File: packages.html

package info (click to toggle)
jas 2.7.200-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 15,732 kB
  • sloc: java: 164,370; python: 14,882; ruby: 14,509; xml: 583; makefile: 545; sh: 349
file content (189 lines) | stat: -rw-r--r-- 7,666 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <link rel="stylesheet" type="text/css" href="html.css" />
    <title>JAS Packages</title>
  </head>
  <body class="main">
    <h2>Java Algebra System (JAS) Packages</h2>

<p>
The JAS software library contains at the moment of the following <a
name="package">packages</a>. The relations and dependencies between
the packages are shown in figure 1.
</p>

<dl>
<dt>edu.jas.structure:</dt>
<dd>
  contains interfaces for the most general algebraic structures like
  <code>RingElem</code> and <code>RingFactory</code>.
</dd>
<dt>edu.jas.arith:</dt>
<dd>
  contains classes for arithmetic in the basic coefficient rings like
  <code>BigRational</code>, <code>BigInteger</code>,
  <code>ModInteger</code>, <code>BigDecimal</code> or
  <code>BigComplex</code>.
</dd>
<dt>edu.jas.poly:</dt>
<dd>
  contains classes for commutative polynomial, solvable polynomial and
  free non-commutative polynomial arithmetic like
  <code>GenPolynomial</code>, <code>GenSolvablePolynomial</code>,
  <code>GenWordPolynomial</code> and others such as
  <code>AlgebraicNumber</code> and a polynomial parser
  <code>GenPolynomialTokenizer</code>.
</dd>
<dt>edu.jas.vector:</dt>
<dd>
  contains classes for vectors and lists of polynomials and solvable
  polynomials like <code>GenVector</code> or <code>GenMatrix</code>.
</dd>
<dt>edu.jas.gb:</dt>
<dd>
  contains classes for polynomial and solvable polynomial reduction,
  Gr&ouml;bner bases over fields and ideal arithmetic as well as
  thread parallel and distributed versions of Buchbergers algorithm
  like <code>ReductionSeq</code>, <code>GroebnerBaseAbstract</code>,
  <code>GroebnerBaseSeq</code>, <code>GroebnerBaseParallel</code> and
  <code>GroebnerBaseDistributedHybridEC</code>.  There are also Gr&ouml;bner
  bases in polynomial rings over principal ideal domains and Euclidean
  domains, so called D- and E-Gr&ouml;bner bases,
  e.g. <code>EGroebnerBaseSeq</code>. New are Gr&ouml;bner bases in
  free non-commutative polynomial rings over (skew) fields,
  see <code>WordGroebnerBaseSeq</code>.
</dd>
<dt>edu.jas.gbmod:</dt>
<dd>
  contains classes for module Gr&ouml;bner bases and syzygies over
  polynomials and solvable polynomials like
  <code>ModGroebnerBase</code> or <code>SolvableSyzygy</code>.
</dd>
<dt>edu.jas.application:</dt>
<dd>
  contains classes with applications of Gr&ouml;bner bases such as ideal
  intersections and ideal quotients implemented in <code>Ideal</code>
  or <code>SolvableIdeal</code>. Comprehensive Gr&ouml;bner bases for
  polynomial rings over parameter rings are contained in class
  <code>ComprehensiveGroebnerBaseSeq</code>.  Latest additions are
  zero and arbitrary dimensional radical-, irreducible-, prime- and
  primary-decomposition implemented in class <code>Ideal</code>.
</dd>
<dt>edu.jas.ufd:</dt>
<dd>
  contains classes for unique factorization domains.  Like the
  interface <code>GreatestCommonDivisor</code>, the abstract class
  <code>GreatestCommonDivisorAbstract</code> and various
  implementations, e.g. polynomial remainder sequences and modular
  algorithms.  The package now contains factorization algorithms for
  univariate polynomials over several coefficient rings: modulo primes
  in class <code>FactorModular</code>, over integers in class
  <code>FactorInteger</code>, over rational numbers in class
  <code>FactorRational</code> and over algebraic numbers in class
  <code>FactorAlgebraic&lt;C&gt;</code>.
</dd>
<dt>edu.jas.gbufd:</dt>
<dd>
  contains classes for Gr&ouml;bner base computation using classes
  from the <em>edu.jas.ufd</em> package for polynomial
  coefficients. The main classes deal with pseudo reduction
  <code>PseudoReduction</code>, <code>PseudoReductionSeq</code> and
  greatest common divisors computation on coefficients
  <code>GroebnerBasePseudoSeq</code>. Multiplicative sets of
  polynomials with several simplifications, e.g. maintaining co-prime
  factors or co-prime and squarefree factors, are contained in classes
  <code>MultiplicativeSet</code>, <code>MultiplicativeSetCoPrime</code> 
  or <code>MultiplicativeSetSquarefree</code>.  Also contained are
  Gr&ouml;bner bases for polynomial rings over regular rings (direct
  products of fields or integral domains) in
  <code>RGroebnerBaseSeq</code> and <code>RGroebnerBasePseudoSeq</code>.
</dd>
<dt>edu.jas.root:</dt>
<dd>
  contains classes for real root computations.  Like the
  interface <code>RealRoots</code>, the abstract class
  <code>RealRootsAbstract</code> and at the moment of a single 
  implementation based on Sturm sequences <code>RealRootsSturm</code>.
  The package further contains an implementation for real algebraic numbers 
  <code>RealAlgebraicNumber</code> with a corresponding factory
  <code>RealAlgebraicRing</code>.
  For complex root isolation there are <code>ComplexRoots</code> interface,
  <code>ComplexRootsAbstract</code> and <code>ComplexRootsSturm</code> classes.
  The implementation provides an exact infallible method which follows
  the numeric method of Wilf.  It uses Sturm sequences following the
  Routh-Hurwitz Method to count the number of complex roots within a
  rectangle in the complex plane.
  There is also an implementation for complex algebraic numbers 
  <code>ComplexAlgebraicNumber</code> with a corresponding factory
  <code>ComplexAlgebraicRing</code>.
</dd>
<dt>edu.jas.ufdroot:</dt>
<dd>
  contains classes for factorization in structures used in root
  computation, for example <code>FactorRealAlgebraic</code>.
</dd>
<dt>edu.jas.ps:</dt>
<dd>
  contains univariate and multivariate power series arithmetic
  in classes <code>UnivPowerSeries</code> and <code>MultiVarPowerSeries</code>.
  There is an initial implementation of Mora's tangent cone reduction algorithm 
  in class <code>ReductionSeq</code> and a standard bases computation in 
  <code>StandardBaseSeq</code> with method <code>STD()</code>.
</dd>
<dt>edu.jas.integrate:</dt>
<dd>
  contains methods for the elementary integration of univariate rational functions.
  The main class is <code>ElementaryIntegration</code> with method 
  <code>integrate()</code>. 
</dd>
<dt>edu.jas.util:</dt>
<dd>
  contains further utilities for parallel and distributed computations
  like <code>ThreadPool</code>, <code>DistThreadPool</code> or
  <code>DistHashTable</code>. Part of this package has become obsolete
  with JDK 1.5.
</dd>
<dt>edu.jas.fd:</dt>
<dd>
  contains classes for solvable polynomials rings as (non-unique)
  factorization domains. There are methods for polynomial pseudo
  remainder computation over Ore domains in class <code>FDUtil</code>.
  Further, methods for common divisors are included, but not yet
  finished.
  <!-- Methods provided with interface
  <code>GreatestCommonDivisor</code> are e.g. greatest common divisors
  <code>gcd()</code>, primitive part <code>primitivePart()</code>.-->
</dd>
</dl>


<p align="center">
<!--img src="../images/PackageOverview.png" width="50%" alt="Static package structure overview" /-->
<img src="../images/jas-pack-over.png" width="80%" 
     alt="Static package and component structure overview" />
<br />
<b>Figure 1:</b> Package and component structure overview
</p>



<hr />
<address><a name="contact" 
            href="mailto:kredel@at@rz.uni-mannheim.de">Heinz Kredel</a>
</address>

<p>
<!-- Created: Thu Jun  4 23:42:20 CEST 2005 -->
<!-- hhmts start -->
Last modified: Mon Mar 28 23:49:24 CEST 2016
<!-- hhmts end -->
</p>
<!--p align="right" >
$Id: $
</p-->

  </body>
</html>