseSeq</code>
</td>
<td>Algorithm to compute D- and E- Groebner bases 
    of sets of polynomials.
    Coefficients of polynomials must be from a 
    principial ideal domain (PID) or from an Euclidean domain.
</td>
<td>GB, isGB, minimal GB
</td>
</tr>

<tr>
<td><code>SolvableGroebnerBase</code>,
    <code>SolvableGroebnerBase- Abstract</code>,
    <code>SolvableGroebnerBaseSeq</code>,
    <code>SolvableGroebnerBase- Parallel</code>
</td>
<td>Algorithm to compute left, right and two-sided Groebner bases 
    of sets of solvable polynomials.
    Coefficients of polynomials must be from a field.
    Parallel is a multi-threaded implementation.  
</td>
<td>left, right, two-sided versions of GB, isGB, extended GB, minimal GB
</td>
</tr>

<tr>
<td><code>WordGroebnerBase</code>,
    <code>WordGroebnerBase- Abstract</code>,
    <code>WordGroebnerBaseSeq</code>
</td>
<td>Algorithm to compute two-sided Groebner bases 
    of sets of free non-commutative polynomials.
    Coefficients of polynomials must be from a field.
</td>
<td>two-sided versions of GB, isGB, minimal GB
</td>
</tr>

<tr>
<td><code>RGroebnerBaseSeq</code>,
    <code>RGroebnerBasePseudoSeq</code>
</td>
<td>Algorithm to compute Groebner bases in polynomial rings over regular rings.
    Coefficients of polynomials must be from a 
    product of fields or Euclidean domains.
</td>
<td>GB, isGB, minimal GB
</td>
</tr>

<tr>
<td><code>ComprehensiveGroebnerBaseSeq</code>,
    <code>GroebnerSystem</code>,
    <code>ColoredSystem</code>
</td>
<td>Algorithm to compute comprehensive Groebner bases in polynomial rings over 
    parameter rings.
    Coefficients of polynomials must be from a polynomial ring.
    Computation is done via Groebner systems (lists of colored systems).
</td>
<td>GBsys, isGBsys, GB, isGB, minimalGB
</td>
</tr>

<tr>
<td><code>Syzygy</code>,
    <code>SyzygyAbstract</code>,
    <code>ModGroebnerBase</code>,
    <code>ModGroebnerBaseAbstract</code>,
</td>
<td>Algorithm to compute syzygies of lists of polynomials 
    or Groebner Bases, free resolutions.
    Groebner Bases for modules over polynomial rings.
    Coefficients of polynomials must be from a field.
</td>
<td>zeroRelations, isZeroRelation, 
    resolution, zeroRelationsArbitrary,
    GB, isGB
</td>
</tr>

<tr>
<td><code>SolvableSyzygy</code>,
    <code>Solvable- SyzygyAbstract</code>,
    <code>ModSolvable- GroebnerBase</code>,
    <code>ModSolvable- GroebnerBaseAbstract</code>,
</td>
<td>Algorithm to compute left and right syzygies of lists 
    of solvable polynomials or Groebner Bases, free left resolutions.
    Left, right and two-sided Groebner Bases for modules over solvable polynomial rings.
    Coefficients of polynomials must be from a field.
</td>
<td>leftZeroRelations, rightZeroRelations, 
    isLeftZeroRelation, isRightZeroRelation, 
    (left) resolution, zeroRelationsArbitrary,
    leftOreCond, rightOreCont(ition),
    left, right, two-sided GB, isGB
</td>
</tr>

<tr>
<td><code>ReductionSeq</code>,
    <code>StandardBaseSeq</code>,
    etc.
</td>
<td>Mora's tangent cone reduction algorithm and computation of standard bases 
    of sets of multivariate power series.
    Coefficients of polynomials must be from a field.

</td>
<td>STD, isSTD, minimalSTD, normalForm, SPolynomial
</td>
</tr>

<tr>
<td><code>Ideal</code>
</td>
<td>Algorithms to compute sums, products, intersections, containment 
    and (infinite) quotients of polynomial ideals.
    Coefficients of polynomials must be from a field.
    Prime, primary, irreducible and radical decomposition of zero dimensional ideals.
    Prime, primary, irreducible and radical decomposition of non-zero dimensional ideals.
    Univariate polynomials of minimal degree in ideal as well as
    elimination, extension and contraction ideals.
</td>
<td>sum, product, intersect, contains,
    quotient, infiniteQuotient, inverse modulo ideal, 
    zeroDimRadicalDecomposition, zeroDimPrimeDecomposition,
    zeroDimPrimaryDecomposition, zeroDimDecomposition,
    zeroDimRootDecomposition,
    radicalDecomposition, primeDecomposition, decomposition,
    primaryDecomposition
</td>
</tr>

<tr>
<td><code>SolvableIdeal</code>
</td>
<td>Algorithms to compute sums, products, intersections, containment 
    and (infinite) quotients of solvable polynomial ideals.
    Coefficients of solvable polynomials must be from a field.
</td>
<td>sum, product, intersect, contains,
    quotient, infiniteQuotient, inverse modulo ideal,
    univariate polynomials of minimal degree in ideal
</td>
</tr>

<tr>
<td><code>GreatestCommonDivisor</code>,
    <code>GCDFactory</code>,
    <code>GreatestCommonDivisorAbstract</code>,
    <code>GreatestCommonDivisorSimple</code>,
    <code>GreatestCommonDivisorPrimitive</code>,
    <code>GreatestCommonDivisorSubres</code>,
    <code>GreatestCommonDivisorModular</code>,
    <code>GreatestCommonDivisorModEval</code>,
    <code>GCDProxy</code>
</td>
<td>Algorithms to compute greatest common divisors of polynomials 
    via different polynomial remainder sequences (PRS) and modular methods.
    Coefficients of polynomials must be from a unique factorization domain (UFD).
    <code>GCDFactory</code> helps with the optimal selection of an algorithm 
    and <code>GCDProxy</code> uses multi-threading to compute with 
    several implementations in parallel.
</td>
<td>gcd, lcm, content, primitivePart, resultant, coPrime
</td>
</tr>

<tr>
<td><code>Squarefree</code>,
    <code>SquarefreeFactory</code>,
    <code>SquarefreeAbstract</code>,
    <code>SquarefreeFieldChar0</code>,
    <code>SquarefreeFieldCharP</code>,
    <code>SquarefreeFiniteFieldCharP</code>,
    <code>SquarefreeInfiniteFieldCharP</code>,
    <code>SquarefreeInfiniteAlgebraicFieldCharP</code>,
    <code>SquarefreeRingChar0</code>
</td>
<td>Algorithms to compute squarefree decomposition of polynomials 
    over fields of characteristic zero, finite and infinite fields of characteristic p
    and other coefficients from unique factorization domains (UFD).
    <code>SquarefreeFactory</code> helps with the optimal selection of an algorithm.
</td>
<td>squarefreePart, squarefreeFactors,
    isFactorization, isSquarefree, coPrimeSquarefree
</td>
</tr>

<tr>
<td><code>Factorization</code>,
    <code>FactorFactory</code>,
    <code>FactorAbstract</code>,
    <code>FactorAbsolute</code>,
    <code>FactorModular</code>,
    <code>FactorInteger</code>,
    <code>FactorRational</code>,
    <code>FactorAlgebraic</code>
</td>
<td>Algorithms to compute factorizations of polynomials as products of irreducible polynomials
   over different ground rings.
   <code>FactorFactory</code> helps with the correct selection of an algorithm.
   Reduction of the multivariate factorization to an univariate factorization is done
   with Kronecker's algorithm in the general case and with Wang's algorithm over the integers.
</td>
<td>squarefreeFactors, factors, baseFactors,
    isIrreducible, isReducible,  isSquarefree, isFactorization,
    isAbsoluteIrreducible, factorsAbsolute
</td>
</tr>

<tr>
<td><code>RealRoots</code>,
    <code>RealRootsAbstract</code>,
    <code>RealRootsSturm</code>
</td>
<td>Algorithms to compute isolating intervals for real roots
    and for refinement of isolating intervals to any prescribed precision. 
    Algorithms to compute the sign of a real algebraic numer and 
    the magnitude of a real algebraic number to a given precision.
    Coefficients of polynomials must be from a real field, 
    for example from <code>BigRational</code> or <code>RealAlgebricNumber</code>.
</td>
<td>realRoots, refineInterval, algebraicSign, algebraicMagnitude
</td>
</tr>

<tr>
<td><code>ComplexRoots</code>,
    <code>ComplexRootsAbstract</code>,
    <code>ComplexRootsSturm</code>
</td>
<td>Algorithms to compute isolating rectangles for complex roots 
    and for refinement of isolating rectangles to any prescribed precision. 
    Coefficients of polynomials must be of type <code>Complex</code> field. 
</td>
<td>complexRoots, complexRootCount, complexRootRefinement
</td>
</tr>

<tr>
<td><code>ElementaryIntegration</code>
</td>
<td>Algorithms to compute elementary integrals of univariate rational functions.
</td>
<td>integrate, integrateHermite, integrateLogPart, isIntegral
</td>
</tr>

<tr>
<td><code>CharacteristicSet</code>,
    <code>CharacteristicSetSimple</code>,
    <code>CharacteristicSetWu</code>
</td>
<td>Algorithms to compute simple or Wu-Ritt characteristic sets.
</td>
<td>characteristicSet, isCharacteristicSet, characteristicSetReduction
</td>
</tr>

</table>

<p>
</p>

<h3>1.4. Packages overview</h3>

<p align="center">
<img src="images/PackageOverview.png" alt="Static package structure overview" />
</p>

<p>
More details can be found in the <a href="http://www.clarkware.com/software/JDepend.html"
target="new">JDepend</a> <a href="doc/jdepend-report.txt" target="new">report.txt</a>.
</p>


<h2>2. Recursive ring element design</h2>

<p>
The next figure gives an overview of the central interfaces and classes.
The interface <code>RingElem</code> defines a <strong>recursive type</strong> 
which defines the functionality (see next section) of the 
polynomial coefficients and is also implemented by the 
polynomials itself. So polynomials can be taken as coefficients 
for other polynomials, thus defining a recursive polynomial ring structure.
</p>

<p>
Since the construction of constant ring elements has been difficult
in previuos designs, we separated the creational aspects of ring elements
into <strong>ring factories</strong> with sufficient context information. 
The minimal factory functionality is defined by the interface 
<code>RingFactory</code>.
Constructors for polynomial rings will then require factories for
the coefficients so that the construction of polynomials over these
coefficient rings poses no problem. 
The ring factories are additionaly required because of the 
Java generic type design. I.e. if <code>C</code> is a generic type name
it is not possible to construct an new object with <code>new C()</code>.
Even if this would be possible, one can not specify constructor signatures 
in Java interfaces, e.g. to construct a one or zero constant ring element.
Recursion is again achieved by using polynomial factories as 
coefficient factories in recursive polynomial rings.
Constructors for polynomials will always require 
a polynomial factory parameter which knows 
all details about the polynomial ring under consideration.
</p>

<p class="center" >
<a href="images/overview-recursive.png" 
   target="diagram"
   ><img src="images/overview-recursive.png" alt="JAS type overview" /></a>
<br />
UML diagram of JAS types
</p>


<h2>3. Coefficients and polynomials</h2>

<p>
We continue the discussion of the next layer of classes in the
the above figure.
</p>

<p>
Elementary <strong>coefficient classes</strong>, such as 
<code>BigRational</code> or <code>BigInteger</code>, implement both 
the <code>RingElem</code> and <code>RingFactory</code> interfaces. 
This is convenient, since these factories do not need further context 
information.
In the implementation of the interfaces the type parameter 
<code>C extends RingElem&lt;C&gt;</code> is simultaneously bound 
to the respective class, e.g. <code>BigRational</code>.
<strong>Coefficient objects</strong> can in most cases created directly 
via the respective class constructors, but also via the factory methods. 
E.g. the object representing the rational number 2 can be created by 
<code>new BigRational(2)</code> or by 
<code>fac = new BigRational()</code>, <code>fac.fromInteger(2)</code> and 
the object representing the rational number 1/2 can be created by 
<code>new BigRational(1,2)</code> or by 
<code>fac.parse("1/2")</code>.
</p>

<p>
<strong>Generic polynomials</strong> are implemented in the 
<code>GenPolynomial</code> class, which has a type parameter 
<code>C extends RingElem&lt;C&gt;</code> 
for the coefficient type. So all operations on coefficients required
in polynomial arithmetic and manipulation are guaranteed to exist by the 
<code>RingElem</code> interface. The constructors of the polynomials 
always require a matching polynomial factory. 
The <strong>generic polynomial factory</strong> is implemented in the class 
<code>GenPolynomialRing</code>, again with type parameter 
<code>C extends RingElem&lt;C&gt;</code> (not <code>RingFactory</code>).
The polynomial factory however implements the interface 
<code>RingFactory&lt;C extends RingElem&lt;C&gt;&gt;</code> so that 
it can also be used recursively.
The constructors for <code>GenPolynomialRing</code> require at least 
parameters for a coefficient factory and the number of variables 
of the polynomial ring.
</p>

<p>
Having generic polynomial and elementary coefficient implementations 
one can attempt to construct <strong>polynomial objects</strong>. 
The type is first created by binding the type parameter 
<code>C extends RingElem&lt;C&gt;</code> to the desired coefficient type, 
e.g. <code>BigRational</code>. So we arrive at the type
<code>GenPolynomial&lt;BigRational&gt;</code>.
Polynomial objects are then created via the respective polynomial factory
of type <code>GenPolynomialRing&lt;BigRational&gt;</code>, 
which is created by binding the generic coefficient type of the 
generic polynomial factory to the desired coefficient type, 
e.g. <code>BigRational</code>.
A <strong>polynomial factory object</strong> is created from a 
coefficient factory object and the number of variables in the 
polynomial ring as usual with the <code>new</code> operator via one 
of its constructors.
Given an object <code>coFac</code> of type <code>BigRational</code>,
e.g. created with <code>new BigRational()</code>, a polynomial factory
object <code>pfac</code> of the above described type could be created by 
<code>new GenPolynomialRing&lt;BigRational&gt;(coFac,5)</code>.
I.e. we specified a polynomial ring with 5 variables over 
the rational numbers.
A polynomial object <code>p</code> of the above described type can then
be created by any method defined in <code>RingFactory</code>, 
e.g. by <code>pfac.getONE()</code>, 
<code>pfac.fromInteger(1)</code>, <code>pfac.random(3)</code>
or <code>pfac.parse("(1)")</code>.
</p>

<p>
Since <code>GenPolynomial</code> itself implements the 
<code>RingElem</code> interface, they can also be used recursively
as coefficients. 
We continue the polynomial example and are going to use polynomials over
the rational numbers as coefficients of a new polynomial. 
The type is then 
<code>GenPolynomial&lt;GenPolynomial&lt;BigRational&gt;&gt;</code>
and the polynomial factory has type
<code>GenPolynomial<b>Ring</b>&lt;GenPolynomial&lt;BigRational&gt;&gt;</code>.
Using the polynomial coefficient factory <code>pfac</code> from above
a recursive polynomial factory <code>rfac</code> could be created by 
<code>new GenPolynomialRing&lt;GenPolynomial&lt;BigRational&gt;&gt;(pfac,3)</code>.
The creation of a recursive polynomial object <code>r</code> of the 
above described type is then as a easy as before
e.g. by <code>rfac.getONE()</code>, 
<code>rfac.fromInteger(1)</code> or <code>rfac.random(3)</code>.
</p>


<h2>4. Solvable polynomials</h2>

<p>
We turn now to the last layer of classes in the the above figure.
</p>

<p>
The generic polynomials are intended as super class for further 
types of polynomial rings. As one example we take so called 
<strong>solvable polynomials</strong>, which are like normal polynomials 
but are equipped with a new non-commutative multiplication. 
They are implemented in the class <code>GenSolvablePolynomial</code> 
which extends <code>GenPolynomial</code> and inherits all methods 
except <code>clone()</code> and <code>multiply()</code>.
The class also has a type parameter <code>C extends RingElem&lt;C&gt;</code> 
for the coefficient type.
Note, that the inherited methods are in fact creating solvable polynomials 
since they employ the solvable polynomial factory for the creation of any
new polynomial internally. Only the formal method return type is that 
of <code>GenPolynomial</code>, the run-time type is 
<code>GenSolvablePolynomial</code> to which they can be casted at any time.
The <strong>factory for solvable polynomials</strong> is implemented 
by the class <code>GenSolvablePolynomialRing</code> which also 
extends the generic polynomial factory. So this factory can also be used 
in the constructors of <code>GenPolynomial</code> via <code>super()</code> 
to produce in fact solvable polynomials internally. The data structure 
is enhanced by a table of non-commutative relations defining the 
new multiplication. The constructors delegate most things to the 
corresponding super class constructors and additionally have a 
parameter for the <code>RelationTable</code> to be used.
Also the methods delegate the work to the respective super class methods 
where possible and then handle the non-commutative multiplication relations 
separately.
</p>

<p>
The construction of <strong>solvable polynomial objects</strong>
follows directly that of polynomial objects.
The type is created by binding the type parameter 
<code>C extends RingElem&lt;C&gt;</code> to the desired coefficient type, 
e.g. <code>BigRational</code>. So we have the type
<code>GenSolvablePolynomial&lt;BigRational&gt;</code>.
Solvable polynomial objects are then created via the respective 
solvable polynomial factory of type 
<code>GenSolvablePolynomialRing&lt;BigRational&gt;</code>, 
which is created by binding the generic coefficient type of the 
generic polynomial factory to the desired coefficient type, 
e.g. <code>BigRational</code>.
A <strong>solvable polynomial factory object</strong> is created from a 
coefficient factory object, the number of variables in the 
polynomial ring and a table containing the defining non-commutative relations
as usual with the <code>new</code> operator via one of its constructors.
Given an object <code>coFac</code> of type <code>BigRational</code>
as before, a polynomial factory object <code>spfac</code> 
of the above described type could be created by 
<code>new GenSolvablePolynomialRing&lt;BigRational&gt;(coFac,5)</code>.
I.e. we specified a polynomial ring with 5 variables over 
the rational numbers with no commutator relations.
A solvable polynomial object <code>p</code> of the above described type 
can then be created by any method defined in <code>RingFactory</code>, 
e.g. by <code>spfac.getONE()</code>, 
<code>spfac.fromInteger(1)</code>, <code>spfac.random(3)</code>
or <code>spfac.parse("(1)")</code>.
Some care is needed to create <code>RelationTable</code> objects 
since its constructor requires the solvable polynomial ring which 
is under construction as parameter. It is most convenient to first
create a <code>GenSolvablePolynomialRing</code> with an 
empty relation table and then to add the defining relations.
</p>


<h2>5. Ring element and factory functionality</h2>

<p>
The following sections and the next figure gives an overview 
of the functionality of the main interfaces and polynomial classes.
</p>

<p>
The <code>RingElem</code> interface has a generic type parameter 
<code>C</code> which is constrained to a type with the same functionality
<code>C extends RingElem&lt;C&gt;</code>.
It defines the usual methods required for ring arithmetic such as
<code>C sum(C S); C subtract(C S); C negate(); C abs();
      C multiply(C S); C divide(C S); C remainder(C S); C inverse();
</code>
Although the actual ring may not have inverses for every element
or some division algorithm we have included these methods in the definition.
In a case where there is no such function, the implementation may 
deliberately throw a <code>RuntimeException</code> or choose some 
other meaningful element to return.
The method <code>isUnit()</code> can be used to check if an element 
is invertible.
</p>
<p>
Besides the arithmetic method there are following testing methods
<code>boolean isZERO(); boolean isONE(); boolean isUnit();
    int signum();
    boolean equals(Object b); int hashCode(); int compareTo(C b); 
</code>
The first three test if the element is 0, 1 or a unit in the respective ring.
The <code>signum()</code> method defines the sign of the element (in case 
of an ordered ring).
<code>equals()</code>, <code>hashCode()</code> and <code>compareTo()</code> 
are required to keep Javas object machinery working in our sense. 
They are used when an element is put into a Java collection class, 
e.g. <code>Set</code>, <code>Map</code> or <code>SortedMap</code>.
The last method <code>C clone()</code> can be used to obtain a copy of the
actual element. As creational method one should better use the 
method <code>C copy(C a)</code> from the ring factory, but in Java 
it is more convenient to use the <code>clone()</code> method.
</p>

<p>
As mentioned before, the creational aspects of rings are separated 
into a ring factory. A ring factory is intended to store all context
information known or required for a specific ring. 
Every ring element should also know its ring factory, so all
constructors of ring element implementations require a parameter 
for the corresponding ring factory. Unfortunately constructors 
and their signature can not be specified in a Java interface.
The <code>RingFactory</code> interface also has a generic type parameter 
<code>C</code> which is constrained to a type with the ring element 
functionality <code>C extends RingElem&lt;C&gt;</code>.
The defined methods are 
<code>C getZERO(); C getONE();
      C fromInteger(long a); C fromInteger(java.math.BigInteger a);
      C random(int n); C copy(C c);
      C parse(String s); C parse(Reader r);
</code>
The first two create 0 and 1 of the ring.
The second two are used to embed a natural number into the ring 
and create the corresponding ring element.
The <code>copy()</code> method was intended as the main means to 
obtain a copy of a ring element, but it is now no more used in our 
implmentation. Instead the <code>clone()</code> method is used from 
the ring element interface.
The <code>random(int n)</code> method creates a random element of the 
respective ring. The parameter <code>n</code> specifies an appropriate 
maximal size for the created element. In case of coefficients it
usually means the maximal bit-length of the element, in case of 
polynomials it influences the coefficient size and the degrees. 
For polynomials there are <code>random()</code> methods with more 
parameters.
The two methods 
<code>C parse(String s)</code> and <code>C parse(Reader r)</code> 
create a ring element from some external string representation.
For coefficients this is mostly implemented directly and for 
polynomials the class <code>GenPolynomialTokenizer</code> is 
employed internally.
In the current implementation the external representation of 
coefficients may never contain white space and must always start 
with a digit.
In the future the ring factory will be enhanced by methods that
test if the ring is commutative, associative or has some 
other important property or the value of a property, 
e.g. is an euclidean ring, is a field, an integal domain, 
a uniqe factorization domain, its characteristic or if it is noetherian. 
</p>

<p class="center" >
<a href="images/overview-methods.png" 
   target="diagram"
   ><img src="images/overview-methods.png" alt="JAS type functionality" /></a>
<br />
UML diagram of JAS type functionality
</p>


<h2>6. Polynomial and polynomial factory functionality</h2>

<p>
We continue the discussion of the above figure 
with the generic polynomial and factory classes.
</p>

<p>
The <code>GenPolynomial</code> class has a generic type parameter 
<code>C</code> which is constrained to a type with the functionality
of ring elements <code>C extends RingElem&lt;C&gt;</code>.
Further the class implements a <code>RingElem</code> over itself
<code>RingElem&lt;GenPolynomial&lt;C&gt;&gt;</code> 
so that it can be used for the coefficients of an other polynomial ring.
The functionality of the ring element methods has already been explained 
in the previous section. 
There are two public and one protected constructors, each requires
at least a ring factory parameter <code>GenPolynomialRing&lt;C&gt; r</code>.
The first creates a zero polynomial
<code>GenPolynomial(. r)</code>,
the second creates a polynomial of one monomial with given coefficient 
and exponent tuple
<code>GenPolynomial(. r, C c, ExpVector e)</code>, 
the third creates a polynomial from the internal sorted map of an 
other polynomial
<code>GenPolynomial(. r, SortedMap&lt;ExpVector,C&gt; v)</code>.
Further there are methods to access parts of the polynomial 
like leading term, leading coefficient 
(still called leading base coefficient from the Aldes/SAC-2 tradition)
and leading monomial.
The <code>toString()</code> method creates as usual a string representation 
of the polynomials consisting of exponent tuples and coefficients. 
One variant of it takes an array of variable names and creates a string
consisting of coefficients and products of powers of variables.
The method <code>extend()</code> is used to embed the polynomial into the 
'bigger' polynomial ring specified in the first parameter. 
The embeded polynomial can also be multiplied by a power of a variable.
The <code>contract()</code> method returns a map of exponents and 
coefficients. The coefficients are polynomials belonging to the 
'smaller' polynomial ring specified in the first parameter. 
If the polynomial actually belongs to the smaller polynomial ring 
the map will contain only one pair, mapping the zero exponent vector
to the polynomial with variables removed.
A last group of methods computes (extended) greatest common divisors.
They work correct for univariate polynomials over a field but not 
for arbitrary multivatiate polynomials. These methods will be moved
to a new separate class in the future.
</p>

<p>
The <code>GenPolynomialRing</code> class has a generic type parameter 
<code>C</code> which is constrained to a type with the functionality
of ring elements <code>C extends RingElem&lt;C&gt;</code>.
Further the class implements a <code>RingFactory</code> over 
<code>GenPolynomial&lt;C&gt;</code> so that it can be used as
coefficient factory of a different polynomial ring.
The constructors require at least a factory for the coefficents as
first parameter of type <code>RingFactory&lt;C&gt;</code>
and the number of variables in the second parameter.
A third parameter can optionally specify a <code>TermOrder</code> 
and a fourth parameter can specify the names for the variables
of the polynomial ring.
Besides the methods required by the <code>RingFactory</code>
interface there are additional <code>random()</code> methods
which provide more control over the creation of random polynomials. 
They have the following parameters: 
the bitsize of random coefficients to be used in the 
<code>random()</code> method of the coefficient factory,
the number of terms (i.e. the length of the polynomial), 
the maximal degree in each variable
and the density of nozero exponents, i.e. the ratio of nonzero to 
zero exponents.
The <code>toString()</code> method creates a string representation 
of the polynomial ring consisting of the coefficient factory string 
representation, the tuple of variable names and the string representation 
of the term order. 
The <code>extend()</code> and <code>contract()</code> methods
create 'bigger' respectively 'smaller' polynomial rings. 
Both methods take a parameter of how many variables are to be added 
or removed form the actual polynomial ring.
<code>extend()</code> will setup an elimination term order consisting 
of two times the actual term order when ever possible.
</p>


<h2>7. Solvable polynomial and solvable polynomial factory functionality</h2>

<p>
We continue the discussion of the above figure 
with the generic solvable polynomial and factory classes.
</p>

<p>
The <code>GenSolvablePolynomial</code> class has a generic type parameter 
<code>C</code> which is constrained to a type with the functionality
of ring elements <code>C extends RingElem&lt;C&gt;</code>.
The class extends the <code>GenPolynomial</code> class. It inherits 
all additive functionality and overwrites the multiplicative 
functionality with a new non-commutative multiplication method.
Unfortunately it <em>cannot</em> implement a <code>RingElem</code> 
over itself <code>RingElem&lt;GenSolvablePolynomial&lt;C&gt;&gt;</code> 
but can only inherit the implementation of 
<code>RingElem&lt;GenPolynomial&lt;C&gt;&gt;</code> from its super class.
By this limitation a solvable polynomial can still be used as 
coefficent in another polynomial, but only with the type of its super 
class. The limitation comes form the erasure of template parameters in 
<code>RingElem&lt;...&gt;</code> to <code>RingElem</code> for the 
code generated. I.e. the generic interfaces become the same after
type erasure and it is not allowed to implement the same interface twice.
There are two public and one protected constructors as in the super class.
Each requires at least a ring factory parameter 
<code>GenSolvablePolynomialRing&lt;C&gt; r</code> 
which is stored in a variable of this type shadowing the variable 
with the same name of the super factory type. The rest of the 
initialization work is delegated to the super class constructor.
</p>

<p>
The <code>GenSolvablePolynomialRing</code> class has a generic type parameter 
<code>C</code> which is constrained to a type with the functionality
of ring elements <code>C extends RingElem&lt;C&gt;</code>.
The class extends the <code>GenPolynomialRing</code> class. 
It overwrites most methods to implement the new non-commutative 
methods.
Also this class cannot implement a <code>RingFactory</code> over 
<code>GenSolvablePolynomial&lt;C&gt;</code>. It only implements 
<code>RingFactory</code> over <code>GenPolynomial&lt;C&gt;</code>
by inheritance by the same reason of type erasure as above.
But it can be used as coefficient factory with the type of its super class
for a different polynomial ring.
One part of the constructors just restate the super class constructors
with the actual solvable type. A solvable polynomial ring however 
must know how to perform the non-commutative multiplication. 
To this end a data structure with the respective commutator relations 
is required. It is implemented in the <code>RelationTable</code> class.
The other part of the constructors additionaly takes a parameter of type
<code>RelationTable</code> to set the initial commutator relation table.
Some care is needed to create relation tables and solvable polynomial
factories since the relation table requires a solvable polynomial
factory as parameter in the constructor. So it is most advisable to 
create a solvable polynomial factory object with empty relation table
and to fill it with commutator relations after the constructor is 
completed but before the factory will be used.
There is also a new method <code>isAssociative()</code> which tries
to check if the commutator relations indeed define an associative 
algebra. This method should be extracted to the <code>RingFactory</code>
interface together with a method <code>isCommutative()</code>, 
since both are of general importance and not always fulfilled 
in our rings. E.g. <code>BigQuaternion</code> is not commutative 
and so is a polynomial ring over these coefficents is not commutative.
The same applies to associativity and the (not jet existing) class
<code>BigOctonion</code>.
</p>

<p>
This concludes the discussion of the main interfaces and classes 
of the Java algebra system.
</p>


<!--
<code></code> 
<p>
</p>
<p>
</p>
<pre>
</pre>
-->

<p><!--a href="README" target="readme" >README</a-->
</p>

    <hr />
<address><a href="mailto:kredel at rz.uni-mannheim.de">Heinz Kredel</a></address>
<p>
<!-- Created: Sat Mar 11 10:51:36 CET 2006 -->
<!-- hhmts start -->
Last modified: Mon Apr 29 20:39:43 CEST 2013
<!-- hhmts end -->
</p>
<!--p align="right" >
$Id: design.html 4401 2013-04-29 18:41:28Z kredel $
</p-->
  </body>
</html>