File: guide.html

package info (click to toggle)
jas 2.7.200-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 15,732 kB
  • sloc: java: 164,370; python: 14,882; ruby: 14,509; xml: 583; makefile: 545; sh: 349
file content (899 lines) | stat: -rw-r--r-- 32,864 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <link rel="stylesheet" type="text/css" href="html.css" />
    <title>JAS project users guide</title>
  </head>
  <body class="main">
    <h1>Interactive scripting guide</h1>

<p>
This document contains first information on how-to use the interactive
scripting of the JAS project.  It can be used via the Java Python
interpreter <code>jython</code>, or the Java Ruby interpreter
<code>jruby</code> or the jruby Android App <code>Ruboto-IRB</code>.
<br />
The usage of JAS as an ordinary Java library, adding
<code>jas.jar</code> to the classpath and creating and using objects
from JAS classes, is introduced in the <a href="design.html">API
guide</a>.
</p>

<p>
JAS can be started with the script "<code>jas</code>" in the JAS home
directory. By default the JRuby interactive shell ist used. For the
Jython shell use "<code>jas -py</code>". When started from a desktop,
like <a href="http://www.mathlibre.org" target="new">MathLibre</a>,
the shells will look as in the following picture. The upper right
terminal shows a Jython shell and the lower left terminal shows a JRuby
shell.
</p>

<p align="center">
<img src="../images/mathlibre-jas-py-rb_deb.png" width="90%" 
     alt="JAS in MathLibre" />
<br />&nbsp;
<br />
<b>JAS jython and jruby interface in MathLibre</b>
</p>


<h3>Getting started</h3>

<p><a name="express"></a>
As first example we will discus how to compute a Groebner base with
<code>jruby</code>. The jruby script will be placed into a file, e.g.
<a href="../examples/getstart-gb.rb"><code>getstart-gb.rb</code></a>. 
This script file is executed by calling
</p>
<pre>
  jruby getstart-gb.rb
</pre>
<p>
If you start <code>jruby</code> (or <code>jas -rb</code>) without a
file name, then an interactive shell is opened and you can type
commands and expressions as desired.
The script file first imports the desired mathematical classes from
the <code>jas.rb</code> script which does all interfacing to the Java
library.  For the Rdoc of it see <a href="jruby/index.html"
target="jruby">here</a>.
</p>
<pre>
  require "examples/jas"
</pre>
<p>
In our case we need <code>PolyRing</code> to define an appropriate polynomial ring
and later <code>Ideal</code> to define sets of polynomials and have methods to 
compute Groebner bases. 
<code>PolyRing</code> takes arguments for required definitions 
of the polynomial ring: the type of the coefficient ring, the names of 
the used variables and the desired term order.
</p>
<pre>
  r = PolyRing.new( QQ(), "B,S,T,Z,P,W", PolyRing.lex)
</pre>
<p>
The ring definition is stored in the variable <code>r</code> for later use.
The string <code>"QQ()"</code> defines the coefficient ring 
to be the rational numbers,
the polynomial ring consists of the variables <code>B, S, T, Z, P, W</code>
and the term order <code>PolyRing.lex</code> means a lexicographic term order.
For some historical reason the term order orders the variables as 
<code>B &lt; S &lt; T &lt; Z &lt; P &lt; W</code> and not the other way. 
I.e. the highest or largest variable is always on the right of the list of
variables not on the left as in some other algebra systems.
With 
</p>
<pre>
  puts "PolyRing: " + r.to_s
</pre>
<p>
you can print out the ring definition. 
<code>r.to_s</code> is the usual Ruby way of producing string representations
of objects, which in our case calls the respective Java method 
<code>toScript()</code> of the JAS object. It produces
</p>
<pre>
  PolyRing: PolyRing.new(QQ(),"B,S,T,Z,P,W",PolyRing.lex)
</pre>
<p>
i.e. the same expression as defined above. In general the string from
<code>r.to_s</code> of an JAS object can be used via cut-and-past as
new input.
Next we need to enter the generating polynomials for the ideal. 
We do this in three steps, 
first define the Ruby variables for the polynomial ring,
next define the polynomials
and then the creation of the ideal using the ring definition from before 
and the polynomial list.
</p>
<pre>
  one,B,S,T,Z,P,W = r.gens()
</pre>
Small letter variables for polynomials are defined automatically but
because of Ruby handling capital letter variables as constant they
must be defined by hand. The method <code>r.gens()</code> returns a list 
of all generators (variables and values) of the polynomial ring.
<pre>
ff = [
 45 * P + 35 * S - 165 * B - 36, 
 35 * P + 40 * Z + 25 * T - 27 * S, 
 15 * W + 25 * S * P + 30 * Z - 18 * T - 165 * B**2, 
 - 9 * W + 15 * T * P + 20 * S * Z, 
 P * W + 2 * T * Z - 11 * B**3, 
 99 * W - 11 * B * S + 3 * B**2,
 B**2 + 33/50 * B + 2673/10000
];
</pre>
<p>
The polynomial list can be generated by any means Ruby allows for 
polynomial expressions. 
In our example we use Ruby brackets <code>[ ... ]</code> for the creation of the list.
The polynomials in the list are delimited by commas, and may be enclosed in parentheses.
The syntax for polynomials is the Ruby expression syntax including
literals from the coefficient ring <code>QQ()</code>, variables and
operators <code>+, -, *, **</code> (for summation, subtraction, multiplication, 
and exponentiation).
The ideal is then defined with
</p>
<pre>
  f = r.ideal( "", ff )
</pre>
<p>
It is contained the the polynomial ring <code>r</code> by construction and
consists of the polynomials from the list <code>ff</code>, the first
parameter is the empty string.  Ideals can be printed with
</p>
<pre>
  puts "Ideal: " + f.to_s
</pre>
<p>
In this example it produces the following output.
</p>
<pre>
Ideal: SimIdeal.new(PolyRing.new(QQ(),"B,S,T,Z,P,W",PolyRing.lex),
       "",[( B**2 + 33/50 * B + 2673/10000 ), 
           ( 45 * P + 35 * S - 165 * B - 36 ), 
           ( 35 * P + 40 * Z + 25 * T - 27 * S ), 
           ( 15 * W + 25 * S * P + 30 * Z - 18 * T - 165 * B**2 ), 
           ( ( -9 ) * W + 15 * T * P + 20 * S * Z ), 
           ( 99 * W - 11 * B * S + 3 * B**2 ), 
           ( P * W + 2 * T * Z - 11 * B**3 )])
</pre>
<p>
The polynomial terms are now sorted with respect to the lexicographical 
term order. The highest term is first in a polynomial.
Also the polynomials are sorted with respect to the term order, but
with smallest polynomial first in the list.
Finaly we can go to the computation of the Groebner basis of this ideal.
</p>
<pre>
  g = f.GB()
</pre>
<p>
The ideal <code>f</code> has a method <code>GB()</code> which 
computes the Groebner base. The computed Groebner base is stored
in the variable <code>g</code> which is also an ideal.
It can be printed in the same was as the ideal <code>f</code>
</p>
<pre>
  puts "Groebner base: " + g.to_s
</pre>
<p>
The output first shows the output from calling the <code>GB()</code> method
and the the ideal basis.
</p>
<pre>
sequential(field) GB executed in 37 ms

Groebner base: SimIdeal.new(PolyRing.new(QQ(),"B,S,T,Z,P,W",PolyRing.lex),
               "",[( B**2 + 33/50 * B + 2673/10000 ), 
                   ( S - 5/2 * B - 9/200 ), 
                   ( T - 37/15 * B + 27/250 ), 
                   ( Z + 49/36 * B + 1143/2000 ), 
                   ( P - 31/18 * B - 153/200 ), 
                   ( W + 19/120 * B + 1323/20000 )])
</pre>
<p>The Groebner base was computed with the sequential algorithm or
polynomial rings over fields in 37 ms and consists of six
polynomials. The polynomials are now monic, i.e. the leading
coefficient is 1 and omitted during print out.  This concludes the
first getting started section.
</p>


<h3>Overview of Ruby and Python classes and methods in jas.rb and jas.py</h3>

<p>
The jruby and the jython interface to the JAS library constain the
following classes. The class and method names are almost identical,
except where name clashes with scripting language occur,
e.g. <code>Ideal</code> in jython, but <code>SimIdeal</code> in jruby.
The class constructors in Ruby are used with the <code>.new()</code>
method and in Python the class name is use like a function name. For
example the construction of a polynomial ring is done in Ruby by
<code>PolyRing.new(...)</code> and in Python by
<code>PolyRing(...)</code>.
For the Rdoc of them see <a href="jruby/index.html" target="jruby">here</a> and
for the Epydoc of them see <a href="jython/index.html" target="jython">here</a>.
</p>
<ul>
<li><p><code>PolyRing</code>, <code>Ideal</code>/<code>SimIdeal</code> 
    and <code>ParamIdeal</code> <br />
    define polynomial rings, ideals and ideals over rings with coefficient parameters. 
    <br />
    <code>Ideal</code> has methods for sequential, parallel and distributed 
    Groebner bases computation, for example 
    <code>GB()</code>, <code>isGB()</code>,
    <code>parGB()</code>,  <code>distGB()</code>,  
    <code>NF()</code> and  <code>intersect()</code>.
    <br />
    <code>ParamIdeal</code> has methods for comprehensive  
    Groebner bases computation, for example
    <code>CGB()</code>,  <code>CGBsystem()</code>,  <code>regularGB()</code>,  
    </p>
</li>
<li><p><code>SolvPolyRing</code> and <code>SolvableIdeal</code>/<code>SolvIdeal</code> <br />
    define solvable polynomial rings and left, right and two-sided ideals.<br />
    <code>SolvableIdeal</code> has methods for left, right and two-sided
    Groebner bases computation, e.g.
    <code>leftGB()</code>,  <code>rightGB()</code>,  <code>twosidedGB()</code>,  
    <code>intersect()</code>.
    </p>
</li>
<li><p><code>Module</code> and <code>SubModule</code> <br />
    define modules over polynomial rings and sub modules. <br />
    <code>Module</code> has a method for sequential Groebner bases computation, 
    e.g. <code>GB()</code>.  
    </p>
</li>
<li><p><code>SolvableModule</code> and <code>SolvableSubModule</code> <br />
    define modules over solvable polynomial rings and sub modules. <br />
    <code>SolvableModule</code> has methods for left, right and two-sided
    Groebner bases computation, e.g.
    <code>leftGB()</code>, <code>rightGB()</code>, <code>twosidedGB()</code>.
    </p>
</li>
</ul>

<p>
Ruby has support for rational numbers, so a literal, like
<code>2/3</code>, is recognized as rational number 2/3. Python has no
support for rational number literals and <code>2/3</code> is
recognized as interger division, resulting in the integer
<code>0</code> (zero). To allow rational numbers in JAS, the Python
tuple or list notation must be used to express rational numbers, so 
<code>(2,3)</code> is recognized as rational number 2/3.
</p>

<p>
For example in the construction of Legendre polynomials a 
rational number <code>r = 1/n</code> appears.
As tuple literal it is written <code>(1,n)</code> and 
as list literal it can be written as <code>[1,n]</code>.
</p>
<pre>
  p = (2*n-1) * x * P[n-1] - (n-1) * P[n-2];
  r = (1,n); # no rational numbers in Python, use tuple notation
  p = r * p; 
</pre>
<p>
In the same way complex rational numbers can be written as nested
tuples.  For example <code>1/n + 1/2 i</code> can be written as
<code>((1,n),(1,2))</code>. If the second list element is omited it is
asumed to be one as rational number and zero as complex number. To
avoid ambiguities use a trailing comma, as in <code>((1,2),)</code>.
<!--
In this case it can however not be written as tuple, 
since one nesting level would be removed as expression parenthesis.
If the tuples or lists contain more than 2 elements, the rest is 
silently ignored.
For example <code>1/n</code> as complex number can be written as
<code>[(1,n)]</code> (but not as <code>((1,n))</code>). 
Different nesting levels are allowed, i.e.
<code>((1,n),2)</code> or <code>(0,(1,n))</code> are legal.
</p>
<p>In case the types (nesting levels) of operands do not match, 
for example when adding a rational to a complex number 
(low level) class cast errors will be thrown.
For example in <code>(1,n) + (0,(1,n))</code> the exception 
<code>edu.jas.arith.BigComplex cannot be cast to edu.jas.arith.BigRational</code> 
will be thrown.
</p>
<p>Further examples can be found in the jython files
<a href="../examples/polynomial.py" target="jython"><code>polynomial.py</code></a>,
<a href="../examples/legendre.py" target="jython"><code>legendre.py</code></a>,
<a href="../examples/hermite.py" target="jython"><code>hermite.py</code></a> or
<a href="../examples/chebyshev.py" target="jython"><code>chebyshev.py</code></a>.
-->
</p>

<hr />

<h3>Overview of some mathematical capabilities of JAS</h3>

<p>
In this section we summarize some mathematical constructions which are
possible with JAS: real root computation, power series and
non-commutative polynomial rings.
</p>


<h4>Real roots of zero dimensional ideals</h4>

<p>Besides the computation of Gr&ouml;bner bases JAS is able to use them
to solve various other problems. In this sub-section we present the
computation of real roots of systems of (algebraic) equations. When
the system of equations has only finitely many real roots, such
systems define so called zero dimensional ideals, they can be computed
(using jython) as follows. 
</p>
<pre>
  r = PolyRing(QQ(),"x,y,z",PolyRing.lex);
  print "Ring: " + str(r);
  print;

  [one,x,y,z] = r.gens(); # is also automatic

  f1 = (x**2 - 5)*(x**2 - 3)**2;
  f2 = y**2 - 3;
  f3 = z**3 - x * y;

  F = r.ideal( list=[f1,f2,f3] );

  R = F.realRoots();
  F.realRootsPrint()
</pre>
<p>
In the above example we compute the real roots of the equations
defined by the polynomials <code>f1, f2, f3</code>. First we define
the polynomial ring and then construct the ideal <code>F</code> from
the given polynomials. The method <code>F.realRoots()</code> computes
the real roots and method <code>F.realRootsPrint()</code> prints a
decimal approximation of tuples of real roots. The output of the last
method call looks as follows.
</p>
<pre>
[-1.7320508076809346675872802734375, -1.7320508076809346675872802734375, 1.4422495705075562000274658203125]
[1.7320508076809346675872802734375, 1.7320508076809346675872802734375, 1.4422495705075562000274658203125]

[1.7320508076809346675872802734375, -1.7320508076809346675872802734375, -1.4422495705075562000274658203125]
[-1.7320508076809346675872802734375, 1.7320508076809346675872802734375, -1.4422495705075562000274658203125]

[0.50401716955821029841899871826171875, 2.236067977384664118289947509765625, -1.7320508076809346675872802734375, -1.5704178023152053356170654296875]
[-0.50401716955821029841899871826171875, -2.236067977384664118289947509765625, 1.7320508076809346675872802734375, -1.5704178023152053356170654296875]
[-3.96811878503649495542049407958984375, -2.236067977384664118289947509765625, -1.7320508076809346675872802734375, 1.5704178023152053356170654296875]
[3.96811878503649495542049407958984375, 2.236067977384664118289947509765625, 1.7320508076809346675872802734375, 1.5704178023152053356170654296875]
</pre>
<p>
The roots in the tuples <code>[-1.732..., -1.732..., 1.442...]</code> correspond to the roots in
the variables <code>[x, y, z]</code>.  The last four tuples have four
entries <code>[0.504..., 2.236..., -1.732..., -1.570...]</code>, where the first entry
stems from an internal field extension, which was needed to correctly
identify the roots of the ideal and are to be ignored. That is the
tuple <code>[2.236..., -1.732..., -1.570...]</code> without the first entry is
a real root of the ideal.  That is, the decimal approximation of the
real roots are the following 8 tuples.
</p>
<pre>
  [-1.73205..., -1.73205...,  1.44224...]
  [ 1.73205...,  1.73205...,  1.44224...]

  [ 1.73205..., -1.73205..., -1.44224...]
  [-1.73205...,  1.73205..., -1.44224...]

  [ 2.23606..., -1.73205..., -1.57041...]
  [-2.23606...,  1.73205..., -1.57041...]
  [-2.23606..., -1.73205...,  1.57041...]
  [ 2.23606...,  1.73205...,  1.57041...]
</pre>
<p>More details and further examples can be found in the jython file
<a href="../examples/0dim_real_roots.py" target="jython"><code>0dim_real_roots.py</code></a>.
</p>


<h4>Power series</h4>

<p>Univariate power series can be constructed via the
<code>SeriesRing</code> class and an multivariate power series with
the <code>MultiSeriesRing</code> class. There are short cut methods
<code>PS(coeff, name, truncate, function)</code> and 
<code>MPS(coeff, names, truncate, function)</code> to construct a 
power series with a given coefficient generator '<code>function</code>'.

In the following example (using jython) we create a new power series ring 
<code>pr</code> in the variable <code>y</code> over the rational numbers.
The creation of power series is done in the same way as 
polynomials are created. There are additional methods like 
<code>r.exp()</code> or <code>r.sin()</code> to create the 
exponential power series or the power series for the sinus function.
</p>
<pre>
  pr = SeriesRing("Q(y)");
  print "pr:", pr;

  one = pr.one();
  r1 = pr.random(4);
  r2 = pr.random(4);

  print "one:", one;
  print "r1:", r1;
  print "r2:", r2;

  r4 = r1 * r2 + one;
  e = pr.exp();
  r5 = r1 * r2 + e;

  print "e:", e;
  print "r4:", r4;
  print "r5:", r5;
</pre>
<p>Once power series are created, for example 
<code>r1, r2, e</code> above, it is possible to use 
arithmetic operators to built expressions of power series like
'<code>r1 * r2 + one</code>' or '<code>r1 * r2 + e</code>'.
</p>
<pre>
pr: PS(QQ(),"y",11)

one: 1
r1:  (13,5) - (14,5) * y**3 - y**4 + 14 * y**5 - (12,7) * y**6 - 4 * y**7 - (9,14) * y**8 + 3 * y**9 + (1,15) * y**10

r2:  - (9,16) * y + (5,6) * y**3 + (2,3) * y**5 + (5,6) * y**9 + (5,2) * y**10

e: 1 + y + (1,2) * y**2 + (1,6) * y**3 + (1,24) * y**4 + (1,120) * y**5 + (1,720) * y**6 + (1,5040) * y**7 + (1,40320) * y**8 
   + (1,362880) * y**9 + (1,3628800) * y**10

r4: 1 - (117,80) * y + (13,6) * y**3 + (63,40) * y**4 + (551,240) * y**5 - (245,24) * y**6 + (11,84) * y**7 + (241,20) * y**8 + (97,224) * y**9 + (173,16) * y**10

r5: 1 - (37,80) * y + (1,2) * y**2 + (7,3) * y**3 + (97,60) * y**4 + (553,240) * y**5 - (7349,720) * y**6 + (661,5040) * y**7 + (485857,40320) * y**8 
    + (157141,362880) * y**9 + (39236401,3628800) * y**10
</pre>
<p>
It is also possible to create power series by defining a generating function 
or by defining a fixed point with respect to a map between power series. 
</p>
<pre>
  def g(a):
      return a+a;
  ps1 = pr.create(g);

  class coeff( Coefficients ):
      def generate(self,i):
          ...
  ps6 = pr.create( clazz=coeff( pr.ring.coFac ) );

  class cosmap( PowerSeriesMap ):
      def map(self,ps):
          ...
  ps8 = pr.fixPoint( cosmap( pr.ring.coFac ) );
</pre>
<p>More details and further examples can be found in the jython file
<a href="../examples/powerseries.py" target="jython"><code>powerseries.py</code></a> and
<a href="../examples/powerseries_multi.py" target="jython"><code>powerseries_multi.py</code></a>
and their Ruby counter parts.
</p>


<h4>Solvable polynomial rings</h4>

<p>
Solvable polynomial rings are non commutative polynomial rings 
where the non commutativity is expressed by commutator relations.
Commutator relations are stored in a data structure called relation table.
In the definition of a solvable polynomial ring this relation table must be 
defined. E.g the definition for the ring of a solvable polynomial ring (in jruby) is
</p>
<pre>
  require "examples/jas"
  # WA_32 solvable polynomial example

  p = PolyRing.new(QQ(),"a,b,e1,e2,e3");
  relations = [e3, e1, e1*e3 - e1,
               e3, e2, e2*e3 - e2];

  puts "relations: = " + relations.join(", ") { |r| r.to_s };

relations: = e3, e1, ( e1 * e3 - e1 ), e3, e2, ( e2 * e3 - e2 )
</pre>
<p>
The relation table must be build from triples of (commutative) polynomials.
A triple <code>p1, p2, p3</code> is interpreted as non commutative 
multiplication relation <code>p1 .*. p2 = p3</code>. 
<code>p1</code> and <code>p2</code> must be a single term, single variable
polynomials. The term order must be choosen such that 
leadingTerm(<code>p1 p2</code>) equals leadingTerm(<code>p3</code>)
and <code>p1 &gt; p2</code> for each triple.
The polynomial <code>p3</code> is in commutative form, 
i.e. multiplication operators occuring in it are commutative.
Variables for which there are no commutator relations are assumed to 
commute with each other and with all other variables, 
e.g. the variables <code>a, b</code> in the example.
</p>
<pre>
  rp = SolvPolyRing.new(QQ(), "a,b,e1,e2,e3", PolyRing.lex, relations);
  puts "SolvPolyRing: " + rp.to_s;

  puts "gens = " + rp.gens().join(", ") { |r| r.to_s };
  one,a,b,e1,e2,e3 = rp.gens();

  f1 = e1 * e3**3 + e2**10 - a;
  f2 = e1**3 * e2**2 + e3;
  f3 = e3**3 + e3**2 - b;

  F = [ f1, f2, f3 ];
  puts "F = " + F.join(", ") { |r| r.to_s };

  I = rp.ideal( "", F );
  puts "SolvableIdeal: " + I.to_s;
</pre>
<p>
After the definition of the variables <code>e1, e2, e3</code> as non-commutative 
as elements of the ring <code>rp</code>, 
the expressions for the polynomials <code>f1, f2, f3</code> use non-cummutative multiplication 
with the <code>*</code> operator.
</p>

<p>A complete example is contained in the jRuby script 
<a href="../examples/solvablepolynomial.rb"><code>solvablepolynomial.rb</code></a>.
Running the script computes a left, right and twosided Groebner base
for the following ideal <code>I</code> generated by the polynomial list <code>F</code>.
</p>
<pre>
ring is associative
SolvPolyRing: SolvPolyRing.new(QQ(),"a,b,e1,e2,e3",PolyRing.lex,rel=[e3, e2, ( e2 * e3 - e2 ), e3, e1, ( e1 * e3 - e1 )])

gens = 1, a, b, e1, e2, e3
F = ( e1 * e3**3 + e2**10 - a ), ( e3 + e1**3 * e2**2 ), ( e3**3 + e3**2 - b )

SolvableIdeal: SolvIdeal.new(SolvPolyRing.new(QQ(),"a,b,e1,e2,e3",PolyRing.lex,
                      rel=[e3, e2,  ( e2 * e3 - e2 ), e3, e1,  ( e1 * e3 - e1 )]),
                  "",[( e3 + e1**3 * e2**2 ), ( e3**3 + e3**2 - b ), ( e1 * e3**3 + e2**10 - a )])
</pre>
<p>The left Groebner base is
</p>
<pre>
sequential(field|nocom) leftGB executed in 29 ms

seq left GB: SolvIdeal.new(SolvPolyRing.new(QQ(),"a,b,e1,e2,e3",PolyRing.lex,rel=[e3, e2,  ( e2 * e3 - e2 ), e3, e1,  ( e1 * e3 - e1 )]),
             "",[a, b, e1**3 * e2**2, e2**10, e3])
</pre>
<p>the twosided Groebner base is
</p>
<pre>
sequential(field|nocom) twosidedGB executed in 28 ms
seq twosided GB: SolvIdeal.new(SolvPolyRing.new(QQ(),"a,b,e1,e2,e3",PolyRing.lex,rel=[e3, e2,  ( e2 * e3 - e2 ), e3, e1,  ( e1 * e3 - e1 )]),
                 "",[a, b, e1, e2, e3])
</pre>
<p>and the right Groebner base is
</p>
<pre>
sequential(field|nocom) rightGB executed in 16 ms
seq right GB: SolvIdeal.new(SolvPolyRing.new(QQ(),"a,b,e1,e2,e3",PolyRing.lex,rel=[e3, e2,  ( e2 * e3 - e2 ), e3, e1,  ( e1 * e3 - e1 )]),
              "",[a, b, e1, e2**10, e3])
</pre>


<hr />

<h3>Using the internal polynomial parser</h3>

<p>
The internal polynomial parser has a simpler syntax than the Ruby or
Python expression syntax. For example the multiplication operator <code>*</code>
can be omitted and <code>^</code> can be used for exponentiation <code>**</code>.
Moreover, <code>2/3</code> will work for rational numbers also in Python.
</p>
<p>
An example using the internal polynomial parser will be discused in the following.
The jython script is be placed into a file, e.g.
<a href="../examples/getstart.py"><code>getstart.py</code></a>. 
This script file is executed by calling
</p>
<pre>
  jython getstart.py
</pre>
<p>
If you start <code>jython</code> (or <code>jas -py</code>) without a
file name, then an interactive shell is opened and you can type
commands and expressions as desired.
The script file first imports the desired mathematical classes from
the <code>jas.py</code> script which does all interfacing to the Java
library.  For the Epydoc of it see <a href="jython/index.html"
target="jython">here</a>.
</p>
<pre>
  from jas import Ring, Ideal
</pre>
<p>
In our case we need <code>Ring</code> to define an appropriate polynomial ring
and <code>Ideal</code> to define sets of polynomials and have methods to 
compute Groebner bases. 
<code>Ring</code> takes a string argument which contains required definitions 
of the polynomial ring: the type of the coefficient ring, the names of 
the used variables and the desired term order.
</p>
<pre>
  r = Ring( "Rat(B,S,T,Z,P,W) L" );
</pre>
<p>
The ring definition is stored in the variable <code>r</code> for later use.
The string <code>"Rat(B,S,T,Z,P,W) L"</code> defines the coefficient ring 
to be the rational numbers <code>Rat</code>,
the polynomial ring consists of the variables <code>B, S, T, Z, P, W</code>
and the term order <code>L</code> means a lexicographic term order.
For some historical reason the term order orders the variables as 
<code>B &lt; S &lt; T &lt; Z &lt; P &lt; W</code> and not the other way. 
I.e. the highest or largest variable is always on the right of the list of
variables not on the left as in some other algebra systems.
With 
</p>
<pre>
  print "Ring: " + str(r);
</pre>
<p>
you can print out the ring definition. 
<code>str(r)</code> is the usual Python way of producing string representations
of objects, which in our case calls the respective Java method 
<code>toString()</code> of the JAS ring object. It produces
</p>
<pre>
Ring: BigRational(B, S, T, Z, P, W) INVLEX
</pre>
<p>
i.e. the coefficients are from the jas class <code>BigRational</code>
and the term order is <code>INVLEX</code> 
(<code>INV</code> because the largest variable is on the right).
Next we need to enter the generating polynomials for the ideal. 
We do this in two steps, first define a Python string with the polynomials 
and then the creation of the ideal using the ring definition from before 
and the polynomial string.
</p>
<pre>
ps = """
( 
 ( 45 P + 35 S - 165 B - 36 ), 
 ( 35 P + 40 Z + 25 T - 27 S ), 
 ( 15 W + 25 S P + 30 Z - 18 T - 165 B**2 ), 
 ( - 9 W + 15 T P + 20 S Z ), 
 ( P W + 2 T Z - 11 B**3 ), 
 ( 99 W - 11 B S + 3 B**2 ),
 ( B**2 + 33/50 B + 2673/10000 )
) 
""";
</pre>
<p>
The polynomial string can be generated by any means Python allows for 
string manipulation. 
In our example we use Python multiline strings, which are delimited by 
triple quotes <code>""" ... """</code>.
The list of polynomials is delimited by parenthesis <code>( ... )</code>,
as well as every polynomial is delimited by parenthesis, e.g.
<code>( B**2 + 33/50 B + 2673/10000 )</code>.
The polynomials are separated by commas.
The syntax for polynomials is a sequence of monimals consisting 
of coefficients and terms (as products of powers of variables).
The terms can optionally be written with multiplication sign,  
i.e. <code>25 S P</code> can be written <code>25*S*P</code>. 
Variable names must be delimited by white space or some operator,
i.e. you can not write <code>25 SP</code> because <code>SP</code>
is not a listed variable name in the polynomial ring definition.
Coefficients may not contain white space, i.e. the <code>/</code>
separating the nominator from the denominator may not be surrounded 
by spaces, i.e. writing <code>33 / 50</code> is not allowed.
Powers of variables can be written with <code>**</code> or <code>^</code>,
i.e. the square of <code>B</code> is written as <code>B**2</code>
or <code>B^2</code>.
The ideal is the defined with
</p>
<pre>
  f = Ideal( r, ps );
</pre>
<p>
The ideal is contained the the polynomial ring <code>r</code>
and consists of the polynomials from the string <code>ps</code>.
Ideals can be printed with
</p>
<pre>
  print "Ideal: " + str(f);
</pre>
<p>
In this example it produces the following output.
</p>
<pre>
Ideal: BigRational(B, S, T, Z, P, W) INVLEX
(
( B^2 + 33/50 B + 2673/10000  ),
( 45 P + 35 S - 165 B - 36  ),
( 35 P + 40 Z + 25 T - 27 S ),
( 15 W + 25 S * P + 30 Z - 18 T - 165 B^2 ),
( -9 W + 15 T * P + 20 S * Z ),
( 99 W - 11 B * S + 3 B^2 ),
( P * W + 2 T * Z - 11 B^3 )
)
</pre>
<p>
The polynomial terms are now sorted with respect to the lexicographical 
term order. The highest term is first in a polynomial.
Also the polynomials are sorted with respect to the term order, but
with smallest polynomial first in the list.
Finaly we can go to the computation of the Groebner basis of this ideal.
</p>
<pre>
  g = f.GB();
</pre>
<p>
The ideal <code>f</code> has a method <code>GB()</code> which 
computes the Groebner base. The computed Groebner base is stored
in the variable <code>g</code> which is also an ideal.
It can be printed in the same way as the ideal <code>f</code>
</p>
<pre>
  print "Groebner base:", g;
</pre>
<p>
The output first shows the output from calling the <code>GB()</code> method
and the the ideal basis.
</p>
<pre>
sequential executed in 136 ms

Groebner base: BigRational(B, S, T, Z, P, W) INVLEX
(
( B^2 + 33/50 B + 2673/10000  ),
( S - 5/2 B - 9/200  ),
( T - 37/15 B + 27/250  ),
( Z + 49/36 B + 1143/2000  ),
( P - 31/18 B - 153/200  ),
( W + 19/120 B + 1323/20000  )
)
</pre>
<p>I.e. the Groebner base was computed in 135 ms and consists 
of six polynomials. The polynomials are now monic, 
i.e. the leading coefficient is 1 and omitted during print out.
This concludes the getting started section.
</p>


<h4>Solvable polynomial rings and the internal parser</h4>

<p>
Solvable polynomial rings are non commutative polynomial rings 
where the non commutativity is expressed by commutator relations.
Commutator relations are stored in a data structure called relation table.
In the definition of a solvable polynomial ring this relation table must be 
defined. E.g the definition for the ring of a solvable polynomial ring is
</p>
<pre>
Rat(a,b,e1,e2,e3) L
RelationTable
(
 ( e3 ), ( e1 ), ( e1 e3 - e1 ),
 ( e3 ), ( e2 ), ( e2 e3 - e2 )
)
</pre>
<p>
The relation table must be build from triples of (commutative) polynomials.
A triple <code>p1, p2, p3</code> is interpreted as non commutative 
multiplication relation <code>p1 .*. p2 = p3</code>. 
Currently <code>p1</code> and <code>p2</code> must be single term, single variable
polynomials. The term order must be choosen such that 
leadingTerm(<code>p1 p2</code>) equals leadingTerm(<code>p3</code>)
and <code>p1 &gt; p2</code> for each triple.
Polynomial <code>p3</code> must be in commutative form, 
i.e. multiplication operators occuring in it are commutative.
Variables for which there are no commutator relations are assumed to 
commute with each other and with all other variables, 
e.g. the variables <code>a, b</code> in the example.
Polynomials in the generating set of an ideal are also assumed to be 
in commutative form. If you need non-commutative multiplication 
in the polynomial expresions, please use the jython or jruby interface, 
as discussed above.
</p>

<p>A complete example is contained in the Python script 
<a href="../examples/solvable.py"><code>solvable.py</code></a>.
Running the script computes a left, right and twosided Groebner base
for the following ideal
</p>
<pre>
(
 ( e1 e3^3 + e2^10 - a ),
 ( e1^3 e2^2 + e3 ),
 ( e3^3 + e3^2 - b )
)
</pre>
<p>The left Groebner base is
</p>
<pre>
(
 ( a ), ( b ),
 ( e1^3 * e2^2 ), ( e2^10 ), ( e3 )
)
</pre>
<p>the twosided Groebner base is
</p>
<pre>
(
 ( a ), ( b ), ( e1 ), ( e2 ), ( e3 )
)
</pre>
<p>and the right Groebner base is
</p>
<pre>
(
 ( a ), ( b ), ( e1 ), ( e2^10 ), ( e3 )
)
</pre>

<p>A module example is in 
<a href="../examples/armbruster.py"><code>armbruster.py</code></a> 
and a solvable module example is in
<a href="../examples/solvablemodule.py"><code>solvablemodule.py</code></a>.
</p>


<hr />

<h3>Overview of JAS Android App</h3>

<p style="color: red">
The App has been developed for JAS version 2.5 on Android 5 and is
not working on current Android versions (since 2019).
</p>

<p>
The JAS application uses the Ruboto-IRB Android application. Ruboto
provides an jruby scripting interpreter together with an editor
application. The Ruboto App is enhanced with the JAS jruby interface
and the JAS Java classes.
</p>

<p>For the Android app the main screen with the "trinks.rb" example and its output looks as follows.
</p>
<p><a href="../images/device-2012-11-18-jas-trinks.png" ><img src="../images/device-2012-11-18-jas-trinks-thumb.png" /></a> &nbsp;
   <a href="../images/device-2012-11-18-jas-trinks-out.png" ><img src="../images/device-2012-11-18-jas-trinks-out-thumb.png" /></a> &nbsp;
   <a href="../images/device-2012-11-18-jas-trinks-out-big.png" ><img src="../images/device-2012-11-18-jas-trinks-out-big-thumb.png" /></a>
</p>

<p>
The JAS jruby interface on Android has the
same functionality as the general JAS jruby scripting interface (only
some functionality of the power series is not avaliable).
</p>


<!--
<h3>Some internals of jas.py</h3>
--> 


<!--
<li><p><code></code><code></code>
    </p>
</li>

<pre>
</pre>

<p>
</p>
<pre>
</pre>
-->

<hr />
<address><a href="mailto:kredel@at@rz.uni-mannheim.de">Heinz Kredel</a></address>
<p>
<!-- Created: Sun Feb 19 15:49:14 CET 2006 -->
<!-- hhmts start -->
Last modified: Mon Feb 28 10:39:28 CET 2022
<!-- hhmts end -->
</p>
<!--p align="right" >
$Id$
</p-->
  </body>
</html>