1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
|
# $Id$
=begin rdoc
Enhance Ruby Integer class by rational number construction.
Replace / by quo from Numeric to get Rational number.
=end
if 1.class == Integer
#puts "1.class == Integer: redefine :/"
class Integer
remove_method :/ # integer division
alias / quo # rational construction
end
else
#puts "require mathn"
require "mathn"
end
=begin rdoc
jruby interface to JAS.
=end
module JAS
module_function
require "java"
#require "mathn"
java_import "java.lang.System"
java_import "java.io.StringReader"
java_import "java.util.ArrayList"
java_import "java.util.Collections"
#java_import "org.apache.logging.log4j.Logger";
=begin rdoc
Configure the log4j system and start logging.
BasicConfigurator from log4j version 1 is no more supported, please use log4j2 configuration.
=end
def startLog()
#puts "BasicConfigurator from log4j version 1 is no more supported, please use log4j2 configuration";
end
#startLog();
=begin rdoc
Mimic Python str() function.
=end
def str(s)
return s.to_s;
end
java_import "edu.jas.kern.ComputerThreads";
=begin rdoc
Terminate the running thread pools.
=end
def terminate()
ComputerThreads.terminate();
end
puts "Java Algebra System (JAS) version 2.7"
=begin rdoc
Turn off automatic parallel threads usage.
=end
def noThreads()
puts "nt = ", ComputerThreads.NO_THREADS;
ComputerThreads.setNoThreads(); #NO_THREADS = #0; #1; #true;
puts "\nnt = ", ComputerThreads.NO_THREADS;
puts
end
=begin rdoc
Inject variables for generators in given environment.
=end
def inject_gens(env)
env.class.instance_eval( "attr_accessor :generators;" )
if env.generators == nil
env.generators = {};
end
#puts "existing generators(#{env}): " + env.generators.keys().join(", ");
redef = []
for i in self.gens()
begin
ivs = nameFromValue(i);
if ivs == nil
next
end;
#puts "string2: #{ivs} = " + ivs.class.to_s;
#puts "string3: #{ivs} = " + (env.instance_eval( "#{ivs};" ));
if env.generators[ ivs ] != nil
#puts "redefining global variable #{ivs}";
redef << ivs;
end
env.generators[ ivs ] = i;
env.instance_eval( "def #{ivs}; @generators[ '#{ivs}' ]; end" )
#puts "def #{ivs}; @generators[ '#{ivs}' ]; end"
#puts "@generators[ '#{ivs}' ] = #{i}"
if self.class.auto_lowervar
first = ivs.slice(0,1);
if first.count('A-Z') > 0
first = first.downcase
ivl = first + ivs.slice(1,ivs.length);
puts "warning: '" + str(ivs) + "' additionaly defined as '" + str(ivl) + "' to avoid constant semantics"
if env.generators[ ivl ] != nil
#puts "redefining global variable #{ivl}";
redef << ivl;
end
env.generators[ ivl ] = i;
env.instance_eval( "def #{ivl}; @generators[ '#{ivs}' ]; end" )
end
end
rescue => e
#puts "error: #{ivs} = " + i.to_s + ", class = " + i.class.to_s;
puts "error: #{ivs} = " + i.to_s + ", e = " + e.to_s;
end
end
puts "globally(#{env}) defined variables: " + env.generators.keys().join(", ");
if redef.size > 0
puts "WARN: redefined variables: " + redef.join(", ");
end
end
=begin rdoc
Get a meaningful name from a value.
i ist the given value.
=end
def nameFromValue(i)
ivs = i.to_s
#puts "string1: #{ivs} = " + ivs.class.to_s;
ivs = ivs.gsub(" ","");
ivs = ivs.gsub("\n","");
ivs = ivs.gsub(",","");
ivs = ivs.gsub("(","");
ivs = ivs.gsub(")","");
ivs = ivs.gsub("+","");
#ivs = ivs.gsub("*","");
ivs = ivs.gsub("/","div");
#ivs = ivs.gsub("|","div");
ivs = ivs.gsub("{","");
ivs = ivs.gsub("}","");
ivs = ivs.gsub("[","");
ivs = ivs.gsub("]","");
i = ivs.index("BigO");
if i #and i > 0
ivs = ivs[0,i];
#puts "BigO index = #{i}";
end
if ivs == "1"
ivs = "one"
end
if ivs[0] == "1"[0] and not ivs.match(/\A[0-9].*/)
r = ivs[1,ivs.size-1].to_s;
ivs = "one"
if r != nil
ivs = ivs + r
end
end
#if ivs[0,2] == "0i1"[0,2] or ivs[0,2] == "0I1"[0,2]
if ivs == "0i1" or ivs == "0I1"
ivs = "i"
end
#puts "string: #{ivs} of " + i.to_s;
if ivs.include?("|") or ivs.match(/\A[0-9].*/)
#puts "string2: #{ivs} = " + ivs.class.to_s;
ivs = nil
end
return ivs
end
# set output to Ruby scripting
java_import "edu.jas.kern.Scripting";
Scripting.setLang(Scripting::Lang::Ruby);
java_import "edu.jas.util.ExecutableServer";
java_import "edu.jas.structure.Power";
java_import "edu.jas.arith.ArithUtil";
java_import "edu.jas.arith.BigInteger";
java_import "edu.jas.arith.BigRational";
java_import "edu.jas.arith.ModInteger";
java_import "edu.jas.arith.ModIntegerRing";
java_import "edu.jas.arith.ModLong";
java_import "edu.jas.arith.ModLongRing";
java_import "edu.jas.arith.ModInt";
java_import "edu.jas.arith.ModIntRing";
java_import "edu.jas.arith.BigDecimal";
java_import "edu.jas.arith.BigComplex";
java_import "edu.jas.arith.BigQuaternion";
java_import "edu.jas.arith.BigQuaternionRing";
java_import "edu.jas.arith.BigQuaternionInteger";
java_import "edu.jas.arith.BigOctonion";
java_import "edu.jas.arith.Product";
java_import "edu.jas.arith.ProductRing";
java_import "edu.jas.arith.PrimeList";
=begin rdoc
Create JAS BigInteger as ring element.
=end
def ZZ(z=0)
if z.is_a? RingElem
z = z.elem;
end
if z == 0
r = Java::EduJasArith::BigInteger.new();
else
#puts "z = #{z} : #{z.class} "
r = Java::EduJasArith::BigInteger.new(z);
end
return RingElem.new(r);
end
=begin rdoc
Create JAS ModInteger as ring element.
=end
def ZM(m,z=0,field=false)
if m.is_a? RingElem
m = m.elem;
end
if z.is_a? RingElem
z = z.elem;
end
if z != 0 and ( z == true or z == false )
field = z;
z = 0;
end
if m < ModLongRing::MAX_LONG
if m < ModIntRing::MAX_INT
if field
mf = ModIntRing.new(m,field);
else
mf = ModIntRing.new(m);
end
r = ModInt.new(mf,z);
else
if field
mf = ModLongRing.new(m,field);
else
mf = ModLongRing.new(m);
end
r = ModLong.new(mf,z);
end
else
if field
mf = ModIntegerRing.new(m,field);
else
mf = ModIntegerRing.new(m);
end
r = ModInteger.new(mf,z);
end
return RingElem.new(r);
end
=begin rdoc
Create JAS ModLong as ring element.
=end
def ZML(m,z=0,field=false)
return ZM(m,z,field);
end
=begin rdoc
Create JAS ModInt as ring element.
=end
def ZMI(m,z=0,field=false)
return ZM(m,z,field);
end
=begin rdoc
Create JAS ModInteger as field element.
=end
def GF(m,z=0)
return ZM(m,z,true);
end
=begin rdoc
Create JAS ModLong as field element.
=end
def GFL(m,z=0)
return ZM(m,z,true);
end
=begin rdoc
Create JAS ModInt as field element.
=end
def GFI(m,z=0)
return ZM(m,z,true);
end
=begin rdoc
Create JAS BigRational as ring element.
=end
def QQ(d=0,n=1)
if d.is_a? Rational
if n != 1
puts "#{n} ignored\n";
end
if d.denominator != 1
n = d.denominator;
end
d = d.numerator;
end
if d.is_a? RingElem
d = d.elem;
end
if n.is_a? RingElem
n = n.elem;
end
if n == 1
if d == 0
r = BigRational.new();
else
r = BigRational.new(d);
end
else
d = BigRational.new(d);
n = BigRational.new(n);
r = d.divide(n); # BigRational.new(d,n); only for short integers
end
return RingElem.new(r);
end
=begin rdoc
Create JAS BigComplex as ring element.
=end
def CC(re=BigRational.new(),im=BigRational.new())
if re == 0
re = BigRational.new();
end
if im == 0
im = BigRational.new();
end
if re.is_a? Array
if re[0].is_a? Array
if re.size > 1
im = QQ( re[1] );
end
re = QQ( re[0] );
else
re = QQ(re);
# re = makeJasArith( re );
end
end
if im.is_a? Array
im = QQ( im );
# im = makeJasArith( im );
end
if re.is_a? Numeric
re = QQ(re);
end
if im.is_a? Numeric
im = QQ(im);
end
if re.is_a? RingElem
re = re.elem;
end
if im.is_a? RingElem
im = im.elem;
end
if im.isZERO()
if re.isZERO()
c = BigComplex.new();
else
c = BigComplex.new(re);
end
else
c = BigComplex.new(re,im);
end
return RingElem.new(c);
end
=begin rdoc
Create JAS generic Complex as ring element.
=end
def CR(re=BigRational.new(),im=BigRational.new(),ring=nil)
if re == 0
re = BigRational.new();
end
if im == 0
im = BigRational.new();
end
if re.is_a? Array
if re[0].is_a? Array
if re.size > 1
im = QQ( re[1] );
end
re = QQ( re[0] );
else
re = QQ(re);
# re = makeJasArith( re );
end
end
if im.is_a? Array
im = QQ( im );
# im = makeJasArith( im );
end
if re.is_a? RingElem
re = re.elem;
end
if im.is_a? RingElem
im = im.elem;
end
if ring == nil
ring = re.factory();
end
r = ComplexRing.new(ring);
if im.isZERO()
if re.isZERO()
c = Complex.new(r);
else
c = Complex.new(r,re);
end
else
c = Complex.new(r,re,im);
end
return RingElem.new(c);
end
=begin rdoc
Create JAS BigDecimal as ring element.
=end
def DD(d=0)
if d.is_a? RingElem
d = d.elem;
end
if d.is_a? Float
d = d.to_s;
end
#puts "d type(#{d}) = #{d.class}";
if d == 0
r = BigDecimal.new();
else
r = BigDecimal.new(d);
end
return RingElem.new(r);
end
=begin rdoc
Create JAS BigQuaternion as ring element.
=end
def Quat(re=BigRational.new(),im=BigRational.new(),jm=BigRational.new(),km=BigRational.new())
if re == 0
re = BigRational.new();
end
if im == 0
im = BigRational.new();
end
if jm == 0
jm = BigRational.new();
end
if km == 0
km = BigRational.new();
end
if re.is_a? Numeric
re = QQ(re);
# re = makeJasArith( re );
end
if im.is_a? Numeric
im = QQ( im );
end
if jm.is_a? Numeric
jm = QQ( jm );
end
if km.is_a? Numeric
kim = QQ( km );
# im = makeJasArith( im );
end
if re.is_a? RingElem
re = re.elem;
end
if im.is_a? RingElem
im = im.elem;
end
if jm.is_a? RingElem
jm = jm.elem;
end
if km.is_a? RingElem
km = km.elem;
end
cf = BigQuaternionRing.new();
c = BigQuaternion.new(cf, re,im,jm,km);
return RingElem.new(c);
end
=begin rdoc
Create JAS BigOctonion as ring element.
=end
def Oct(ro=0,io=0)
cf = BigQuaternionRing.new();
if ro == 0
ro = BigQuaternion.new(cf);
end
if io == 0
io = BigQuaternion.new(cf);
end
if ro.is_a? Array
if ro[0].is_a? Array
if ro.size > 1
io = QQ( ro[1] );
end
ro = QQ( ro[0] );
else
ro = QQ(ro);
# re = makeJasArith( re );
end
end
if io.is_a? Array
io = QQ( io );
# im = makeJasArith( im );
end
if ro.is_a? RingElem
ro = ro.elem;
end
if io.is_a? RingElem
io = io.elem;
end
c = BigOctonion.new(ro,io);
return RingElem.new(c);
end
=begin rdoc
Proxy for JAS ring elements.
Methods to be used as + - * ** / %.
=end
class RingElem
include Comparable
# the Java element object
attr_reader :elem
# the Java factory object
attr_reader :ring
=begin rdoc
Constructor for ring element.
=end
def initialize(elem)
if elem.is_a? RingElem
@elem = elem.elem;
else
@elem = elem;
end
begin
@ring = @elem.factory();
rescue
@ring = @elem;
end
@elem.freeze
@ring.freeze
self.freeze
end
=begin rdoc
Create a string representation.
=end
def to_s()
begin
return @elem.toScript();
rescue
return @elem.to_s();
end
end
=begin rdoc
Convert to float.
=end
def to_f()
e = @elem;
if e.is_a? BigInteger
e = BigRational(e);
end
if e.is_a? BigRational
e = BigDecimal(e);
end
if e.is_a? BigDecimal
e = e.toString();
end
e = e.to_f();
return e;
end
=begin rdoc
Zero element of this ring.
=end
def zero()
return RingElem.new( @elem.factory().getZERO() );
end
=begin rdoc
Test if this is the zero element of the ring.
=end
def isZERO()
return @elem.isZERO();
end
=begin rdoc
Test if this is the zero element of the ring.
=end
def zero?()
return @elem.isZERO();
end
=begin rdoc
One element of this ring.
=end
def one()
return RingElem.new( @elem.factory().getONE() );
end
=begin rdoc
Test if this is the one element of the ring.
=end
def isONE()
return @elem.isONE();
end
=begin rdoc
Test if this is the one element of the ring.
=end
def one?()
return @elem.isONE();
end
=begin rdoc
Get the sign of this element.
=end
def signum()
return @elem.signum();
end
=begin rdoc
Absolute value.
=end
def abs()
return RingElem.new( @elem.abs() );
end
=begin rdoc
Negative value.
=end
def -@()
return RingElem.new( @elem.negate() );
end
=begin rdoc
Positive value.
=end
def +@()
return self;
end
=begin rdoc
Coerce other to self
=end
def coerce(other)
s,o = coercePair(self,other);
return [o,s]; # keep order for non-commutative
end
=begin rdoc
Coerce type a to type b or type b to type a.
=end
def coercePair(a,b)
#puts "a type(#{a}) = #{a.class}\n";
#puts "b type(#{b}) = #{b.class}\n";
begin
if not a.isPolynomial() and b.isPolynomial()
#puts "b = " + str(b.isPolynomial());
s = b.coerceElem(a);
o = b;
else if not a.isAlgNum() and b.isAlgNum()
#puts "b = " + str(b.isAlgNum());
s = b.coerceElem(a);
o = b;
else
s = a;
o = a.coerceElem(b);
end
end
rescue => e
#puts "e #{e.message}, a = #{a}";
s = a;
o = a.coerceElem(b);
end
#puts "s type(#{s}) = #{s.class}\n";
#puts "o type(#{o}) = #{o.class}\n";
return [s,o];
end
=begin rdoc
Coerce other to self
=end
def coerceElem(other)
#puts "self type(#{self}) = #{self.class}\n";
#puts "other type(#{other}) = #{other.class}\n";
#not ok: if other.is_a? RingElem other = other.elem; end
if @elem.is_a? GenVector
if other.is_a? Array
o = rbarray2arraylist(other,@elem.factory().coFac,rec=1);
o = GenVector.new(@elem.factory(),o);
return RingElem.new( o );
end
end
if @elem.is_a? GenMatrix
#puts "other #{@ring} #{other.factory()}\n";
if other.is_a? Array
o = rbarray2arraylist(other,@elem.factory().coFac,rec=2);
o = GenMatrix.new(@elem.factory(),o);
return RingElem.new( o );
end
if other.is_a? RingElem and other.elem.is_a? GenVector
#puts "other vec #{other.factory()} #{other}\n";
#o = rbarray2arraylist(other,other.factory().coFac,rec=1);
#o = GenVector.new(other.factory().coFac, o);
o = other;
return o; #RingElem.new( o );
end
end
if other.is_a? RingElem
if (isPolynomial() and not other.isPolynomial()) or (isAlgNum() and not other.isAlgNum())
#puts "other pol.parse(#{@ring})\n";
o = @ring.parse( other.elem.toString() ); # not toScript()
return RingElem.new( o );
end
#puts "other type(#{other}) = #{other.class}\n";
return other;
end
#puts "--1";
if other.is_a? Array
# assume BigRational or BigComplex
# assume self will be compatible with them. todo: check this
puts "other type(#{other})_3 = #{other.class}\n";
o = makeJasArith(other);
puts "other type(#{o})_4 = #{o.class}\n";
##o = BigRational.new(other[0],other[1]);
if isPolynomial()
o = @ring.parse( o.toString() ); # not toScript();
#o = o.elem;
elsif @elem.is_a? BigComplex
o = CC( o );
o = o.elem;
elsif @elem.is_a? BigQuaternion
o = Quat( o );
o = o.elem;
elsif @elem.is_a? BigOctonion
o = Oct( Quat(o) );
o = o.elem;
elsif @elem.is_a? Product
o = RR(@ring, @elem.multiply(o) ); # valueOf
#puts "o = #{o}";
o = o.elem;
end
puts "other type(#{o})_5 = #{o.class}\n";
return RingElem.new(o);
end
# test if @elem is a factory itself
if isFactory()
if other.is_a? Integer
o = @elem.fromInteger(other);
elsif other.is_a? Rational
o = @elem.fromInteger( other.numerator );
o = o.divide( @elem.fromInteger( other.denominator ) );
elsif other.is_a? Float # ?? what to do ??
o = @elem.parse( other.to_s );
##o = @elem.fromInteger( other.to_i );
else
puts "unknown other type(#{other})_1 = #{other.class}\n";
o = @elem.parse( other.to_s );
end
return RingElem.new(o);
end
# @elem has a ring factory
if other.is_a? Integer
o = @elem.factory().fromInteger(other);
elsif other.is_a? Rational
o = @elem.factory().fromInteger( other.numerator );
o = o.divide( @elem.factory().fromInteger( other.denominator ) );
elsif other.is_a? Float # ?? what to do ??
o = @elem.factory().parse( other.to_s );
if @elem.is_a? Product
o = RR(@ring, @elem.idempotent().multiply(o) ); # valueOf
o = o.elem;
end
else
puts "unknown other type(#{other})_2 = #{other.class}\n";
o = @elem.factory().parse( other.to_s );
end
return RingElem.new(o);
end
=begin rdoc
Test if this is itself a ring factory.
=end
def isFactory()
f = @elem.factory();
if @elem == f
return true;
else
return false;
end
end
=begin rdoc
Test if this is a polynomial.
=end
def isPolynomial()
begin
nv = @elem.ring.coFac; #nvar;
rescue
return false;
end
return true;
end
=begin rdoc
Test if this is an algebraic number.
=end
def isAlgNum()
begin
nv = @elem.ring.ring.nvar; #coFac
rescue
return false;
end
return true;
end
=begin rdoc
Compare two ring elements.
=end
def <=>(other)
#s,o = coercePair(other);
s,o = self, other
return s.elem.compareTo( o.elem );
end
=begin rdoc
Test if two ring elements are equal.
=end
def ==(other)
if not other.is_a? RingElem
return false;
end
return (self <=> other) == 0;
end
=begin rdoc
Length of an element.
=end
def len()
return self.elem.length();
end
=begin rdoc
Hash value.
=end
def object_id()
return @elem.hashCode();
end
=begin rdoc
Multiply two ring elements.
=end
def *(other)
#puts "* self type(#{self.elem}) = #{self.elem.class}\n";
#puts "* other type(#{other.elem}) = #{other.elem.class}\n";
s,o = coercePair(self,other);
#puts "* s = #{s}, o = #{o}, s*o = #{s.elem.multiply(o.elem)}\n";
if s.elem.is_a? GenMatrix and o.elem.is_a? GenVector
return RingElem.new( BasicLinAlg.new().rightProduct(o.elem, s.elem) );
end;
if s.elem.is_a? GenVector and o.elem.is_a? GenMatrix
return RingElem.new( BasicLinAlg.new().leftProduct(s.elem, o.elem) );
end;
return RingElem.new( s.elem.multiply( o.elem ) );
end
=begin rdoc
Add two ring elements.
=end
def +(other)
#puts "+ self type(#{self}) = #{self.elem.class}\n";
#puts "+ other type(#{other}) = #{other.elem.class}\n";
s,o = coercePair(self,other);
return RingElem.new( s.elem.sum( o.elem ) );
end
=begin rdoc
Subtract two ring elements.
=end
def -(other)
#puts "+ self type(#{self}) = #{self.elem.class}\n";
#puts "+ other type(#{other}) = #{other.elem.class}\n";
s,o = coercePair(self,other);
return RingElem.new( s.elem.subtract( o.elem ) );
end
=begin rdoc
Divide two ring elements.
=end
def /(other)
s,o = coercePair(self,other);
return RingElem.new( s.elem.divide( o.elem ) );
end
=begin rdoc
Modular remainder of two ring elements.
=end
def %(other)
s,o = coercePair(self,other);
return RingElem.new( s.elem.remainder( o.elem ) );
end
=begin rdoc
Matrix entry.
=end
def [](i,j)
return get(i,j);
end
=begin rdoc
Matrix entry.
=end
def get(i,j)
if not elem.is_a? GenMatrix
raise "no matrix " + ring.to_s
end
if i.is_a? RingElem
i = i.elem;
end
if j.is_a? RingElem
j = j.elem;
end
e = elem.get(i,j);
return RingElem.new( e );
end
=begin rdoc
Can not be used as power.
=end
def ^(other)
return nil;
end
=begin rdoc
Power of this to other.
=end
def **(other)
#puts "pow other type(#{other}) = #{other.class}";
if other.is_a? Integer
n = other;
else
if other.is_a? RingElem
n = other.elem;
if n.is_a? BigRational
#puts "#{n.numerator()} / #{n.denominator()}, other.elem = #{n}"
#todo (x**n.n)/(x**(-n.d))
if n.numerator().is_a? BigInteger
n = n.numerator().intValue() / n.denominator().intValue();
else
n = n.numerator() / n.denominator();
end
end
if n.is_a? BigInteger
n = n.intValue();
end
end
end
if isFactory()
p = Power.new(@elem).power( @elem, n );
else
p = Power.new(@elem.factory()).power( @elem, n );
#puts "@elem**#{n} = #{p}, @elem = #{@elem}"
#puts "@elem.ring = #{@elem.ring.toScript()}";
end
return RingElem.new( p );
end
=begin rdoc
Test if two ring elements are equal.
=end
def equal?(other)
o = other;
if other.is_a? RingElem
o = other.elem;
end
return @elem.equals(o)
end
=begin rdoc
Get the factory of this element.
=end
def factory()
fac = @elem.factory();
begin
nv = fac.nvar;
rescue
return RingElem.new(fac);
end
#return PolyRing(fac.coFac,fac.getVars(),fac.tord);
return RingElem.new(fac);
end
=begin rdoc
Get the generators for the factory of this element.
=end
def gens()
ll = @elem.factory().generators();
#puts "L = #{ll}";
nn = ll.map {|e| RingElem.new(e) };
return nn;
end
=begin rdoc
Monic polynomial.
=end
def monic()
return RingElem.new( @elem.monic() );
end
=begin rdoc
Evaluate at a for power series or polynomial.
=end
def evaluate(a)
#puts "self type(#{@elem}) = #{@elen.class}";
#puts "a type(#{a}) = #{a.class}";
x = nil;
if a.is_a? RingElem
x = a.elem;
end
if a.is_a? Array
# assume BigRational or BigComplex
# assume self will be compatible with them. todo: check this
#x = makeJasArith(a);
x = rbarray2arraylist(a);
else
x = rbarray2arraylist([a]);
end
begin
if @elem.is_a? UnivPowerSeries
e = @elem.evaluate(x[0]);
else if @elem.is_a? MultiVarPowerSeries
e = @elem.evaluate(x);
else
#puts "x = " + x[0].getClass().getSimpleName().to_s;
x = x.map{ |p| p.leadingBaseCoefficient() };
e = PolyUtil.evaluateAll(@ring.coFac, @elem, x);
end
end
rescue => e
raise RuntimeError, e.to_s;
e = 0;
end
return RingElem.new( e );
end
=begin rdoc
Integrate a power series or rational function with constant a.
a is the integration constant, r is for partial integration in variable r.
=end
def integrate(a=0,r=nil)
#puts "self type(#{@elem}) = #{@elem.class}";
#puts "a type(#{a}) = #{a.class}";
x = nil;
if a.is_a? RingElem
x = a.elem;
end
if a.is_a? Array
# assume BigRational or BigComplex
# assume self will be compatible with them. todo: check this
x = makeJasArith(a);
end
# power series
begin
if r != nil
e = @elem.integrate(x,r);
else
e = @elem.integrate(x);
end
return RingElem.new( e );
rescue
#pass;
end
cf = @elem.ring;
begin
cf = cf.ring;
rescue
#pass;
end
# rational function
integrator = ElementaryIntegration.new(cf.coFac);
ei = integrator.integrate(@elem);
return ei;
end
=begin rdoc
Differentiate a power series.
r is for partial differentiation in variable r.
=end
def differentiate(r=nil)
begin
if r != nil
e = @elem.differentiate(r);
else
e = @elem.differentiate();
end
rescue
e = @elem.factory().getZERO();
end
return RingElem.new( e );
end
=begin rdoc
Random element.
n size for random element will be less than 2**n.
=end
def random(n=3)
if n.is_a? RingElem
n = n.elem
end
return RingElem.new( @elem.factory().random(n) );
end
=begin rdoc
Compute the greatest common divisor of this/self and b.
=end
def gcd(b)
a = @elem;
if b.is_a? RingElem
b = b.elem;
else
b = element( b );
b = b.elem;
end
if isPolynomial()
engine = Ring.getEngineGcd(@ring);
return RingElem.new( engine.gcd(a,b) );
else
return RingElem.new( a.gcd(b) );
end
end
=begin rdoc
Compute squarefree factors of polynomial.
=end
def squarefreeFactors()
a = @elem;
if isPolynomial()
sqf = Ring.getEngineSqf(@ring);
if sqf == nil
raise NotImplementedError, "squarefreeFactors not implemented for " + @ring.to_s;
end
cf = @ring.coFac;
if cf.is_a? GenPolynomialRing
e = sqf.recursiveSquarefreeFactors( a );
else
e = sqf.squarefreeFactors( a );
end
ll = {};
for k in e.keySet()
i = e.get(k);
ll[ RingElem.new( k ) ] = i;
end
return ll;
else
raise NotImplementedError, "squarefreeFactors not implemented for " + a.to_s;
end
end
=begin rdoc
Compute irreducible factorization for modular, integer,
rational number and algebriac number coefficients.
=end
def factors()
a = @elem;
if isPolynomial()
factor = Ring.getEngineFactor(@ring);
if factor == nil
raise NotImplementedError, "factors not implemented for " + @ring.to_s;
end
cf = @ring.coFac;
if cf.is_a? GenPolynomialRing
e = factor.recursiveFactors( a );
else
e = factor.factors( a );
end
ll = {};
for k in e.keySet()
i = e.get(k);
ll[ RingElem.new( k ) ] = i;
end
return ll;
else
raise NotImplementedError, "factors not implemented for " + a.to_s;
end
end
=begin rdoc
Compute absolute irreducible factorization for (modular,)
rational number coefficients.
=end
def factorsAbsolute()
a = @elem;
if isPolynomial()
factor = Ring.getEngineFactor(@ring);
if factor == nil
raise NotImplementedError, "factors not implemented for " + @ring.to_s;
end
begin
ll = factor.factorsAbsolute( a );
## ll = {};
## for a in e.keySet()
## i = e.get(a);
## ll[ RingElem.new( a ) ] = i;
return ll;
rescue => e
raise RuntimeError, "error factorsAbsolute " + @ring.to_s;
end
else
raise NotImplementedError, "factors not implemented for " + a.to_s;
end
end
=begin rdoc
Compute real roots of univariate polynomial.
=end
def realRoots(eps=nil)
a = @elem;
if eps.is_a? RingElem
eps = eps.elem;
end
begin
if eps == nil
#rr = RealRootsSturm.new().realRoots( a );
rr = RootFactory.realAlgebraicNumbers( a )
else
rr = RootFactory.realAlgebraicNumbers( a, eps );
## rr = RealRootsSturm.new().realRoots( a, eps );
## rr = [ r.toDecimal() for r in rr ];
#rr = RealRootsSturm.new().approximateRoots(a,eps);
end
rr = rr.map{ |e| RingElem.new(e) };
return rr;
rescue => e
puts "error " + str(e)
return nil
end
end
=begin rdoc
Compute complex roots of univariate polynomial.
=end
def complexRoots(eps=nil)
a = @elem;
if eps.is_a? RingElem
eps = eps.elem;
end
cmplx = false;
begin
x = a.ring.coFac.getONE().getRe();
cmplx = true;
rescue => e
#pass;
end
begin
if eps == nil
#rr = ComplexRootsSturm.new(a.ring.coFac).complexRoots( a );
if cmplx
rr = RootFactory.complexAlgebraicNumbersComplex( a );
else
rr = RootFactory.complexAlgebraicNumbers( a );
end
#R = [ r.centerApprox() for r in R ];
else
## rr = ComplexRootsSturm.new(a.ring.coFac).complexRoots( a, eps );
## rr = [ r.centerApprox() for r in rr ];
##rr = ComplexRootsSturm.new(a.ring.coFac).approximateRoots( a, eps );
if cmplx
rr = RootFactory.complexAlgebraicNumbersComplex( a, eps );
else
rr = RootFactory.complexAlgebraicNumbers( a, eps );
end
end
rr = rr.map{ |y| RingElem.new(y) };
return rr;
rescue => e
puts "error " + str(e)
return nil
end
end
=begin rdoc
Compute algebraic roots, i.e. real and complex algebraic roots of univariate polynomial.
=end
def algebraicRoots(eps=nil)
a = @elem;
if eps.is_a? RingElem
eps = eps.elem;
end
begin
if eps == nil
ar = RootFactory.algebraicRoots( a );
else
ar = RootFactory.algebraicRoots( a, eps );
end
#no: ar = ar.map{ |y| RingElem.new(y) };
return RingElem.new(ar); #??
rescue => e
puts "error " + str(e)
return nil
end
end
=begin rdoc
Compute algebraic roots refinement.
=end
def rootRefine(eps=nil)
r = @elem;
if eps.is_a? RingElem
eps = eps.elem;
end
begin
RootFactory.rootRefine( r, eps );
#no: ar = ar.map{ |y| RingElem.new(y) };
return RingElem.new(r); # ??
rescue => e
puts "error " + str(e)
return nil
end
end
=begin rdoc
Compute decimal approximation of real and complex roots of univariate polynomial.
=end
def decimalRoots(eps=nil)
a = @elem;
if eps.is_a? RingElem
eps = eps.elem;
end
if a.is_a? Java::EduJasRoot::AlgebraicRoots
a = a.p;
end
begin
d = RootFactory.decimalRoots( a, eps );
return RingElem.new(d); # ??
rescue => e
puts "error " + str(e)
return nil
end
end
=begin rdoc
Roots of unity of real and complex algebraic numbers.
=end
def rootsOfUnity()
a = @elem;
begin #Java::EduJasApplication::
if a.is_a? AlgebraicRootsPrimElem
d = RootFactoryApp.rootsOfUnity( a );
else
d = RootFactory.rootsOfUnity( a );
end
return RingElem.new(d); # ??
rescue => e
puts "error " + str(e)
return nil
end
end
=begin rdoc
Root reduce of real and complex algebraic numbers.
Compute an extension field with a primitive element.
=end
def rootReduce(other)
a = @elem;
b = other;
if b.is_a? RingElem
b = b.elem;
end
begin #Java::EduJasApplication::
d = RootFactoryApp.rootReduce( a, b );
return RingElem.new(d); # ??
rescue => e
puts "error " + str(e)
return nil
end
end
=begin rdoc
Continued fraction computation of rational and real algebraic numbers.
=end
def contFrac(prec)
a = @elem;
if a.is_a? RealAlgebraicNumber
b = prec;
if b.is_a? RingElem
b = b.elem;
end
if b < 1
b = 1;
end
d = RealArithUtil.continuedFraction(a, b);
return d;
end
if a.is_a? BigRational
d = ArithUtil.continuedFraction(a);
return d;
end
raise ArgumentError, "type " + str(a.class) + " not supported"
end
=begin rdoc
Continued fraction expansion to approximate fraction.
=end
def contFracApprox(lst)
if lst == nil
d = BigRational::ZERO;
return RingElem.new( d );
end
nb = ArithUtil.continuedFractionApprox(lst);
return RingElem.new( nb );
end
=begin rdoc
Solve system of linear equations.
=end
def solve(b)
a = @elem;
if b.is_a? RingElem
b = b.elem;
end
x = LinAlg.new().solve(a,b);
return RingElem.new(x);
end
=begin rdoc
Decompose to LU matrix. this is modified.
=end
def decompLU()
a = @elem;
p = LinAlg.new().decompositionLU(a);
uu = a.getUpper();
ll = a.getLower();
return [ RingElem.new(ll), RingElem.new(uu), RingElem.new(p) ];
end
=begin rdoc
Solve with LU matrix.
=end
def solveLU(p, b)
a = @elem;
if b.is_a? RingElem
b = b.elem;
end
if p.is_a? RingElem
p = p.elem;
end
x = LinAlg.new().solveLU(a,p,b);
return RingElem.new(x);
end
=begin rdoc
Determinant from LU matrix.
=end
def determinant(p=nil)
a = @elem;
la = LinAlg.new();
if p == nil
p = la.decompositionLU(a);
end;
if p.is_a? RingElem
p = p.elem;
end
if p.isEmpty()
d = @ring.coFac.getZERO();
else
d = la.determinantLU(a,p);
end;
return RingElem.new(d);
end
=begin rdoc
Row echelon form matrix.
=end
def rowEchelon()
a = @elem;
la = LinAlg.new();
re = la.rowEchelonForm(a);
res = la.rowEchelonFormSparse(re);
return RingElem.new(res);
end
=begin rdoc
rank from row echelon form matrix.
=end
def rank()
a = @elem;
r = LinAlg.new().rankRE(a);
return r;
end
=begin rdoc
Null space basis. {v_i} with v_i * self = 0.
=end
def nullSpace()
a = @elem;
r = LinAlg.new().nullSpaceBasis(a);
return r;
end
=begin rdoc
Get the coefficients of a polynomial.
=end
def coefficients()
a = @elem;
ll = a.coefficientIterator().map { |c| RingElem.new(c) };
return ll
end
=begin rdoc
(exterior) polynomial coefficient primitive part.
=end
def cpp()
a = @elem;
r = a.coeffPrimitivePart();
return RingElem.new(r);
end
=begin rdoc
Inner left product of two exterior vectors / polynomials.
=end
def interiorLeftProduct(other)
#puts "* self type(#{self.elem}) = #{self.elem.class}\n";
#puts "* other type(#{other.elem}) = #{other.elem.class}\n";
s,o = coercePair(self,other);
#puts "* s = #{s}, o = #{o}, s*o = #{s.elem.multiply(o.elem)}\n";
return RingElem.new( s.elem.interiorLeftProduct( o.elem ) );
end
=begin rdoc
Inner right product of two exterior vectors / polynomials.
=end
def interiorRightProduct(other)
#puts "* self type(#{self.elem}) = #{self.elem.class}\n";
#puts "* other type(#{other.elem}) = #{other.elem.class}\n";
s,o = coercePair(self,other);
#puts "* s = #{s}, o = #{o}, s*o = #{s.elem.multiply(o.elem)}\n";
return RingElem.new( s.elem.interiorRightProduct( o.elem ) );
end
#----------------
# Compatibility methods for Sage/Singular:
# Note: the meaning of lt and lm is swapped compared to JAS.
#----------------
=begin rdoc
Parent in Sage is factory in JAS.
Compatibility method for Sage/Singular.
=end
def parent()
return factory();
end
=begin rdoc
Apply this to num.
Call syntax is ringElem.(num). Only for interger num.
=end
def call(num)
if num == 0
return zero();
end
if num == 1
return one();
end
return RingElem.new( @ring.fromInteger(num) );
end
=begin rdoc
Leading monomial of a polynomial.
Compatibility method for Sage/Singular.
Note: the meaning of lt and lm is swapped compared to JAS.
=end
def lm()
ev = @elem.leadingExpVector();
return ev;
end
=begin rdoc
Leading coefficient of a polynomial.
Compatibility method for Sage/Singular.
=end
def lc()
c = @elem.leadingBaseCoefficient();
return RingElem.new(c);
end
=begin rdoc
Leading term of a polynomial.
Compatibility method for Sage/Singular.
Note: the meaning of lt and lm is swapped compared to JAS.
=end
def lt()
ev = @elem.leadingMonomial();
return Monomial.new(ev);
end
=begin rdoc
Degree of a polynomial.
=end
def degree()
begin
ev = @elem.degree();
rescue
return nil;
end
return ev;
end
=begin rdoc
Coefficient ring of a polynomial.
=end
def base_ring()
begin
ev = @elem.ring.coFac;
rescue
return nil;
end
return RingElem.new(ev);
end
=begin rdoc
Test if this RingElem is field.
=end
def is_field()
return @ring.isField();
end
=begin rdoc
All monomials of a polynomial.
Compatibility method for Sage/Singular.
=end
def monomials()
ev = @elem.getMap().keySet();
return ev;
end
=begin rdoc
Test if self divides other.
Compatibility method for Sage/Singular.
=end
def divides(other)
s,o = coercePair(self,other);
return o.elem.remainder( s.elem ).isZERO();
end
=begin rdoc
Create an ideal.
Compatibility method for Sage/Singular.
=end
def ideal(list)
r = Ring.new("",ring=self.ring); #,fast=true
return r.ideal("",list=list);
end
=begin rdoc
Quotient of ExpVectors.
Compatibility method for Sage/Singular.
=end
def monomial_quotient(a,b,coeff=false)
if a.is_a? RingElem
a = a.elem;
end
if b.is_a? RingElem
b = b.elem;
end
if coeff == false
if a.is_a? GenPolynomial
return RingElem.new( a.divide(b) );
else
return RingElem.new( GenPolynomial.new(@ring, a.subtract(b)) );
end
else
# assume JAS Monomial
c = a.coefficient().divide(b.coefficient());
e = a.exponent().subtract(b.exponent())
return RingElem.new( GenPolynomial.new(@ring, c, e) );
end
end
=begin rdoc
Test divide of ExpVectors.
Compatibility method for Sage/Singular.
=end
def monomial_divides(a,b)
#print "JAS a = " + str(a) + ", b = " + str(b);
if a.is_a? RingElem
a = a.elem;
end
if a.is_a? GenPolynomial
a = a.leadingExpVector();
end
if not a.is_a? ExpVector
raise ArgumentError, "No ExpVector given " + str(a) + ", " + str(b)
end
if b == nil
return False;
end
if b.is_a? RingElem
b = b.elem;
end
if b.is_a? GenPolynomial
b = b.leadingExpVector();
end
if not b.is_a? ExpVector
raise ArgumentError, "No ExpVector given " + str(a) + ", " + str(b)
end
return a.divides(b);
end
=begin rdoc
Test if ExpVectors are pairwise prime.
Compatibility method for Sage/Singular.
=end
def monomial_pairwise_prime(e,f)
if e.is_a? RingElem
e = e.elem;
end
if f.is_a? RingElem
f = f.elem;
end
# assume JAS ExpVector
c = e.gcd(f);
return c.isZERO();
end
=begin rdoc
Lcm of ExpVectors.
Compatibility method for Sage/Singular.
=end
def monomial_lcm(e,f)
if e.is_a? RingElem
e = e.elem;
end
if f.is_a? RingElem
f = f.elem;
end
# assume JAS ExpVector
c = e.lcm(f);
return c;
end
=begin rdoc
Compute a normal form of self with respect to ff.
Compatibility method for Sage/Singular.
=end
def reduce(ff)
s = @elem;
fe = ff.map {|e| e.elem };
n = ReductionSeq.new().normalform(fe,s);
return RingElem.new(n);
end
#----------------
# End of compatibility methods
#----------------
end
java_import "edu.jas.poly.GenPolynomial";
java_import "edu.jas.poly.GenPolynomialRing";
java_import "edu.jas.poly.IndexFactory";
java_import "edu.jas.poly.GenWordPolynomialRing";
java_import "edu.jas.poly.GenExteriorPolynomialRing";
java_import "edu.jas.poly.GenSolvablePolynomial";
java_import "edu.jas.poly.GenSolvablePolynomialRing";
java_import "edu.jas.poly.RecSolvablePolynomial";
java_import "edu.jas.poly.RecSolvablePolynomialRing";
java_import "edu.jas.poly.GenWordPolynomial";
java_import "edu.jas.poly.GenWordPolynomialRing";
java_import "edu.jas.poly.RecSolvableWordPolynomial";
java_import "edu.jas.poly.RecSolvableWordPolynomialRing";
java_import "edu.jas.poly.QLRSolvablePolynomial";
java_import "edu.jas.poly.QLRSolvablePolynomialRing";
java_import "edu.jas.poly.GenPolynomialTokenizer";
java_import "edu.jas.poly.TermOrder";
java_import "edu.jas.poly.TermOrderByName";
java_import "edu.jas.poly.OrderedPolynomialList";
java_import "edu.jas.poly.PolyUtil";
java_import "edu.jas.poly.TermOrderOptimization";
java_import "edu.jas.poly.PolynomialList";
java_import "edu.jas.poly.WordFactory";
java_import "edu.jas.poly.AlgebraicNumber";
java_import "edu.jas.poly.AlgebraicNumberRing";
java_import "edu.jas.poly.OrderedModuleList";
java_import "edu.jas.poly.ModuleList";
java_import "edu.jas.poly.Complex";
java_import "edu.jas.poly.ComplexRing";
java_import "edu.jas.application.RingFactoryTokenizer";
java_import "edu.jas.ufd.GreatestCommonDivisor";
java_import "edu.jas.ufd.GCDFactory";
java_import "edu.jas.application.FactorFactory";
java_import "edu.jas.ufd.SquarefreeFactory";
java_import "edu.jas.integrate.ElementaryIntegration";
java_import "edu.jas.gbufd.PolyGBUtil";
=begin rdoc
Represents a JAS polynomial ring: GenPolynomialRing.
Methods to create ideals and ideals with parametric coefficients.
=end
class Ring
# the Java factoy object, gcd engine, sqf engine, factorization engine
attr_reader :ring, :engine, :sqf, :factor
#:pset,
@auto_inject = true
@auto_lowervar = false
class << self # means add to class
# inject variables into environment
attr_accessor :auto_inject
# avoid capital letter variables
attr_accessor :auto_lowervar
end
=begin rdoc
Ring constructor.
ringstr string representation to be parsed.
ring JAS ring object.
=end
def initialize(ringstr="",ring=nil)
if ring == nil
sr = StringReader.new( ringstr );
tok = RingFactoryTokenizer.new(sr);
pfac = tok.nextPolynomialRing();
#tok = GenPolynomialTokenizer.new(sr);
#@pset = tok.nextPolynomialSet();
@ring = pfac;
else
if ring.is_a? Ring
@ring = ring.ring
else
@ring = ring;
end
end
# parameter ",fast=false" not possible w/o keyword params
#if fast == true
# return
#end
@engine = Ring.getEngineGcd(@ring);
@sqf = Ring.getEngineSqf(@ring);
@factor = Ring.getEngineFactor(@ring);
variable_generators()
#puts "self.class.auto_inject = " + self.class.auto_inject.to_s
#puts "self.class.superclass.auto_inject = " + self.class.superclass.auto_inject.to_s
if self.class.auto_inject or self.class.superclass.auto_inject # sic!
inject_variables();
end
end
=begin rdoc
Get the polynomial gcd engine implementation.
r is the given polynomial ring.
=end
def Ring.getEngineGcd(r)
if r.is_a? RingElem
r = r.elem;
end
if not r.is_a? GenPolynomialRing
return nil;
end
begin
i = GCDFactory.getProxy(r.coFac);
#i = GCDFactory.getImplementation(r.coFac);
rescue => e
i = nil
end
#puts "gcd engine: #{i}";
return i;
end
=begin rdoc
Get the polynomial squarefree engine implementation.
r is the given polynomial ring.
=end
def Ring.getEngineSqf(r)
if r.is_a? RingElem
r = r.elem;
end
if not r.is_a? GenPolynomialRing
return nil;
end
begin
i = SquarefreeFactory.getImplementation(r.coFac);
rescue => e
i = nil
end
#puts "sqf engine: #{i}";
return i;
end
=begin rdoc
Get the polynomial factorization engine implementation.
r is the given polynomial ring.
=end
def Ring.getEngineFactor(r)
if r.is_a? RingElem
r = r.elem;
end
if not r.is_a? GenPolynomialRing
return nil;
end
begin
i = FactorFactory.getImplementation(r.coFac);
rescue => e
i = nil
end
#puts "factor engine: #{i}";
return i;
end
=begin rdoc
Define instance variables for generators.
=end
def variable_generators()
Ring.instance_eval( "attr_accessor :generators;" )
@generators = {};
for i in self.gens()
begin
ivs = nameFromValue(i);
if ivs != nil
#puts "string: #{ivs} = " + ivs.class.to_s;
if @generators[ ivs ] != nil
puts "redefining local variable #{ivs}";
end
@generators[ ivs ] = i;
self.instance_eval( "def #{ivs}; @generators[ '#{ivs}' ]; end" )
end
rescue => e
puts "ring error: #{ivs} = " + i.to_s + ", e = " + str(e);
#pass
end
end
#puts "locally defined generators: " + @generators.keys().join(", ");
end
=begin rdoc
Inject variables for generators in top level environment.
=end
def inject_variables()
begin
require "irb/frame" # must be placed here
bin = IRB::Frame.bottom(0);
env = eval "self", bin;
#puts "inject_gens: env1 = " + str(env)
inject_gens(env)
#puts "inject_gens: env2 = " + str(env)
rescue => e
puts "error: 'irb/frame' not found, e = " + str(e);
end
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @ring.toScript();
end
=begin rdoc
Test if two rings are equal.
=end
def ==(other)
if not other.is_a? Ring
return false;
end
return @ring.equals(other.ring);
end
=begin rdoc
Create an ideal.
=end
def ideal(ringstr="",list=nil)
return JAS::SimIdeal.new(self,ringstr,list);
end
=begin rdoc
Create an ideal in a polynomial ring with parameter coefficients.
=end
def paramideal(ringstr="",list=nil,gbsys=nil)
return ParamIdeal.new(self,ringstr,list,gbsys);
end
=begin rdoc
Get a power series ring from this ring.
=end
def powerseriesRing()
pr = MultiVarPowerSeriesRing.new(@ring);
return MultiSeriesRing.new("",nil,pr);
end
=begin rdoc
Get list of generators of the polynomial ring.
=end
def gens()
ll = @ring.generators();
n = ll.map{ |e| RingElem.new(e) };
return n;
end
=begin rdoc
Get the one of the polynomial ring.
=end
def one()
return RingElem.new( @ring.getONE() );
end
=begin rdoc
Get the zero of the polynomial ring.
=end
def zero()
return RingElem.new( @ring.getZERO() );
end
=begin rdoc
Get a random polynomial.
=end
def random(k=5,l=7,d=3,q=0.3)
r = @ring.random(k,l,d,q);
if @ring.coFac.isField()
r = r.monic();
end
return RingElem.new( r );
end
=begin rdoc
Create an element from a string or an object.
=end
def element(poly)
if not poly.is_a? String
begin
if @ring == poly.ring
return RingElem.new(poly);
end
rescue => e
# pass
end
poly = str(poly);
end
i = SimIdeal.new( self, "( " + poly + " )" );
list = i.pset.list;
if list.size > 0
return RingElem.new( list[0] );
end
end
=begin rdoc
Compute the greatest common divisor of a and b.
=end
def gcd(a,b)
if a.is_a? RingElem
a = a.elem;
else
a = element( a );
a = a.elem;
end
if b.is_a? RingElem
b = b.elem;
else
b = element( b );
b = b.elem;
end
cf = @ring.coFac;
if cf.is_a? GenPolynomialRing
e = @engine.recursiveGcd( a, b );
else
e = @engine.gcd( a, b );
end
return RingElem.new( e );
end
=begin rdoc
Compute squarefree factors of polynomial.
=end
def squarefreeFactors(a)
if a.is_a? RingElem
a = a.elem;
else
a = element( a );
a = a.elem;
end
cf = @ring.coFac;
if cf.is_a? GenPolynomialRing
e = @sqf.recursiveSquarefreeFactors( a );
else
e = @sqf.squarefreeFactors( a );
end
ll = {};
for a in e.keySet()
i = e.get(a);
ll[ RingElem.new( a ) ] = i;
end
return ll;
end
=begin rdoc
Compute irreducible factorization for modular, integer,
rational number and algebriac number coefficients.
=end
def factors(a)
if a.is_a? RingElem
a = a.elem;
else
a = element( a );
a = a.elem;
end
begin
cf = @ring.coFac;
if cf.is_a? GenPolynomialRing
e = @factor.recursiveFactors( a );
else
e = @factor.factors( a );
end
ll = {};
for a in e.keySet()
i = e.get(a);
ll[ RingElem.new( a ) ] = i;
end
return ll;
rescue => e
puts "error " + str(e)
return nil
end
end
=begin rdoc
Compute absolute irreducible factorization for (modular,)
rational number coefficients.
=end
def factorsAbsolute(a)
if a.is_a? RingElem
a = a.elem;
else
a = element( a );
a = a.elem;
end
begin
ll = @factor.factorsAbsolute( a );
## ll = {};
## for a in e.keySet()
## i = e.get(a);
## ll[ RingElem.new( a ) ] = i;
return ll;
rescue => e
puts "error in factorsAbsolute " + str(e)
return nil
end
end
=begin rdoc
Compute real roots of univariate polynomial.
=end
def realRoots(a,eps=nil)
if not a.is_a? RingElem
a = RingElem.new(a);
end
return a.realRoots(eps);
end
=begin rdoc
Compute complex roots of univariate polynomial.
=end
def complexRoots(a,eps=nil)
if not a.is_a? RingElem
a = RingElem.new(a);
end
return a.complexRoots(eps);
end
=begin rdoc
Compute algebraic real and complex roots of univariate polynomial.
=end
def algebraicRoots(a,eps=nil)
if not a.is_a? RingElem
a = RingElem.new(a);
end
return a.algebraicRoots(eps);
end
=begin rdoc
Compute algebraic real and complex roots refinement.
=end
def rootRefine(a,eps=nil)
if not a.is_a? RingElem
a = RingElem.new(a);
end
return a.rootRefine(eps);
end
=begin rdoc
Compute deximal approximation of algebraic real and complex roots.
=end
def decimalRoots(a,eps=nil)
if not a.is_a? RingElem
a = RingElem.new(a);
end
return a.decimalRoots(eps);
end
=begin rdoc
Roots of unity of real and complex algebraic numbers.
=end
def rootsOfUnity(a)
if not a.is_a? RingElem
a = RingElem.new(a);
end
return a.rootsOfUnity();
end
=begin rdoc
Root reduce of real and complex algebraic numbers.
Compute an extension field with a primitive element.
=end
def rootReduce(a, b)
if not a.is_a? RingElem
a = RingElem.new(a);
end
return a.rootReduce(b);
end
=begin rdoc
Integrate rational function or power series.
=end
def integrate(a)
if not a.is_a? RingElem
a = RingElem.new(a);
end
return a.integrate();
end
=begin rdoc
Sub ring generators as Groebner base.
=end
def subring(polystr="", list=nil)
if list == nil
sr = StringReader.new( polystr );
tok = GenPolynomialTokenizer.new(@ring,sr);
@list = tok.nextPolynomialList();
else
@list = rbarray2arraylist(list,rec=1);
end
sr = PolyGBUtil.subRing(@list);
srr = sr.map { |a| RingElem.new(a) };
return srr;
end
=begin rdoc
Sub ring member test. list is a Groebner base.
Test if a \in K[list].
=end
def subringmember(list, a)
sr = list.map { |p| p.elem };
if a.is_a? RingElem
a = a.elem;
end
b = PolyGBUtil.subRingMember(sr, a);
return b;
end
=begin rdoc
Chinese remainder theorem.
=end
def CRT(polystr="", list=nil, rem=nil)
if list == nil
sr = StringReader.new( polystr );
tok = GenPolynomialTokenizer.new(@ring,sr);
@list = tok.nextPolynomialList();
else
@list = rbarray2arraylist(list,nil,rec=2);
end
if rem == nil
raise ArgumentError, "No remainders given."
else
@remlist = rbarray2arraylist(rem,nil,rec=1);
end
#puts "list = " + str(@list);
#puts "remlist = " + str(@remlist);
#puts
h = PolyGBUtil.chineseRemainderTheorem(@list, @remlist);
if h != nil
h = RingElem.new(h);
end
return h;
end
=begin rdoc
Chinese remainder theorem, interpolation.
=end
def CRTinterpol(polystr="", list=nil, rem=nil)
if list == nil
sr = StringReader.new( polystr );
tok = GenPolynomialTokenizer.new(@ring,sr);
@list = tok.nextPolynomialList();
else
@list = rbarray2arraylist(list,nil,rec=2);
end
if rem == nil
raise ArgumentError, "No remeinders given."
else
@remlist = rbarray2arraylist(rem,nil,rec=1);
end
#puts "ring = " + str(@ring.toScript());
#puts "list = " + str(@list);
#puts "remlist = " + str(@remlist);
#puts
h = PolyGBUtil.CRTInterpolation(@ring, @list, @remlist);
if h != nil
h = RingElem.new(h);
end
return h;
end
end
=begin rdoc
Collection of JAS and other CAS term order names.
Defines names for term orders.
See {TermOrderByName}[http://krum.rz.uni-mannheim.de/jas/doc/api/edu/jas/poly/TermOrderByName.html].
=end
class Order < TermOrderByName
end
=begin rdoc
Represents a JAS polynomial ring: GenPolynomialRing.
Provides more convenient constructor.
Then returns a Ring.
=end
class PolyRing < Ring
# class instance variables != class variables
@lex = Order::INVLEX
@grad = Order::IGRLEX
class << self # means add to class
# the Java term orderings
attr_reader :lex, :grad
end
=begin rdoc
Ring constructor.
coeff = factory for coefficients,
vars = string with variable names,
order = term order or weight matrix.
=end
def initialize(coeff,vars,order=Order::IGRLEX)
if coeff == nil
raise ArgumentError, "No coefficient given."
end
cf = coeff;
if coeff.is_a? RingElem
cf = coeff.elem.factory();
end
if coeff.is_a? Ring
cf = coeff.ring;
end
if vars == nil
raise ArgumentError, "No variable names given."
end
names = vars;
if vars.is_a? String
names = GenPolynomialTokenizer.variableList(vars);
end
nv = names.size;
to = Order::IGRLEX; #self.class.grad;
if order.is_a? TermOrder
to = order;
end
if order.is_a? Array
to = TermOrder.reverseWeight(order);
end
@ring = GenPolynomialRing.new(cf,nv,to,names);
#@ring = tring;
super("",@ring)
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @ring.toScript();
end
end
=begin rdoc
Create JAS AlgebraicNumber as ring element.
=end
def AN(m,z=0,field=false,pr=nil)
if m.is_a? RingElem
m = m.elem;
end
if z.is_a? RingElem
z = z.elem;
end
if z != 0 and ( z == true or z == false )
field = z;
z = 0;
end
#puts "m.getClass() = " + str(m.getClass().getName());
#puts "field = " + str(field);
if m.is_a? AlgebraicNumber
mf = AlgebraicNumberRing.new(m.factory().modul,m.factory().isField());
else
if field
mf = AlgebraicNumberRing.new(m,field);
else
mf = AlgebraicNumberRing.new(m);
end
end
#puts "mf = " + mf.toString();
if z == 0
r = AlgebraicNumber.new(mf);
else
r = AlgebraicNumber.new(mf,z);
end
return RingElem.new(r);
end
java_import "edu.jas.arith.PrimeInteger";
java_import "edu.jas.ufd.PolyUfdUtil";
$finiteFields = Hash.new;
=begin rdoc
Create JAS Finite Field element as ring element.
FF has p<sup>n</sup> elements.
=end
def FF(p,n,z=0)
if p.is_a? RingElem
p = p.elem;
end
if n.is_a? RingElem
n = n.elem;
end
if z.is_a? RingElem
z = z.elem;
end
if z.is_a? AlgebraicNumber
z = z.val;
#puts "z = " + z.ring.toScript();
end
if p == 0
raise ArgumentError, "No finite ring."
end
if n == 0
raise ArgumentError, "No finite ring."
end
field = true;
if !PrimeInteger.isPrime(p)
field = false;
#raise ArgumentError, "{p} not prime."
end
mf = $finiteFields[ [p,n] ];
if mf == nil
cf = GF(p).ring;
mf = PolyUfdUtil.algebraicNumberField(cf,n);
$finiteFields[ [p,n] ] = mf;
#puts "mf = " + mf.toScript();
end
if z == 0
r = AlgebraicNumber.new(mf);
else
r = AlgebraicNumber.new(mf,z);
#puts "r = " + r.toScript();
end
return RingElem.new(r);
end
java_import "edu.jas.root.RealArithUtil";
java_import "edu.jas.root.RealRootsSturm";
java_import "edu.jas.root.Interval";
java_import "edu.jas.root.RealAlgebraicNumber";
java_import "edu.jas.root.RealAlgebraicRing";
java_import "edu.jas.root.ComplexRootsSturm";
java_import "edu.jas.root.Rectangle";
java_import "edu.jas.root.RootFactory";
java_import "edu.jas.application.AlgebraicRootsPrimElem";
java_import "edu.jas.application.RootFactoryApp";
=begin rdoc
Create JAS RealAlgebraicNumber as ring element.
=end
def RealN(m,i,r=0)
if m.is_a? RingElem
m = m.elem;
end
if r.is_a? RingElem
r = r.elem;
end
if i.is_a? Array
i = rbarray2arraylist(i,BigRational.new(0),1);
i = Interval.new(i[0],i[1]);
end
#puts "m.getClass() = " + m.getClass().getName().to_s;
if m.is_a? RealAlgebraicNumber
mf = RealAlgebraicRing.new(m.factory().algebraic.modul,i);
else
mf = RealAlgebraicRing.new(m,i);
end
if r == 0
rr = RealAlgebraicNumber.new(mf);
else
rr = RealAlgebraicNumber.new(mf,r);
end
return RingElem.new(rr);
end
java_import "edu.jas.ufd.Quotient";
java_import "edu.jas.ufd.QuotientRing";
java_import "edu.jas.fd.SolvableQuotient";
java_import "edu.jas.fd.SolvableQuotientRing";
java_import "edu.jas.fd.QuotSolvablePolynomial";
java_import "edu.jas.fd.QuotSolvablePolynomialRing";
java_import "edu.jas.application.ResidueSolvablePolynomial";
java_import "edu.jas.application.ResidueSolvablePolynomialRing";
java_import "edu.jas.application.LocalSolvablePolynomial";
java_import "edu.jas.application.LocalSolvablePolynomialRing";
java_import "edu.jas.application.ResidueSolvableWordPolynomial";
java_import "edu.jas.application.ResidueSolvableWordPolynomialRing";
=begin rdoc
Create JAS rational function Quotient as ring element.
=end
def RF(pr,d=0,n=1)
if d.is_a? Array
if n != 1
puts "#{} ignored\n";
end
if d.size > 1
n = d[1];
end
d = d[0];
end
if d.is_a? RingElem
d = d.elem;
end
if n.is_a? RingElem
n = n.elem;
end
if pr.is_a? RingElem
pr = pr.elem;
end
if pr.is_a? Ring
pr = pr.ring;
end
qr = QuotientRing.new(pr);
if d == 0
r = Quotient.new(qr);
else
if n == 1
r = Quotient.new(qr,d);
else
r = Quotient.new(qr,d,n);
end
end
return RingElem.new(r);
end
=begin rdoc
Create JAS rational function SolvableQuotient as ring element.
=end
def SRF(pr,d=0,n=1)
if d.is_a? Array
if n != 1
puts "#{} ignored\n";
end
if d.size > 1
n = d[1];
end
d = d[0];
end
if d.is_a? RingElem
d = d.elem;
end
if n.is_a? RingElem
n = n.elem;
end
if pr.is_a? RingElem
pr = pr.elem;
end
if pr.is_a? Ring
pr = pr.ring;
end
qr = SolvableQuotientRing.new(pr);
#puts "qr is associative: " + qr.isAssociative().to_s;
#if not qr.isAssociative()
# puts "warning: qr is not associative";
#end
if d == 0
r = SolvableQuotient.new(qr);
else
if n == 1
r = SolvableQuotient.new(qr,d);
else
r = SolvableQuotient.new(qr,d,n);
end
end
return RingElem.new(r);
end
java_import "edu.jas.application.PolyUtilApp";
java_import "edu.jas.application.Residue";
java_import "edu.jas.application.ResidueRing";
java_import "edu.jas.application.Ideal";
java_import "edu.jas.application.SolvableResidue";
java_import "edu.jas.application.SolvableResidueRing";
java_import "edu.jas.application.SolvableIdeal";
java_import "edu.jas.application.Local";
java_import "edu.jas.application.LocalRing";
java_import "edu.jas.application.SolvableLocal";
java_import "edu.jas.application.SolvableLocalRing";
java_import "edu.jas.application.SolvableLocalResidue";
java_import "edu.jas.application.SolvableLocalResidueRing";
java_import "edu.jas.application.IdealWithRealAlgebraicRoots";
java_import "edu.jas.application.ComprehensiveGroebnerBaseSeq";
java_import "edu.jas.application.WordIdeal";
java_import "edu.jas.application.WordResidue";
java_import "edu.jas.application.WordResidueRing";
=begin rdoc
Create JAS polynomial Residue as ring element.
=end
def RC(ideal,r=0)
if ideal == nil
raise ArgumentError, "No ideal given."
end
if ideal.is_a? SimIdeal
#puts "ideal.pset = " + str(ideal.pset) + "\n";
#ideal = Java::EduJasApplication::Ideal.new(ideal.ring,ideal.list);
ideal = Ideal.new(ideal.pset);
#ideal.doGB();
end
#puts "ideal.getList().get(0).ring.ideal = #{ideal.getList().get(0).ring.ideal}\n";
if ideal.getList().get(0).ring.is_a? ResidueRing
rc = ResidueRing.new( ideal.getList().get(0).ring.ideal );
else
rc = ResidueRing.new(ideal);
end
if r.is_a? RingElem
r = r.elem;
end
if r == 0
r = Residue.new(rc);
else
r = Residue.new(rc,r);
end
return RingElem.new(r);
end
=begin rdoc
Create JAS polynomial Local as ring element.
=end
def LC(ideal,d=0,n=1)
if ideal == nil
raise ArgumentError, "No ideal given."
end
if ideal.is_a? SimIdeal
ideal = Ideal.new(ideal.pset);
#ideal.doGB();
end
#puts "ideal.getList().get(0).ring.ideal = #{ideal.getList().get(0).ring.ideal}\n";
if ideal.getList().get(0).ring.is_a? LocalRing
lc = LocalRing.new( ideal.getList().get(0).ring.ideal );
else
lc = LocalRing.new(ideal);
end
if d.is_a? Array
if n != 1
puts "#{n} ignored\n";
end
if d.size > 1
n = d[1];
end
d = d[0];
end
if d.is_a? RingElem
d = d.elem;
end
if n.is_a? RingElem
n = n.elem;
end
if d == 0
r = Local.new(lc);
else
if n == 1
r = Local.new(lc,d);
else
r = Local.new(lc,d,n);
end
end
return RingElem.new(r);
end
=begin rdoc
Create JAS polynomial SolvableResidue as ring element.
=end
def SRC(ideal,r=0)
if ideal == nil
raise ArgumentError, "No ideal given."
end
if ideal.is_a? SolvIdeal
#puts "ideal.pset = " + str(ideal.pset) + "\n";
#ideal = Java::EduJasApplication::Ideal.new(ideal.ring,ideal.list);
ideal = SolvableIdeal.new(ideal.pset);
#ideal.doGB();
end
#puts "ideal.getList().get(0).ring.ideal = #{ideal.getList().get(0).ring.ideal}\n";
if ideal.getList().get(0).ring.is_a? SolvableResidueRing
rc = SolvableResidueRing.new( ideal.getList().get(0).ring.ideal );
else
rc = SolvableResidueRing.new(ideal);
end
if r.is_a? RingElem
r = r.elem;
end
if r == 0
r = SolvableResidue.new(rc);
else
r = SolvableResidue.new(rc,r);
end
return RingElem.new(r);
end
=begin rdoc
Create JAS polynomial SolvableLocal as ring element.
=end
def SLC(ideal,d=0,n=1)
if ideal == nil
raise ArgumentError, "No ideal given."
end
if ideal.is_a? SolvIdeal
ideal = SolvableIdeal.new(ideal.pset);
#ideal.doGB();
end
#puts "ideal.getList().get(0).ring.ideal = #{ideal.getList().get(0).ring.ideal}\n";
if ideal.getList().get(0).ring.is_a? SolvableLocalRing
lc = SolvableLocalRing.new( ideal.getList().get(0).ring.ideal );
else
lc = SolvableLocalRing.new(ideal);
end
if d.is_a? Array
if n != 1
puts "#{n} ignored\n";
end
if d.size > 1
n = d[1];
end
d = d[0];
end
if d.is_a? RingElem
d = d.elem;
end
if n.is_a? RingElem
n = n.elem;
end
if d == 0
r = SolvableLocal.new(lc);
else
if n == 1
r = SolvableLocal.new(lc,d);
else
r = SolvableLocal.new(lc,d,n);
end
end
return RingElem.new(r);
end
=begin rdoc
Create JAS polynomial SolvableLocalResidue as ring element.
=end
def SLR(ideal,d=0,n=1)
if ideal == nil
raise ArgumentError, "No ideal given."
end
if ideal.is_a? SolvIdeal
ideal = SolvableIdeal.new(ideal.pset);
#ideal.doGB();
end
cfr = ideal.getList().get(0).ring;
#puts "ideal.getList().get(0).ring.ideal = #{ideal.getList().get(0).ring.ideal}\n";
if n == true
isfield = true;
n = 1;
end
if cfr.is_a? SolvableLocalResidueRing
lc = SolvableLocalResidueRing.new( cfr.ideal );
else
lc = SolvableLocalResidueRing.new(ideal);
end
if d.is_a? Array
if n != 1
puts "#{n} ignored\n";
end
if d.size > 1
n = d[1];
end
d = d[0];
end
if d.is_a? RingElem
d = d.elem;
end
if n.is_a? RingElem
n = n.elem;
end
if d == 0
r = SolvableLocalResidue.new(lc);
else
if n == 1
r = SolvableLocalResidue.new(lc,d);
else
r = SolvableLocalResidue.new(lc,d,n);
end
end
return RingElem.new(r);
end
=begin rdoc
Create JAS regular ring Product as ring element.
=end
def RR(flist,n=1,r=0)
if not n.is_a? Integer
r = n;
n = 1;
end
if flist == nil
raise ArgumentError, "No list given."
end
if flist.is_a? Array
flist = rbarray2arraylist( flist.map { |x| x.factory() }, rec=1);
ncop = 0;
else
ncop = n;
end
if flist.is_a? RingElem
flist = flist.elem;
flist = flist.factory();
ncop = n;
end
#puts "flist = " + str(flist);
#puts "ncop = " + str(ncop);
if ncop == 0
pr = ProductRing.new(flist);
else
pr = ProductRing.new(flist,ncop);
end
#puts "r type(#{r}) = #{r.class}\n";
if r.is_a? RingElem
r = r.elem;
end
begin
#puts "r.class() = #{r.class}\n";
if r.is_a? Product
#puts "r.val = #{r.val}\n";
r = r.val;
end
rescue
#pass;
end
#puts "r = " + r.to_s;
if r == 0
r = Product.new(pr);
else
r = Product.new(pr,r);
end
return RingElem.new(r);
end
=begin rdoc
Convert a Ruby array to a Java ArrayList.
If list is a Ruby array, it is converted, else list is left unchanged.
=end
def rbarray2arraylist(list,fac=nil,rec=1)
#puts "list type(#{list}) = #{list.class}\n";
if list.is_a? Array
ll = ArrayList.new();
for e in list
t = true;
if e.is_a? RingElem
t = false;
e = e.elem;
end
if e.is_a? Array
if rec <= 1
e = makeJasArith(e);
else
t = false;
e = rbarray2arraylist(e,fac,rec-1);
end
end
begin
#n = e.getClass().getSimpleName();
if e.is_a? ArrayList
t = false;
end
rescue
#pass;
end
if t and fac != nil
#puts "e.p(#{e}) = #{e.class}, #{fac.toScriptFactory()}\n";
e = fac.parse( str(e) ); #or makeJasArith(e) ?
end
ll.add(e);
end
list = ll;
end
#puts "list type(#{list}) = #{list.class}\n";
return list
end
=begin rdoc
Construct a jas.arith object.
If item is an ruby array then a BigComplex is constructed.
If item is a ruby float then a BigDecimal is constructed.
Otherwise, item is returned unchanged.
=end
def makeJasArith(item)
#puts "item type(#{item}) = #{item.class}\n";
if item.is_a? Integer
return BigInteger.new( item );
end
if item.is_a? Rational
return BigRational.new( item.numerator ).divide( BigRational.new( item.denominator ) );
end
if item.is_a? Float # ?? what to do ??
return BigDecimal.new( item.to_s );
end
if item.is_a? Array
if item.size > 2
puts "len(item) > 2, remaining items ignored\n";
end
puts "item[0] type(#{item[0]}) = #{item[0].class}\n";
if item.size > 1
re = makeJasArith( item[0] );
if not re.isField()
re = BigRational.new( re.val );
end
im = makeJasArith( item[1] );
if not im.isField()
im = BigRational.new( im.val );
end
jasArith = BigComplex.new( re, im );
else
re = makeJasArith( item[0] );
if not re.isField()
re = BigRational.new( re.val );
end
jasArith = BigComplex.new( re );
end
return jasArith;
end
puts "unknown item type(#{item}) = #{item.class}\n";
return item;
end
java_import "edu.jas.gb.DGroebnerBaseSeq";
java_import "edu.jas.gb.EGroebnerBaseSeq";
java_import "edu.jas.gb.EReductionSeq";
java_import "edu.jas.gb.GroebnerBaseDistributedEC";
java_import "edu.jas.gb.GroebnerBaseDistributedHybridEC";
#java_import "edu.jas.gb.GBDist";
java_import "edu.jas.gb.GroebnerBaseParallel";
java_import "edu.jas.gb.GroebnerBaseSeq";
java_import "edu.jas.gb.GroebnerBaseSeqIter";
java_import "edu.jas.gb.GroebnerBaseSeqPairSeq";
java_import "edu.jas.gb.ReductionSeq";
java_import "edu.jas.gb.OrderedPairlist";
java_import "edu.jas.gb.OrderedSyzPairlist";
java_import "edu.jas.gb.GroebnerBaseSeqPairParallel";
java_import "edu.jas.gb.SolvableGroebnerBaseParallel";
java_import "edu.jas.gb.SolvableGroebnerBaseSeq";
java_import "edu.jas.gb.SolvableReductionSeq";
java_import "edu.jas.gb.WordGroebnerBaseSeq";
java_import "edu.jas.gbufd.GroebnerBasePseudoRecSeq";
java_import "edu.jas.gbufd.GroebnerBasePseudoSeq";
java_import "edu.jas.gbufd.SolvableGroebnerBasePseudoRecSeq";
java_import "edu.jas.gbufd.SolvableGroebnerBasePseudoSeq";
java_import "edu.jas.gbufd.WordGroebnerBasePseudoSeq";
java_import "edu.jas.gbufd.WordGroebnerBasePseudoRecSeq";
java_import "edu.jas.gbufd.RGroebnerBasePseudoSeq";
java_import "edu.jas.gbufd.GroebnerBasePseudoParallel";
java_import "edu.jas.gbufd.PseudoReductionSeq";
java_import "edu.jas.gbufd.RGroebnerBaseSeq";
java_import "edu.jas.gbufd.RReductionSeq";
java_import "edu.jas.gbufd.CharacteristicSetWu";
java_import "edu.jas.gbufd.GroebnerBaseFGLM";
java_import "edu.jas.gbufd.GroebnerBaseWalk";
java_import "edu.jas.gbufd.SyzygySeq";
java_import "edu.jas.gbufd.SolvableSyzygySeq";
=begin rdoc
Represents a JAS polynomial ideal: PolynomialList and Ideal.
Methods for Groebner bases, ideal sum, intersection and others.
=end
class SimIdeal
include Comparable
# the Java polynomial list, polynomial ring, and ideal decompositions
attr_reader :pset, :ring, :list, :roots, :prime, :primary #, :ideal
=begin rdoc
SimIdeal constructor.
=end
def initialize(ring,polystr="",list=nil)
@ring = ring;
if list == nil
sr = StringReader.new( polystr );
tok = GenPolynomialTokenizer.new(ring::ring,sr);
@list = tok.nextPolynomialList();
else
@list = rbarray2arraylist(list,rec=1);
end
#@list = PolyUtil.monic(@list);
@pset = OrderedPolynomialList.new(@ring.ring,@list);
#@ideal = Ideal.new(@pset);
@roots = nil;
@croots = nil;
@prime = nil;
@primary = nil;
#super(@ring::ring,@list) # non-sense, JRuby extends application.Ideal
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @pset.toScript();
end
=begin rdoc
Compare two ideals.
=end
def <=>(other)
s = Ideal.new(@pset);
o = Ideal.new(other.pset);
return s.compareTo(o);
end
=begin rdoc
Test if two ideals are equal.
=end
def ==(other)
if not other.is_a? SimIdeal
return false;
end
return (self <=> other) == 0;
end
=begin rdoc
Test if ideal is one.
=end
def isONE()
s = Ideal.new(@pset);
return s.isONE();
end
=begin rdoc
Test if ideal is zero.
=end
def isZERO()
s = Ideal.new(@pset);
return s.isZERO();
end
=begin rdoc
Create an ideal in a polynomial ring with parameter coefficients.
=end
def paramideal()
return ParamIdeal.new(@ring,"",@list);
end
=begin rdoc
Compute a Groebner base.
=end
def GB()
#if @ideal != nil
# return SimIdeal.new(@ring,"",nil,@ideal.GB());
#end
cofac = @ring.ring.coFac;
ff = @pset.list;
kind = "";
t = System.currentTimeMillis();
if cofac.isField()
#gg = GroebnerBaseSeq.new().GB(ff);
#gg = GroebnerBaseSeq.new(ReductionSeq.new(),OrderedPairlist.new()).GB(ff);
gg = GroebnerBaseSeq.new(ReductionSeq.new(),OrderedSyzPairlist.new()).GB(ff);
#gg = GroebnerBaseSeqIter.new(ReductionSeq.new(),OrderedSyzPairlist.new()).GB(ff);
kind = "field"
else
if cofac.is_a? GenPolynomialRing and cofac.isCommutative()
gg = GroebnerBasePseudoRecSeq.new(cofac).GB(ff);
kind = "pseudoRec"
else
gg = GroebnerBasePseudoSeq.new(cofac).GB(ff);
kind = "pseudo"
end
end
t = System.currentTimeMillis() - t;
puts "sequential(#{kind}) GB executed in #{t} ms\n";
return SimIdeal.new(@ring,"",gg);
end
=begin rdoc
Test if this is a Groebner base.
=end
def isGB()
s = @pset;
cofac = s.ring.coFac;
ff = s.list;
t = System.currentTimeMillis();
if cofac.isField()
b = GroebnerBaseSeq.new().isGB(ff);
else
if cofac.is_a? GenPolynomialRing and cofac.isCommutative()
b = GroebnerBasePseudoRecSeq.new(cofac).isGB(ff);
else
b = GroebnerBasePseudoSeq.new(cofac).isGB(ff);
end
end
t = System.currentTimeMillis() - t;
puts "isGB = #{b} executed in #{t} ms\n";
return b;
end
=begin rdoc
Compute an e-Groebner base.
=end
def eGB()
s = @pset;
cofac = s.ring.coFac;
ff = s.list;
t = System.currentTimeMillis();
if cofac.isField()
gg = GroebnerBaseSeq.new().GB(ff);
else
gg = EGroebnerBaseSeq.new().GB(ff)
end
t = System.currentTimeMillis() - t;
puts "sequential e-GB executed in #{t} ms\n";
return SimIdeal.new(@ring,"",gg);
end
=begin rdoc
Test if this is an e-Groebner base.
=end
def iseGB()
s = @pset;
cofac = s.ring.coFac;
ff = s.list;
t = System.currentTimeMillis();
if cofac.isField()
b = GroebnerBaseSeq.new().isGB(ff);
else
b = EGroebnerBaseSeq.new().isGB(ff)
end
t = System.currentTimeMillis() - t;
puts "is e-GB = #{b} executed in #{t} ms\n";
return b;
end
=begin rdoc
Compute an extended e-Groebner base.
=end
def eExtGB()
s = @pset;
cofac = s.ring.coFac;
ff = s.list;
t = System.currentTimeMillis();
if cofac.isField()
gg = GroebnerBaseSeq.new().extGB(ff);
else
gg = EGroebnerBaseSeq.new().extGB(ff)
end
t = System.currentTimeMillis() - t;
puts "sequential extended e-GB executed in #{t} ms\n";
return gg; #SimIdeal.new(@ring,"",gg);
end
=begin rdoc
Test if eg is an extended e-Groebner base.
=end
def iseExtGB(eg)
s = @pset;
cofac = s.ring.coFac;
ff = s.list;
t = System.currentTimeMillis();
if cofac.isField()
b = GroebnerBaseSeq.new().isMinReductionMatrix(eg);
else
b = EGroebnerBaseSeq.new().isMinReductionMatrix(eg)
end
t = System.currentTimeMillis() - t;
#puts "sequential test extended e-GB executed in #{t} ms\n";
return b;
end
=begin rdoc
Compute an d-Groebner base.
=end
def dGB()
s = @pset;
cofac = s.ring.coFac;
ff = s.list;
t = System.currentTimeMillis();
if cofac.isField()
gg = GroebnerBaseSeq.new().GB(ff);
else
gg = DGroebnerBaseSeq.new().GB(ff)
end
t = System.currentTimeMillis() - t;
puts "sequential d-GB executed in #{t} ms\n";
return SimIdeal.new(@ring,"",gg);
end
=begin rdoc
Test if this is a d-Groebner base.
=end
def isdGB()
s = @pset;
cofac = s.ring.coFac;
ff = s.list;
t = System.currentTimeMillis();
if cofac.isField()
b = GroebnerBaseSeq.new().isGB(ff);
else
b = DGroebnerBaseSeq.new().isGB(ff)
end
t = System.currentTimeMillis() - t;
puts "is d-GB = #{b} executed in #{t} ms\n";
return b;
end
=begin rdoc
Compute in parallel a Groebner base.
=end
def parUnusedGB(th)
s = @pset;
ff = s.list;
bbpar = GroebnerBaseSeqPairParallel.new(th);
t = System.currentTimeMillis();
gg = bbpar.GB(ff);
t = System.currentTimeMillis() - t;
bbpar.terminate();
puts "parallel-old #{th} executed in #{t} ms\n";
return SimIdeal.new(@ring,"",gg);
end
=begin rdoc
Compute in parallel a Groebner base.
=end
def parGB(th)
s = @pset;
ff = s.list;
cofac = s.ring.coFac;
if cofac.isField()
bbpar = GroebnerBaseParallel.new(th);
else
bbpar = GroebnerBasePseudoParallel.new(th,cofac);
end
t = System.currentTimeMillis();
gg = bbpar.GB(ff);
t = System.currentTimeMillis() - t;
bbpar.terminate();
puts "parallel #{th} executed in #{t} ms\n";
return SimIdeal.new(@ring,"",gg);
end
=begin rdoc
Compute on a distributed system a Groebner base.
=end
def distGB(th=2,machine="examples/machines.localhost",port=55711)
s = @pset;
ff = s.list;
t = System.currentTimeMillis();
# old: gbd = GBDist.new(th,machine,port);
gbd = GroebnerBaseDistributedEC.new(machine,th,port);
#gbd = GroebnerBaseDistributedHybridEC.new(machine,th,3,port);
t1 = System.currentTimeMillis();
gg = gbd.GB(ff);
t1 = System.currentTimeMillis() - t1;
gbd.terminate(false);
t = System.currentTimeMillis() - t;
puts "distributed #{th} executed in #{t1} ms (#{t-t1} ms start-up)\n";
return SimIdeal.new(@ring,"",gg);
end
=begin rdoc
Client for a distributed computation.
=end
def distClient(port=4711)
s = @pset;
e1 = ExecutableServer.new( port );
e1.init();
e2 = ExecutableServer.new( port+1 );
e2.init();
@exers = [e1,e2];
return nil;
end
=begin rdoc
Client for a distributed computation.
=end
def distClientStop()
for es in @exers;
es.terminate();
end
return nil;
end
=begin rdoc
Compute a normal form of p with respect to this ideal.
=end
def reduction(p)
s = @pset;
gg = s.list;
if p.is_a? RingElem
p = p.elem;
end
#t = System.currentTimeMillis();
if @ring.ring.coFac.isField()
n = ReductionSeq.new().normalform(gg,p);
else
n = PseudoReductionSeq.new().normalform(gg,p);
#ff = PseudoReductionSeq.New().normalformFactor(gg,p);
#print "ff.multiplicator = " + str(ff.multiplicator)
end
#t = System.currentTimeMillis() - t;
#puts "sequential reduction executed in " + str(t) + " ms";
return RingElem.new(n);
end
=begin rdoc
Compute a e-normal form of p with respect to this ideal.
=end
def eReduction(p)
s = @pset;
gg = s.list;
if p.is_a? RingElem
p = p.elem;
end
t = System.currentTimeMillis();
n = EReductionSeq.new().normalform(gg,p);
t = System.currentTimeMillis() - t;
puts "sequential eReduction executed in " + str(t) + " ms";
return RingElem.new(n);
end
=begin rdoc
Compute a e-normal form with recording in row of p with respect to this ideal.
=end
def eReductionRec(row, p)
s = @pset;
gg = s.list;
row = rbarray2arraylist(row,nil,rec=1)
if p.is_a? RingElem
p = p.elem;
end
#puts "p = " + str(p);
#puts "gg = " + str(gg);
#puts "row_1 = " + str(row);
t = System.currentTimeMillis();
n = EReductionSeq.new().normalform(row,gg,p);
t = System.currentTimeMillis() - t;
#puts "row_2 = " + str(row);
puts "sequential eReduction recording executed in " + str(t) + " ms";
#row = row.map{|a| RingElem.new(a) };
return row, RingElem.new(n);
end
=begin rdoc
Test if n is a e-normalform with recording in row of p with respect to this ideal.
=end
def iseReductionRec(row, p, n)
s = @pset;
gg = s.list;
row = rbarray2arraylist(row,nil,rec=1)
if p.is_a? RingElem
p = p.elem;
end
if n.is_a? RingElem
n = n.elem;
end
b = EReductionSeq.new().isReductionNF(row,gg,p,n);
return b;
end
=begin rdoc
Compute a normal form of this ideal with respect to reducer.
=end
def NF(reducer)
s = @pset;
ff = s.list;
gg = reducer.list;
t = System.currentTimeMillis();
nn = ReductionSeq.new().normalform(gg,ff);
t = System.currentTimeMillis() - t;
puts "sequential NF executed in #{t} ms\n";
return SimIdeal.new(@ring,"",nn);
end
=begin rdoc
Represent p as element of this ideal.
=end
def lift(p)
gg = @pset.list;
z = @ring.ring.getZERO();
rr = gg.map { |x| z };
if p.is_a? RingElem
p = p.elem;
end
#t = System.currentTimeMillis();
if @ring.ring.coFac.isField()
n = ReductionSeq.new().normalform(rr,gg,p);
else
n = PseudoReductionSeq.new().normalform(rr,gg,p);
end
if not n.isZERO()
raise StandardError, "p ist not a member of the ideal"
end
#t = System.currentTimeMillis() - t;
#puts "sequential reduction executed in " + str(t) + " ms";
return rr.map { |x| RingElem.new(x) };
end
=begin rdoc
Compute a interreduced ideal basis of this.
=end
def interreduced_basis()
ff = @pset.list;
nn = ReductionSeq.new().irreducibleSet(ff);
return nn.map{ |x| RingElem.new(x) };
end
=begin rdoc
Compute the intersection of this and the given polynomial ring.
=end
def intersectRing(ring)
s = Ideal.new(@pset);
nn = s.intersect(ring.ring);
return SimIdeal.new(ring,"",nn.getList());
end
=begin rdoc
Compute the intersection of this and the given ideal.
=end
def intersect(id2)
s1 = Ideal.new(@pset);
s2 = Ideal.new(id2.pset);
nn = s1.intersect(s2);
return SimIdeal.new(@ring,"",nn.getList());
end
=begin rdoc
Compute the elimination ideal of this and the given polynomial ring.
=end
def eliminateRing(ring)
s = Ideal.new(@pset);
nn = s.eliminate(ring.ring);
r = Ring.new( "", nn.getRing() );
return SimIdeal.new(r,"",nn.getList());
end
=begin rdoc
Compute the saturation of this and the given ideal.
=end
def sat(id2)
s1 = Ideal.new(@pset);
s2 = Ideal.new(id2.pset);
#nn = s1.infiniteQuotient(s2);
nn = s1.infiniteQuotientRab(s2);
mm = nn.getList(); #PolyUtil.monicRec(nn.getList());
return SimIdeal.new(@ring,"",mm);
end
=begin rdoc
Compute the sum of this and the ideal.
=end
def sum(other)
s = Ideal.new(@pset);
t = Ideal.new(other.pset);
nn = s.sum( t );
return SimIdeal.new(@ring,"",nn.getList());
end
=begin rdoc
Compute the univariate polynomials in each variable of this ideal.
=end
def univariates()
s = Ideal.new(@pset);
ll = s.constructUnivariate();
nn = ll.map {|e| RingElem.new(e) };
return nn;
end
=begin rdoc
Compute the inverse polynomial modulo this ideal, if it exists.
=end
def inverse(p)
if p.is_a? RingElem
p = p.elem;
end
s = Ideal.new(@pset);
i = s.inverse(p);
return RingElem.new(i);
end
=begin rdoc
Compute the e- inverse polynomial modulo this e-ideal, if it exists.
=end
def eInverse(p)
if p.is_a? RingElem
p = p.elem;
end
i = EGroebnerBaseSeq.new().inverse(p, @list);
return RingElem.new(i);
end
=begin rdoc
Test if i is a e-inverse of p modulo this e-ideal.
=end
def iseInverse(i, p)
if i.is_a? RingElem
i = i.elem;
end
if p.is_a? RingElem
p = p.elem;
end
r = EReductionSeq.new().normalform(@list, i.multiply(p));
#puts "r = " + str(r);
return r.isONE();
end
=begin rdoc
Optimize the term order on the variables.
=end
def optimize()
p = @pset;
o = TermOrderOptimization.optimizeTermOrder(p);
r = Ring.new("",o.ring);
return SimIdeal.new(r,"",o.list);
end
=begin rdoc
Compute the dimension of the ideal.
=end
def dimension()
ii = Ideal.new(@pset);
d = ii.dimension();
return d;
end
=begin rdoc
Compute real roots of 0-dim ideal.
=end
def realRoots()
ii = Ideal.new(@pset);
@roots = PolyUtilApp.realAlgebraicRoots(ii);
for r in @roots
r.doDecimalApproximation();
end
return @roots;
end
=begin rdoc
Print decimal approximation of real roots of 0-dim ideal.
=end
def realRootsPrint()
if @roots == nil
ii = Ideal.new(@pset);
@roots = PolyUtilApp.realAlgebraicRoots(ii);
for r in @roots
r.doDecimalApproximation();
end
end
for ir in @roots
for dr in ir.decimalApproximation()
puts dr.to_s;
end
puts;
end
end
=begin rdoc
Compute radical decomposition of this ideal.
=end
def radicalDecomp()
ii = Ideal.new(@pset);
@radical = ii.radicalDecomposition();
return @radical;
end
=begin rdoc
Compute irreducible decomposition of this ideal.
=end
def decomposition()
ii = Ideal.new(@pset);
@irrdec = ii.decomposition();
return @irrdec;
end
=begin rdoc
Compute complex roots of 0-dim ideal.
=end
def complexRoots()
ii = Ideal.new(@pset);
@croots = PolyUtilApp.complexAlgebraicRoots(ii);
for r in @croots
r.doDecimalApproximation();
end
return @croots;
end
=begin rdoc
Print decimal approximation of complex roots of 0-dim ideal.
=end
def complexRootsPrint()
if @croots == nil
ii = Ideal.new(@pset);
@croots = PolyUtilApp.complexAlgebraicRoots(ii);
for r in @croots
r.doDecimalApproximation();
end
end
for ic in @croots
for dc in ic.decimalApproximation()
puts dc.to_s;
end
puts;
end
end
=begin rdoc
Compute prime decomposition of this ideal.
=end
def primeDecomp()
ii = Ideal.new(@pset);
@prime = ii.primeDecomposition();
return @prime;
end
=begin rdoc
Compute primary decomposition of this ideal.
=end
def primaryDecomp()
ii = Ideal.new(@pset);
## if @prime == nil:
## @prime = I.primeDecomposition();
@primary = ii.primaryDecomposition();
return @primary;
end
=begin rdoc
Convert rational coefficients to integer coefficients.
=end
def toInteger()
p = @pset;
l = p.list;
r = p.ring;
ri = GenPolynomialRing.new( BigInteger.new(), r.nvar, r.tord, r.vars );
pi = PolyUtil.integerFromRationalCoefficients(ri,l);
r = Ring.new("",ri);
return SimIdeal.new(r,"",pi);
end
=begin rdoc
Convert integer coefficients to modular coefficients.
=end
def toModular(mf)
p = @pset;
l = p.list;
r = p.ring;
if mf.is_a? RingElem
mf = mf.ring;
end
rm = GenPolynomialRing.new( mf, r.nvar, r.tord, r.vars );
pm = PolyUtil.fromIntegerCoefficients(rm,l);
r = Ring.new("",rm);
return SimIdeal.new(r,"",pm);
end
=begin rdoc
Compute a Characteristic Set.
=end
def CS()
s = @pset;
cofac = s.ring.coFac;
ff = s.list;
t = System.currentTimeMillis();
if cofac.isField()
gg = CharacteristicSetWu.new().characteristicSet(ff);
else
puts "CS not implemented for coefficients #{cofac.toScriptFactory()}\n";
gg = nil;
end
t = System.currentTimeMillis() - t;
puts "sequential char set executed in #{t} ms\n";
return SimIdeal.new(@ring,"",gg);
end
=begin rdoc
Test for Characteristic Set.
=end
def isCS()
s = @pset;
cofac = s.ring.coFac;
ff = s.list.clone();
Collections.reverse(ff); # todo
t = System.currentTimeMillis();
if cofac.isField()
b = CharacteristicSetWu.new().isCharacteristicSet(ff);
else
puts "isCS not implemented for coefficients #{cofac.toScriptFactory()}\n";
b = false;
end
t = System.currentTimeMillis() - t;
#puts "sequential is char set executed in #{t} ms\n";
return b;
end
=begin rdoc
Compute a normal form of polynomial p with respect this characteristic set.
=end
def csReduction(p)
s = @pset;
ff = s.list.clone();
Collections.reverse(ff); # todo
if p.is_a? RingElem
p = p.elem;
end
t = System.currentTimeMillis();
nn = CharacteristicSetWu.new().characteristicSetReduction(ff,p);
t = System.currentTimeMillis() - t;
#puts "sequential char set reduction executed in #{t} ms\n";
return RingElem.new(nn);
end
=begin rdoc
Syzygy of generating polynomials.
=end
def syzygy()
p = @pset;
l = p.list;
t = System.currentTimeMillis();
s = SyzygySeq.new(p.ring.coFac).zeroRelations( l );
t = System.currentTimeMillis() - t;
puts "executed Syzygy in #{t} ms\n";
m = CommutativeModule.new("",p.ring);
return SubModule.new(m,"",s);
end
=begin rdoc
Test if this is a syzygy of the module in m.
=end
def isSyzygy(m)
p = @pset;
g = p.list;
l = m.list;
#puts "l = #{l}";
#puts "g = #{g}";
t = System.currentTimeMillis();
z = SyzygySeq.new(p.ring.coFac).isZeroRelation( l, g );
t = System.currentTimeMillis() - t;
puts "executed isSyzygy in #{t} ms\n";
return z;
end
end
=begin rdoc
Represents a JAS polynomial ideal with polynomial coefficients.
Methods to compute comprehensive Groebner bases.
=end
class ParamIdeal
=begin rdoc
Parametric ideal constructor.
=end
def initialize(ring,polystr="",list=nil,gbsys=nil)
@ring = ring;
if list == nil and polystr != nil
sr = StringReader.new( polystr );
tok = GenPolynomialTokenizer.new(ring.ring,sr);
@list = tok.nextPolynomialList();
else
@list = rbarray2arraylist(list,rec=1);
end
@gbsys = gbsys;
@pset = OrderedPolynomialList.new(ring.ring,@list);
end
=begin rdoc
Create a string representation.
=end
def to_s()
if @gbsys == nil
return @pset.toScript();
else
return @pset.toScript() + "\n" + @gbsys.toScript();
# return @pset.toScript() + "\n" + @gbsys.to_s;
end
end
=begin rdoc
Optimize the term order on the variables of the coefficients.
=end
def optimizeCoeff()
p = @pset;
o = TermOrderOptimization.optimizeTermOrderOnCoefficients(p);
r = Ring.new("",o.ring);
return ParamIdeal.new(r,"",o.list);
end
=begin rdoc
Optimize the term order on the variables of the quotient coefficients.
=end
def optimizeCoeffQuot()
p = @pset;
l = p.list;
r = p.ring;
q = r.coFac;
c = q.ring;
rc = GenPolynomialRing.new( c, r.nvar, r.tord, r.vars );
#puts "rc = ", rc;
lp = PolyUfdUtil.integralFromQuotientCoefficients(rc,l);
#puts "lp = ", lp;
pp = PolynomialList.new(rc,lp);
#puts "pp = ", pp;
oq = TermOrderOptimization.optimizeTermOrderOnCoefficients(pp);
oor = oq.ring;
qo = oor.coFac;
cq = QuotientRing.new( qo );
rq = GenPolynomialRing.new( cq, r.nvar, r.tord, r.vars );
#puts "rq = ", rq;
o = PolyUfdUtil.quotientFromIntegralCoefficients(rq,oq.list);
r = Ring.new("",rq);
return ParamIdeal.new(r,"",o);
end
=begin rdoc
Convert rational function coefficients to integral function coefficients.
=end
def toIntegralCoeff()
p = @pset;
l = p.list;
r = p.ring;
q = r.coFac;
c = q.ring;
rc = GenPolynomialRing.new( c, r.nvar, r.tord, r.vars );
#puts "rc = ", rc;
lp = PolyUfdUtil.integralFromQuotientCoefficients(rc,l);
#puts "lp = ", lp;
r = Ring.new("",rc);
return ParamIdeal.new(r,"",lp);
end
=begin rdoc
Convert integral function coefficients to modular function coefficients.
=end
def toModularCoeff(mf)
p = @pset;
l = p.list;
r = p.ring;
c = r.coFac;
#puts "c = ", c;
if mf.is_a? RingElem
mf = mf.ring;
end
cm = GenPolynomialRing.new( mf, c.nvar, c.tord, c.vars );
#puts "cm = ", cm;
rm = GenPolynomialRing.new( cm, r.nvar, r.tord, r.vars );
#puts "rm = ", rm;
pm = PolyUfdUtil.fromIntegerCoefficients(rm,l);
r = Ring.new("",rm);
return ParamIdeal.new(r,"",pm);
end
=begin rdoc
Convert integral function coefficients to rational function coefficients.
=end
def toQuotientCoeff()
p = @pset;
l = p.list;
r = p.ring;
c = r.coFac;
#puts "c = ", c;
q = QuotientRing.new(c);
#puts "q = ", q;
qm = GenPolynomialRing.new( q, r.nvar, r.tord, r.vars );
#puts "qm = ", qm;
pm = PolyUfdUtil.quotientFromIntegralCoefficients(qm,l);
r = Ring.new("",qm);
return ParamIdeal.new(r,"",pm);
end
=begin rdoc
Compute a Groebner base.
=end
def GB()
ii = SimIdeal.new(@ring,"",@pset.list);
g = ii.GB();
return ParamIdeal.new(g.ring,"",g.pset.list);
end
=begin rdoc
Test if this is a Groebner base.
=end
def isGB()
ii = SimIdeal.new(@ring,"",@pset.list);
return ii.isGB();
end
=begin rdoc
Compute a comprehensive Groebner base.
=end
def CGB()
s = @pset;
ff = s.list;
t = System.currentTimeMillis();
if @gbsys == nil
@gbsys = ComprehensiveGroebnerBaseSeq.new(@ring.ring.coFac).GBsys(ff);
end
gg = @gbsys.getCGB();
t = System.currentTimeMillis() - t;
puts "sequential comprehensive executed in #{t} ms\n";
return ParamIdeal.new(@ring,"",gg,@gbsys);
end
=begin rdoc
Compute a comprehensive Groebner system.
=end
def CGBsystem()
s = @pset;
ff = s.list;
t = System.currentTimeMillis();
ss = ComprehensiveGroebnerBaseSeq.new(@ring.ring.coFac).GBsys(ff);
t = System.currentTimeMillis() - t;
puts "sequential comprehensive system executed in #{t} ms\n";
return ParamIdeal.new(@ring,nil,ff,ss);
end
=begin rdoc
Test if this is a comprehensive Groebner base.
=end
def isCGB()
s = @pset;
ff = s.list;
t = System.currentTimeMillis();
b = ComprehensiveGroebnerBaseSeq.new(@ring.ring.coFac).isGB(ff);
t = System.currentTimeMillis() - t;
puts "isCGB = #{b} executed in #{t} ms\n";
return b;
end
=begin rdoc
Test if this is a comprehensive Groebner system.
=end
def isCGBsystem()
s = @pset;
ss = @gbsys;
t = System.currentTimeMillis();
b = ComprehensiveGroebnerBaseSeq.new(@ring.ring.coFac).isGBsys(ss);
t = System.currentTimeMillis() - t;
puts "isCGBsystem = #{b} executed in #{t} ms\n";
return b;
end
=begin rdoc
Convert Groebner system to a representation with regular ring coefficents.
=end
def regularRepresentation()
if @gbsys == nil
return nil;
end
gg = PolyUtilApp.toProductRes(@gbsys.list);
ring = Ring.new(nil,gg[0].ring);
return ParamIdeal.new(ring,nil,gg);
end
=begin rdoc
Convert Groebner system to a boolean closed representation with regular ring coefficents.
=end
def regularRepresentationBC()
if @gbsys == nil
return nil;
end
gg = PolyUtilApp.toProductRes(@gbsys.list);
ring = Ring.new(nil,gg[0].ring);
res = RReductionSeq.new();
gg = res.booleanClosure(gg);
return ParamIdeal.new(ring,nil,gg);
end
=begin rdoc
Compute a Groebner base over a regular ring.
=end
def regularGB()
s = @pset;
ff = s.list;
t = System.currentTimeMillis();
gg = RGroebnerBasePseudoSeq.new(@ring.ring.coFac).GB(ff);
t = System.currentTimeMillis() - t;
puts "sequential regular GB executed in #{t} ms\n";
return ParamIdeal.new(@ring,nil,gg);
end
=begin rdoc
Test if this is Groebner base over a regular ring.
=end
def isRegularGB()
s = @pset;
ff = s.list;
t = System.currentTimeMillis();
b = RGroebnerBasePseudoSeq.new(@ring.ring.coFac).isGB(ff);
t = System.currentTimeMillis() - t;
puts "isRegularGB = #{b} executed in #{t} ms\n";
return b;
end
=begin rdoc
Get each component (slice) of regular ring coefficients separate.
=end
def stringSlice()
s = @pset;
b = PolyUtilApp.productToString(s);
return b;
end
end
=begin rdoc
Represents a JAS solvable polynomial ring: GenSolvablePolynomialRing.
Has a method to create solvable ideals.
=end
class SolvableRing < Ring
=begin rdoc
Solvable polynomial ring constructor.
=end
def initialize(ringstr="",ring=nil)
if ring == nil
sr = StringReader.new( ringstr );
tok = RingFactoryTokenizer.new(sr);
pfac = tok.nextSolvablePolynomialRing();
#tok = GenPolynomialTokenizer.new(sr);
#@pset = tok.nextSolvablePolynomialSet();
@ring = pfac;
else
if ring.is_a? Ring
@ring = ring.ring
else
@ring = ring;
end
end
if @ring.isAssociative()
puts "ring is associative";
else
puts "warning: ring is not associative";
end
#puts "SolvableRing to super()";
super("",@ring)
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @ring.toScript(); #.to_s;
end
=begin rdoc
Create a solvable ideal.
=end
def ideal(ringstr="",list=nil)
return SolvIdeal.new(self,ringstr,list);
end
=begin rdoc
Get the one of the solvable polynomial ring.
=end
def one()
return RingElem.new( @ring.getONE() );
end
=begin rdoc
Get the zero of the solvable polynomial ring.
=end
def zero()
return RingElem.new( @ring.getZERO() );
end
=begin rdoc
Create an element from a string or object.
=end
def element(poly)
if not poly.is_a? String
begin
if @ring == poly.ring
return RingElem.new(poly);
end
rescue => e
# pass
end
poly = str(poly);
end
ii = SolvIdeal.new(self, "( " + poly + " )");
list = ii.pset.list;
if list.size > 0
return RingElem.new( list[0] );
end
end
end
=begin rdoc
Represents a JAS solvable polynomial ring: GenSolvablePolynomialRing.
Provides more convenient constructor.
Then returns a Ring.
=end
class SolvPolyRing < SolvableRing
@auto_inject = true
@auto_lowervar = false
class << self # means add to class
# inject variables into environment
attr_accessor :auto_inject
# avoid capital letter variables
attr_accessor :auto_lowervar
end
=begin rdoc
Ring constructor.
coeff = factory for coefficients,
vars = string with variable names,
order = term order,
rel = triple list of relations. (e,f,p,...) with e * f = p as relation.
=end
def initialize(coeff,vars,order,rel=[])
if coeff == nil
raise ArgumentError, "No coefficient given."
end
cf = coeff;
if coeff.is_a? RingElem
cf = coeff.elem.factory();
end
if coeff.is_a? Ring
cf = coeff.ring;
end
if vars == nil
raise ArgumentError, "No variable names given."
end
names = vars;
if vars.is_a? String
names = GenPolynomialTokenizer.variableList(vars);
end
nv = names.size;
#to = PolyRing.lex;
to = PolyRing.grad;
if order.is_a? TermOrder
to = order;
end
if order.is_a? Array # ruby has no keyword params
rel = order;
end
ll = [];
for x in rel
if x.is_a? RingElem
x = x.elem;
end
ll << x;
end
constSolv = false;
(0..ll.size-1).step(3) { |i|
#puts "ll[i+1] = #{ll[i+1]}"
if ll[i+1].isConstant()
constSolv = true;
end
}
#puts "constSolv = #{constSolv}"
cfs = cf.toScript();
if cfs[0] == "0"
cfs = cf.toScriptFactory();
end
#puts "cf = #{cfs}"
recSolv = cf.is_a? GenPolynomialRing
recSolvWord = cf.is_a? GenWordPolynomialRing
resWord = cf.is_a? WordResidueRing
quotSolv = cf.is_a? SolvableQuotientRing
resSolv = cf.is_a? SolvableResidueRing
locSolv = cf.is_a? SolvableLocalRing
locresSolv = cf.is_a? SolvableLocalResidueRing
if recSolv and not constSolv
recSolv = false;
end
#puts "cf = " + cf.getClass().to_s + ", quotSolv = " + quotSolv.to_s + ", recSolv = " + recSolv.to_s;
if recSolv
puts "RecSolvablePolynomialRing: " + cfs;
ring = RecSolvablePolynomialRing.new(cf,nv,to,names);
table = ring.table;
coeffTable = ring.coeffTable;
elsif recSolvWord
puts "RecSolvableWordPolynomialRing: " + cfs;
ring = RecSolvableWordPolynomialRing.new(cf,nv,to,names);
table = ring.table;
coeffTable = ring.coeffTable;
elsif resWord
puts "ResWordSolvablePolynomialRing: " + cfs;
#ring = RecSolvableWordPolynomialRing.new(cf,nv,to,names);
ring = ResidueSolvableWordPolynomialRing.new(cf,nv,to,names);
#puts "ring = #{ring.toScript()}";
table = ring.table;
coeffTable = ring.polCoeff.coeffTable;
elsif resSolv
puts "ResidueSolvablePolynomialRing: " + cfs;
#ring = ResidueSolvablePolynomialRing.new(cf,nv,to,names);
ring = QLRSolvablePolynomialRing.new(cf,nv,to,names);
table = ring.table;
coeffTable = ring.polCoeff.coeffTable;
elsif quotSolv
puts "QuotSolvablePolynomialRing: " + cfs;
#ring = QuotSolvablePolynomialRing.new(cf,nv,to,names);
ring = QLRSolvablePolynomialRing.new(cf,nv,to,names);
table = ring.table;
coeffTable = ring.polCoeff.coeffTable;
elsif locSolv
puts "LocalSolvablePolynomialRing: " + cfs;
#ring = LocalSolvablePolynomialRing.new(cf,nv,to,names);
ring = QLRSolvablePolynomialRing.new(cf,nv,to,names);
table = ring.table;
coeffTable = ring.polCoeff.coeffTable;
elsif locresSolv
puts "LocalResidueSolvablePolynomialRing: " + cfs;
#puts "QLRSolvablePolynomialRing: " + cfs;
ring = QLRSolvablePolynomialRing.new(cf,nv,to,names);
table = ring.table;
coeffTable = ring.polCoeff.coeffTable;
else
puts "GenSolvablePolynomialRing: " + cfs;
ring = GenSolvablePolynomialRing.new(cf,nv,to,names);
table = ring.table;
coeffTable = table;
end
#puts "ll = " + str(ll);
(0..ll.size-1).step(3) { |i|
puts "adding relation: " + str(ll[i]) + " * " + str(ll[i+1]) + " = " + str(ll[i+2]);
if ll[i+1].isConstant()
if recSolv or recSolvWord
#puts "r coeff type " + str(ll[i].class);
#coeffTable.update( ll[i], ll[i+1].leadingBaseCoefficient(), ll[i+2] );
coeffTable.update( ll[i], ll[i+1], ll[i+2] );
elsif resWord or resSolv or quotSolv or locSolv or locresSolv
#puts "rw coeff type " + str(ll[i].class);
coeffTable.update( ring.toPolyCoefficients(ll[i]),
ring.toPolyCoefficients(ll[i+1]),
ring.toPolyCoefficients(ll[i+2]) );
end
else # no coeff relation
#puts "ll[i], ll[i+1], ll[i+2]: " + str(ll[i]) + ", " + str(ll[i+1]) + ", " + str(ll[i+2]);
#puts "poly type " + str(ll[i].class);
table.update( ll[i], ll[i+1], ll[i+2] );
if locresSolv or locSolv or quotSolv or resSolv or resWord
#puts "ring.polCoeff.table " + str(ring.polCoeff.table.toScript());
ring.polCoeff.table.update( ring.toPolyCoefficients(ll[i]),
ring.toPolyCoefficients(ll[i+1]),
ring.toPolyCoefficients(ll[i+2]) );
end
end
}
#puts "ring " + ring.toScript();
#puts "isAssoc " + str(ring.isAssociative());
@ring = ring;
#puts "SolvPolyRing to super()";
super("",@ring)
# puts "ai = " + self.class.auto_inject.to_s
# done in super():
#if self.class.auto_inject or self.class.superclass.auto_inject
# inject_variables();
#end
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @ring.toScript();
end
end
=begin rdoc
Represents a JAS solvable polynomial ideal.
Methods for left, right two-sided Groebner basees and others.
=end
class SolvIdeal
include Comparable
# the Java ordered polynomial list, polynomial ring, and polynomial list
attr_reader :pset, :ring, :list #, :ideal
=begin rdoc
Constructor for an ideal in a solvable polynomial ring.
=end
def initialize(ring,ringstr="",list=nil)
@ring = ring;
if list == nil
sr = StringReader.new( ringstr );
tok = GenPolynomialTokenizer.new(ring.ring,sr);
@list = tok.nextSolvablePolynomialList();
else
@list = rbarray2arraylist(list,rec=1);
end
@pset = OrderedPolynomialList.new(ring.ring,@list);
#@ideal = SolvableIdeal.new(@pset);
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @pset.toScript();
end
=begin rdoc
Compare two ideals.
=end
def <=>(other)
s = SolvableIdeal.new(@pset);
o = SolvableIdeal.new(other.pset);
return s.compareTo(o);
end
=begin rdoc
Test if two ideals are equal.
=end
def ==(other)
if not other.is_a? SolvIdeal
return false;
end
s, o = self, other;
return (s <=> o) == 0;
end
=begin rdoc
Test if ideal is one.
=end
def isONE()
s = SolvableIdeal.new(@pset);
return s.isONE();
end
=begin rdoc
Test if ideal is zero.
=end
def isZERO()
s = SolvableIdeal.new(@pset);
return s.isZERO();
end
=begin rdoc
Compute a left Groebner base.
=end
def leftGB()
#if ideal != nil
# return SolvIdeal.new(@ring,"",@ideal.leftGB());
#end
cofac = @ring.ring.coFac;
ff = @pset.list;
kind = "";
t = System.currentTimeMillis();
if cofac.is_a? GenPolynomialRing #and cofac.isCommutative()
gg = SolvableGroebnerBasePseudoRecSeq.new(cofac).leftGB(ff);
kind = "pseudoRec"
else
if cofac.isField() or not cofac.isCommutative()
gg = SolvableGroebnerBaseSeq.new().leftGB(ff);
kind = "field|nocom"
else
gg = SolvableGroebnerBasePseudoSeq.new(cofac).leftGB(ff);
kind = "pseudo"
end
end
t = System.currentTimeMillis() - t;
puts "sequential(#{kind}) leftGB executed in #{t} ms\n";
return SolvIdeal.new(@ring,"",gg);
end
=begin rdoc
Test if this is a left Groebner base.
=end
def isLeftGB()
cofac = @ring.ring.coFac;
ff = @pset.list;
kind = "";
t = System.currentTimeMillis();
if cofac.is_a? GenPolynomialRing #and cofac.isCommutative()
b = SolvableGroebnerBasePseudoRecSeq.new(cofac).isLeftGB(ff);
kind = "pseudoRec"
else
if cofac.isField() or not cofac.isCommutative()
b = SolvableGroebnerBaseSeq.new().isLeftGB(ff);
kind = "field|nocom"
else
b = SolvableGroebnerBasePseudoSeq.new(cofac).isLeftGB(ff);
kind = "pseudo"
end
end
t = System.currentTimeMillis() - t;
puts "isLeftGB(#{kind}) = #{b} executed in #{t} ms\n";
return b;
end
=begin rdoc
Compute a two-sided Groebner base.
=end
def twosidedGB()
cofac = @ring.ring.coFac;
ff = @pset.list;
kind = "";
t = System.currentTimeMillis();
if cofac.is_a? GenPolynomialRing #and cofac.isCommutative()
gg = SolvableGroebnerBasePseudoRecSeq.new(cofac).twosidedGB(ff);
kind = "pseudoRec"
else
#puts "two-sided: " + cofac.to_s
if cofac.is_a? WordResidue #Ring
gg = SolvableGroebnerBasePseudoSeq.new(cofac).twosidedGB(ff);
kind = "pseudo"
else
if cofac.isField() or not cofac.isCommutative()
gg = SolvableGroebnerBaseSeq.new().twosidedGB(ff);
kind = "field|nocom"
else
gg = SolvableGroebnerBasePseudoSeq.new(cofac).twosidedGB(ff);
kind = "pseudo"
end
end
end
t = System.currentTimeMillis() - t;
puts "sequential(#{kind}) twosidedGB executed in #{t} ms\n";
return SolvIdeal.new(@ring,"",gg);
end
=begin rdoc
Test if this is a two-sided Groebner base.
=end
def isTwosidedGB()
cofac = @ring.ring.coFac;
ff = @pset.list;
kind = "";
t = System.currentTimeMillis();
if cofac.is_a? GenPolynomialRing #and cofac.isCommutative()
b = SolvableGroebnerBasePseudoRecSeq.new(cofac).isTwosidedGB(ff);
kind = "pseudoRec"
else
if cofac.isField() or not cofac.isCommutative()
b = SolvableGroebnerBaseSeq.new().isTwosidedGB(ff);
kind = "field|nocom"
else
b = SolvableGroebnerBasePseudoSeq.new(cofac).isTwosidedGB(ff);
kind = "pseudo"
end
end
t = System.currentTimeMillis() - t;
puts "isTwosidedGB(#{kind}) = #{b} executed in #{t} ms\n";
return b;
end
=begin rdoc
Compute a right Groebner base.
=end
def rightGB()
cofac = @ring.ring.coFac;
ff = @pset.list;
kind = "";
t = System.currentTimeMillis();
if cofac.is_a? GenPolynomialRing #and cofac.isCommutative()
gg = SolvableGroebnerBasePseudoRecSeq.new(cofac).rightGB(ff);
kind = "pseudoRec"
else
if cofac.isField() or not cofac.isCommutative()
gg = SolvableGroebnerBaseSeq.new().rightGB(ff);
kind = "field|nocom"
else
gg = SolvableGroebnerBasePseudoSeq.new(cofac).rightGB(ff);
kind = "pseudo"
end
end
t = System.currentTimeMillis() - t;
puts "sequential(#{kind}) rightGB executed in #{t} ms\n";
return SolvIdeal.new(@ring,"",gg);
end
=begin rdoc
Test if this is a right Groebner base.
=end
def isRightGB()
cofac = @ring.ring.coFac;
ff = @pset.list;
kind = "";
t = System.currentTimeMillis();
if cofac.is_a? GenPolynomialRing #and cofac.isCommutative()
b = SolvableGroebnerBasePseudoRecSeq.new(cofac).isRightGB(ff);
kind = "pseudoRec"
else
if cofac.isField() or not cofac.isCommutative()
b = SolvableGroebnerBaseSeq.new().isRightGB(ff);
kind = "field|nocom"
else
b = SolvableGroebnerBasePseudoSeq.new(cofac).isRightGB(ff);
kind = "pseudo"
end
end
t = System.currentTimeMillis() - t;
puts "isRightGB(#{kind}) = #{b} executed in #{t} ms\n";
return b;
end
=begin rdoc
Compute the intersection of this and a polynomial ring.
=end
def intersectRing(ring)
s = SolvableIdeal.new(@pset);
nn = s.intersect(ring.ring);
return SolvIdeal.new(@ring,"",nn.getList());
end
=begin rdoc
Compute the intersection of this and the other ideal.
=end
def intersect(other)
s = SolvableIdeal.new(@pset);
t = SolvableIdeal.new(other.pset);
nn = s.intersect( t );
return SolvIdeal.new(@ring,"",nn.getList());
end
=begin rdoc
Compute the sum of this and the other ideal.
=end
def sum(other)
s = SolvableIdeal.new(@pset);
t = SolvableIdeal.new(other.pset);
nn = s.sum( t );
return SolvIdeal.new(@ring,"",nn.getList());
end
=begin rdoc
Compute the univariate polynomials in each variable of this twosided ideal.
=end
def univariates()
s = SolvableIdeal.new(@pset);
ll = s.constructUnivariate();
nn = ll.map {|e| RingElem.new(e) };
return nn;
end
=begin rdoc
Convert to polynomials with SolvableQuotient coefficients.
=end
def toQuotientCoefficients()
if @pset.ring.coFac.is_a? SolvableResidueRing
cf = @pset.ring.coFac.ring;
elsif @pset.ring.coFac.is_a? GenSolvablePolynomialRing
cf = @pset.ring.coFac;
#elsif @pset.ring.coFac.is_a? GenPolynomialRing
# cf = @pset.ring.coFac;
# puts "cf = " + cf.toScript();
else
return self;
end
rrel = @pset.ring.table.relationList() + @pset.ring.polCoeff.coeffTable.relationList();
#puts "rrel = " + str(rrel);
qf = SolvableQuotientRing.new(cf);
qr = QuotSolvablePolynomialRing.new(qf,@pset.ring);
#puts "qr = " + str(qr);
qrel = rrel.map { |r| RingElem.new(qr.fromPolyCoefficients(r)) };
#puts "qrel = " + str(qrel);
qring = SolvPolyRing.new(qf,@ring.ring.getVars(),@ring.ring.tord,qrel);
#puts "qring = " + str(qring);
qlist = @list.map { |r| qr.fromPolyCoefficients(@ring.ring.toPolyCoefficients(r)) };
qlist = qlist.map { |r| RingElem.new(r) };
return SolvIdeal.new(qring,"",qlist);
end
=begin rdoc
Compute the inverse polynomial with respect to this twosided ideal.
=end
def inverse(p)
if p.is_a? RingElem
p = p.elem;
end
s = SolvableIdeal.new(@pset);
i = s.inverse(p);
return RingElem.new(i);
end
=begin rdoc
Compute a left normal form of p with respect to this ideal.
=end
def leftReduction(p)
s = @pset;
gg = s.list;
if p.is_a? RingElem
p = p.elem;
end
n = SolvableReductionSeq.new().leftNormalform(gg,p);
return RingElem.new(n);
end
=begin rdoc
Compute a right normal form of p with respect to this ideal.
=end
def rightReduction(p)
s = @pset;
gg = s.list;
if p.is_a? RingElem
p = p.elem;
end
n = SolvableReductionSeq.new().rightNormalform(gg,p);
return RingElem.new(n);
end
=begin rdoc
Compute a left Groebner base in parallel.
=end
def parLeftGB(th)
s = @pset;
ff = s.list;
bbpar = SolvableGroebnerBaseParallel.new(th);
t = System.currentTimeMillis();
gg = bbpar.leftGB(ff);
t = System.currentTimeMillis() - t;
bbpar.terminate();
puts "parallel #{th} leftGB executed in #{t} ms\n";
return SolvIdeal.new(@ring,"",gg);
end
=begin rdoc
Compute a two-sided Groebner base in parallel.
=end
def parTwosidedGB(th)
s = @pset;
ff = s.list;
bbpar = SolvableGroebnerBaseParallel.new(th);
t = System.currentTimeMillis();
gg = bbpar.twosidedGB(ff);
t = System.currentTimeMillis() - t;
bbpar.terminate();
puts "parallel #{th} twosidedGB executed in #{t} ms\n";
return SolvIdeal.new(@ring,"",gg);
end
=begin rdoc
Left Syzygy of generating polynomials.
=end
def leftSyzygy()
p = @pset;
l = p.list;
t = System.currentTimeMillis();
s = SolvableSyzygySeq.new(p.ring.coFac).leftZeroRelationsArbitrary( l );
m = SolvableModule.new("",p.ring);
t = System.currentTimeMillis() - t;
puts "executed leftSyzygy in #{t} ms\n";
return SolvableSubModule.new(m,"",s);
end
=begin rdoc
Right Syzygy of generating polynomials.
=end
def rightSyzygy()
p = @pset;
l = p.list;
t = System.currentTimeMillis();
s = SolvableSyzygySeq.new(p.ring.coFac).rightZeroRelationsArbitrary( l );
m = SolvableModule.new("",p.ring);
t = System.currentTimeMillis() - t;
puts "executed rightSyzygy in #{t} ms\n";
return SolvableSubModule.new(m,"",s);
end
=begin rdoc
Test if this is a left syzygy of the module in m.
=end
def isLeftSyzygy(m)
p = @pset;
g = p.list;
l = m.list;
#puts "l = #{l}";
#puts "g = #{g}";
t = System.currentTimeMillis();
z = SolvableSyzygySeq.new(p.ring.coFac).isLeftZeroRelation( l, g );
t = System.currentTimeMillis() - t;
puts "executed isLeftSyzygy in #{t} ms\n";
return z;
end
=begin rdoc
Test if this is a right syzygy of the module in m.
=end
def isRightSyzygy(m)
p = @pset;
g = p.list;
l = m.list;
#puts "l = #{l}";
#puts "g = #{g}";
t = System.currentTimeMillis();
z = SolvableSyzygySeq.new(p.ring.coFac).isRightZeroRelation( l, g );
t = System.currentTimeMillis() - t;
puts "executed isRightSyzygy in #{t} ms\n";
return z;
end
=begin rdoc
Compute the dimension of the ideal.
=end
def dimension()
ii = SolvableIdeal.new(@pset);
d = ii.dimension();
return d;
end
end
=begin rdoc
Represents a JAS module over a polynomial ring.
Method to create sub-modules.
=end
class CommutativeModule
# the Java polynomial ring, number of columns, module list
attr_reader :ring, :cols, :mset
=begin rdoc
Module constructor.
=end
def initialize(modstr="",ring=nil,cols=0)
if ring == nil
sr = StringReader.new( modstr );
tok = RingFactoryTokenizer.new(sr);
pfac = tok.nextPolynomialRing();
#tok = GenPolynomialTokenizer.new(sr);
#@mset = tok.nextSubModuleSet();
#if @mset.cols >= 0
# @cols = @mset.cols;
#else
#end
@ring = pfac;
else
if ring.is_a? Ring
@ring = ring.ring
else
@ring = ring;
end
end
@mset = ModuleList.new(@ring,nil);
if cols < 0
cols = 0;
end
@cols = cols;
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @mset.toScript();
end
=begin rdoc
Create a sub-module.
=end
def submodul(modstr="",list=nil)
return SubModule.new(self,modstr,list);
end
=begin rdoc
Create an element from a string.
=end
def element(mods)
if not mods.is_a? String
begin
if @ring == mods.ring
return RingElem.new(mods);
end
rescue => e
# pass
end
mods = str(mods);
end
ii = SubModule.new( "( " + mods + " )");
list = ii.mset.list;
if list.size > 0
return RingElem.new( list[0] );
end
end
=begin rdoc
Get the generators of this module.
=end
def gens()
gm = GenVectorModul.new(@ring,@cols);
ll = gm.generators();
nn = ll.map { |e| RingElem.new(e) }; # want use val here, but can not
return nn;
end
end
=begin rdoc
Represents a JAS sub-module over a polynomial ring.
Methods to compute Groebner bases.
=end
class SubModule
# the Java module, module list, polynomial list, number of columns and rows, module list
attr_reader :modu, :mset, :pset, :cols, :rows, :list
=begin rdoc
Constructor for a sub-module.
=end
def initialize(modu,modstr="",list=nil)
@modu = modu;
if list == nil
sr = StringReader.new( modstr );
tok = GenPolynomialTokenizer.new(modu.ring,sr);
@list = tok.nextSubModuleList();
else
if list.is_a? Array
if list.size != 0
if list[0].is_a? RingElem
list = list.map { |re| re.elem };
end
end
@list = rbarray2arraylist(list,@modu.ring,rec=2);
else
@list = list;
end
end
#puts "list = ", str(list);
#e = @list[0];
#puts "e = ", e;
@mset = OrderedModuleList.new(modu.ring,@list);
@cols = @mset.cols;
@rows = @mset.rows;
@pset = @mset.getPolynomialList();
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @mset.toScript(); # + "\n\n" + str(@pset);
end
=begin rdoc
Compute a Groebner base.
=end
def GB()
t = System.currentTimeMillis();
#gg = ModGroebnerBaseSeq.new(@modu.ring.coFac).GB(@mset);
gg = GroebnerBaseSeq.new().GB(@mset);
t = System.currentTimeMillis() - t;
puts "executed module GB in #{t} ms\n";
return SubModule.new(@modu,"",gg.list);
end
=begin rdoc
Test if this is a Groebner base.
=end
def isGB()
t = System.currentTimeMillis();
#b = ModGroebnerBaseSeq.new(@modu.ring.coFac).isGB(@mset);
b = GroebnerBaseSeq.new().isGB(@mset);
t = System.currentTimeMillis() - t;
puts "module isGB executed in #{t} ms\n";
return b;
end
=begin rdoc
Test if this is a syzygy of the polynomials in g.
=end
def isSyzygy(g)
l = @list;
if g.is_a? SimIdeal
s = g.pset.list; # not g.list
else
if g.is_a? SubModule
s = g.mset;
l = @mset;
else
raise "unknown type #{g.getClass().getName()}";
end
end
#puts "l = #{l}";
#puts "s = #{s}";
t = System.currentTimeMillis();
z = SyzygySeq.new(@modu.ring.coFac).isZeroRelation( l, s );
t = System.currentTimeMillis() - t;
puts "executed isSyzygy in #{t} ms\n";
return z;
end
=begin rdoc
Compute syzygys of this module.
=end
def syzygy()
l = @mset;
t = System.currentTimeMillis();
p = SyzygySeq.new(@modu.ring.coFac).zeroRelations( l );
t = System.currentTimeMillis() - t;
puts "executed module syzygy in #{t} ms\n";
m = CommutativeModule.new("",p.ring,p.cols);
return SubModule.new(m,"",p.list);
end
end
=begin rdoc
Represents a JAS module over a solvable polynomial ring.
Method to create solvable sub-modules.
=end
class SolvableModule < CommutativeModule
# the Java polynomial ring, number of columns, module list
attr_reader :ring, :cols, :mset
=begin rdoc
Solvable module constructor.
=end
def initialize(modstr="",ring=nil,cols=0)
if ring == nil
sr = StringReader.new( modstr );
tok = RingFactoryTokenizer.new(sr);
pfac = tok.nextSolvablePolynomialRing();
#tok = GenPolynomialTokenizer.new(sr);
#@mset = tok.nextSolvableSubModuleSet();
#if @mset.cols >= 0
# @cols = @mset.cols;
#end
@ring = pfac;
else
if ring.is_a? Ring
@ring = ring.ring
else
@ring = ring;
end
end
@mset = ModuleList.new(@ring,nil);
if cols < 0
cols = 0;
end
@cols = cols;
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @mset.toScript();
end
=begin rdoc
Create a solvable sub-module.
=end
def submodul(modstr="",list=nil)
return SolvableSubModule.new(self,modstr,list);
end
=begin rdoc
Create an element from a string.
=end
def element(mods)
if not mods.is_a? String
begin
if @ring == mods.ring
return RingElem.new(mods);
end
rescue => e
# pass
end
mods = str(mods);
end
ii = SolvableSubModule.new( "( " + mods + " )");
list = ii.mset.list;
if list.size > 0
return RingElem.new( list[0] );
end
end
end
=begin rdoc
Represents a JAS sub-module over a solvable polynomial ring.
Methods to compute left, right and two-sided Groebner bases.
=end
class SolvableSubModule
# the Java module, module list, number of columns and rows, module list
attr_reader :modu, :mset, :cols, :rows, :list
=begin rdoc
Constructor for sub-module over a solvable polynomial ring.
=end
def initialize(modu,modstr="",list=nil)
@modu = modu;
if list == nil
sr = StringReader.new( modstr );
tok = GenPolynomialTokenizer.new(modu.ring,sr);
@list = tok.nextSolvableSubModuleList();
else
if list.is_a? Array
@list = rbarray2arraylist(list,@modu.ring,rec=2);
else
@list = list;
end
end
@mset = OrderedModuleList.new(modu.ring,@list);
@cols = @mset.cols;
@rows = @mset.rows;
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @mset.toScript(); # + "\n\n" + str(@pset);
end
=begin rdoc
Compute a left Groebner base.
=end
def leftGB()
t = System.currentTimeMillis();
#gg = SolvableGroebnerBaseSeq.new(@modu.ring.coFac).leftGB(@mset);
gg = SolvableGroebnerBaseSeq.new().leftGB(@mset);
t = System.currentTimeMillis() - t;
puts "executed left module GB in #{t} ms\n";
return SolvableSubModule.new(@modu,"",gg.list);
end
=begin rdoc
Test if this is a left Groebner base.
=end
def isLeftGB()
t = System.currentTimeMillis();
#b = SolvableGroebnerBaseSeq.new(@modu.ring.coFac).isLeftGB(@mset);
b = SolvableGroebnerBaseSeq.new().isLeftGB(@mset);
t = System.currentTimeMillis() - t;
puts "module isLeftGB executed in #{t} ms\n";
return b;
end
=begin rdoc
Compute a two-sided Groebner base.
=end
def twosidedGB()
t = System.currentTimeMillis();
#gg = SolvableGroebnerBaseSeq.new(@modu.ring.coFac).twosidedGB(@mset);
gg = SolvableGroebnerBaseSeq.new().twosidedGB(@mset);
t = System.currentTimeMillis() - t;
puts "executed twosided module GB in #{t} ms\n";
return SolvableSubModule.new(@modu,"",gg.list);
end
=begin rdoc
Test if this is a two-sided Groebner base.
=end
def isTwosidedGB()
t = System.currentTimeMillis();
#b = SolvableGroebnerBaseSeq.new(@modu.ring.coFac).isTwosidedGB(@mset);
b = SolvableGroebnerBaseSeq.new().isTwosidedGB(@mset);
t = System.currentTimeMillis() - t;
puts "module isTwosidedGB executed in #{t} ms\n";
return b;
end
=begin rdoc
Compute a right Groebner base.
=end
def rightGB()
t = System.currentTimeMillis();
#gg = SolvableGroebnerBaseSeq.new(@modu.ring.coFac).rightGB(@mset);
gg = SolvableGroebnerBaseSeq.new().rightGB(@mset);
t = System.currentTimeMillis() - t;
puts "executed right module GB in #{t} ms\n";
return SolvableSubModule.new(@modu,"",gg.list);
end
=begin rdoc
Test if this is a right Groebner base.
=end
def isRightGB()
t = System.currentTimeMillis();
#b = SolvableGroebnerBaseSeq.new(@modu.ring.coFac).isRightGB(@mset);
b = SolvableGroebnerBaseSeq.new().isRightGB(@mset);
t = System.currentTimeMillis() - t;
puts "module isRightGB executed in #{t} ms\n";
return b;
end
=begin rdoc
Test if this is a left syzygy of the vectors in g.
=end
def isLeftSyzygy(g)
l = @list;
if g.is_a? SolvIdeal
s = g.pset.list; # not g.list
else
if g.is_a? SolvableSubModule
s = g.mset;
l = @mset;
else
raise "unknown type #{g.getClass().getName()}";
end
end
#puts "l = #{l}";
#puts "s = #{s}";
t = System.currentTimeMillis();
z = SolvableSyzygySeq.new(@modu.ring.coFac).isLeftZeroRelation( l, s );
t = System.currentTimeMillis() - t;
puts "executed isLeftSyzygy in #{t} ms\n";
return z;
end
=begin rdoc
Compute left syzygys of this module.
=end
def leftSyzygy()
l = @mset;
t = System.currentTimeMillis();
p = SolvableSyzygySeq.new(@modu.ring.coFac).leftZeroRelationsArbitrary( l );
t = System.currentTimeMillis() - t;
puts "executed left module syzygy in #{t} ms\n";
m = SolvableModule.new("",p.ring,p.cols);
return SolvableSubModule.new(m,"",p.list);
end
=begin rdoc
Test if this is a right syzygy of the vectors in g.
=end
def isRightSyzygy(g)
l = @list;
if g.is_a? SolvIdeal
s = g.pset.list; # not g.list
else
if g.is_a? SolvableSubModule
s = g.mset;
l = @mset;
else
raise "unknown type #{g.getClass().getName()}";
end
end
#puts "l = #{l}";
#puts "s = #{s}";
t = System.currentTimeMillis();
z = SolvableSyzygySeq.new(@modu.ring.coFac).isRightZeroRelation( l, s );
t = System.currentTimeMillis() - t;
puts "executed isRightSyzygy in #{t} ms\n";
return z;
end
=begin rdoc
Compute right syzygys of this module.
=end
def rightSyzygy()
l = @mset;
t = System.currentTimeMillis();
#no: p = SolvableSyzygySeq.new(@modu.ring.coFac).rightZeroRelations( l );
p = SolvableSyzygySeq.new(@modu.ring.coFac).rightZeroRelationsArbitrary( l );
t = System.currentTimeMillis() - t;
puts "executed right module syzygy in #{t} ms\n";
m = SolvableModule.new("",p.ring,p.cols);
return SolvableSubModule.new(m,"",p.list);
end
end
java_import "edu.jas.ps.UnivPowerSeries";
java_import "edu.jas.ps.UnivPowerSeriesRing";
java_import "edu.jas.ps.UnivPowerSeriesMap";
java_import "edu.jas.ps.Coefficients";
java_import "edu.jas.ps.MultiVarPowerSeries";
java_import "edu.jas.ps.MultiVarPowerSeriesRing";
java_import "edu.jas.ps.MultiVarPowerSeriesMap";
java_import "edu.jas.ps.MultiVarCoefficients";
java_import "edu.jas.ps.StandardBaseSeq";
=begin rdoc
Represents a JAS power series ring: UnivPowerSeriesRing.
Methods for univariate power series arithmetic.
=end
class SeriesRing
# the Java polynomial ring
attr_reader :ring
=begin rdoc
Ring constructor.
=end
def initialize(ringstr="",truncate=nil,ring=nil,cofac=nil,name="z")
if ring == nil
if ringstr.size > 0
sr = StringReader.new( ringstr );
tok = RingFactoryTokenizer.new(sr);
pfac = tok.nextPolynomialRing();
#tok = GenPolynomialTokenizer.new(sr);
#pset = tok.nextPolynomialSet();
ring = pfac;
vname = ring.vars;
name = vname[0];
cofac = ring.coFac;
end
if cofac.is_a? RingElem
cofac = cofac.elem;
end
if truncate == nil
@ring = UnivPowerSeriesRing.new(cofac,name);
else
@ring = UnivPowerSeriesRing.new(cofac,truncate,name);
end
else
@ring = ring;
end
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @ring.toScript();
end
=begin rdoc
Get the generators of the power series ring.
=end
def gens()
ll = @ring.generators();
nn = ll.map { |e| RingElem.new(e) };
return nn;
end
=begin rdoc
Get the one of the power series ring.
=end
def one()
return RingElem.new( @ring.getONE() );
end
=begin rdoc
Get the zero of the power series ring.
=end
def zero()
return RingElem.new( @ring.getZERO() );
end
=begin rdoc
Get a random power series.
=end
def random(n)
return RingElem.new( @ring.random(n) );
end
=begin rdoc
Get the exponential power series.
=end
def exp()
return RingElem.new( @ring.getEXP() );
end
=begin rdoc
Get the sinus power series.
=end
def sin()
return RingElem.new( @ring.getSIN() );
end
=begin rdoc
Get the cosinus power series.
=end
def cos()
return RingElem.new( @ring.getCOS() );
end
=begin rdoc
Get the tangens power series.
=end
def tan()
return RingElem.new( @ring.getTAN() );
end
=begin rdoc
(Inner) class which extends edu.jas.ps.Coefficients
=end
class Ucoeff < Coefficients
=begin rdoc
Constructor.
ifunc(int i) must return a value which is used in ((RingFactory)cofac).fromInteger().
jfunc(int i) must return a value of type ring.coFac.
=end
def initialize(ifunc,jfunc,cofac=nil)
#puts "ifunc = " + ifunc.to_s + ",";
#puts "jfunc = " + jfunc.to_s + ",";
#puts "cofac = " + cofac.to_s + ",";
super();
if jfunc == nil && cofac == nil
raise "invalid arguments"
end
@coFac = cofac;
@ifunc = ifunc;
@jfunc = jfunc;
end
=begin rdoc
Generator for a coefficient.
long i parameter.
returns a value of type ring.coFac.
=end
def generate(i)
if @jfunc == nil
return @coFac.fromInteger( @ifunc.call(i) );
else
return @jfunc.call(i);
end
end
end
=begin rdoc
Create a power series with given generating function.
ifunc(int i) must return a value which is used in RingFactory.fromInteger().
jfunc(int i) must return a value of type ring.coFac.
clazz must implement the Coefficients abstract class.
=end
def create(ifunc,jfunc=nil,clazz=nil)
if clazz == nil
#puts "ifunc = " + ifunc.to_s + ".";
#puts "jfunc = " + jfunc.to_s + ".";
#puts "clazz = " + clazz.to_s + ".";
cf = Ucoeff.new(ifunc,jfunc,@ring.coFac);
#puts "cf = " + cf.to_s + ".";
ps = UnivPowerSeries.new( @ring, cf );
else
ps = UnivPowerSeries.new( @ring, clazz );
end
return RingElem.new( ps );
end
=begin rdoc
Create a power series as fixed point of the given mapping.
psmap must implement the UnivPowerSeriesMap interface.
=end
def fixPoint(psmap)
ps = @ring.fixPoint( psmap );
return RingElem.new( ps );
end
=begin rdoc
Compute the greatest common divisor of a and b.
=end
def gcd(a,b)
if a.is_a? RingElem
a = a.elem;
end
if b.is_a? RingElem
b = b.elem;
end
return RingElem.new( a.gcd(b) );
end
=begin rdoc
Convert a GenPolynomial to a power series.
=end
def fromPoly(a)
if a.is_a? RingElem
a = a.elem;
end
return RingElem.new( @ring.fromPolynomial(a) );
end
end
=begin rdoc
Represents a JAS power series ring: MultiVarPowerSeriesRing.
Methods for multivariate power series arithmetic.
=end
class MultiSeriesRing
# the Java polynomial ring
attr_reader :ring
=begin rdoc
Ring constructor.
=end
def initialize(ringstr="",truncate=nil,ring=nil,cofac=nil,names=nil)
if ring == nil
if ringstr.size > 0
sr = StringReader.new( ringstr );
tok = RingFactoryTokenizer.new(sr);
pfac = tok.nextPolynomialRing();
#tok = GenPolynomialTokenizer.new(sr);
#pset = tok.nextPolynomialSet();
ring = pfac;
names = ring.vars;
cofac = ring.coFac;
end
if cofac.is_a? RingElem
cofac = cofac.elem;
end
if names.is_a? String
names = GenPolynomialTokenizer.variableList(names);
end
if truncate == nil
@ring = MultiVarPowerSeriesRing.new(cofac,names);
else
nv = names.size;
@ring = MultiVarPowerSeriesRing.new(cofac,names.size,truncate,names);
end
else
@ring = ring;
end
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @ring.toScript();
end
=begin rdoc
Get the generators of the power series ring.
=end
def gens()
ll = @ring.generators();
nn = ll.map { |e| RingElem.new(e) };
return nn;
end
=begin rdoc
Get the one of the power series ring.
=end
def one()
return RingElem.new( @ring.getONE() );
end
=begin rdoc
Get the zero of the power series ring.
=end
def zero()
return RingElem.new( @ring.getZERO() );
end
=begin rdoc
Get a random power series.
=end
def random(n)
return RingElem.new( @ring.random(n) );
end
=begin rdoc
Get the exponential power series, var r.
=end
def exp(r)
return RingElem.new( @ring.getEXP(r) );
end
=begin rdoc
Get the sinus power series, var r.
=end
def sin(r)
return RingElem.new( @ring.getSIN(r) );
end
=begin rdoc
Get the cosinus power series, var r.
=end
def cos(r)
return RingElem.new( @ring.getCOS(r) );
end
=begin rdoc
Get the tangens power series, var r.
=end
def tan(r)
return RingElem.new( @ring.getTAN(r) );
end
=begin
(Inner) class which extends edu.jas.ps.MultiVarCoefficients
=end
class Mcoeff < MultiVarCoefficients
=begin
Constructor
ring must be a polynomial or multivariate power series ring.
ifunc(ExpVector i) must return a value which is used in ((RingFactory)cofac).fromInteger().
jfunc(ExpVector i) must return a value of type ring.coFac.
=end
def initialize(ring,ifunc=nil,jfunc=nil)
super(ring);
@coFac = ring.coFac;
@ifunc = ifunc;
@jfunc = jfunc;
end
=begin rdoc
Generator for a coefficient.
long i parameter.
returns a value of type ring.coFac.
=end
def generate(i)
if @jfunc == nil
return @coFac.fromInteger( @ifunc.call(i) );
else
return @jfunc.call(i);
end
end
end
=begin rdoc
Create a power series with given generating function.
ifunc(ExpVector i) must return a value which is used in RingFactory.fromInteger().
jfunc(ExpVector i) must return a value of type ring.coFac.
clazz must implement the MultiVarCoefficients abstract class.
=end
def create(ifunc=nil,jfunc=nil,clazz=nil)
#puts "ifunc "
#puts "jfunc "
#puts "clazz " + str(clazz)
if clazz == nil
clazz = Mcoeff.new(@ring,ifunc,jfunc);
end
ps = MultiVarPowerSeries.new( @ring, clazz );
#puts "ps ", ps.toScript();
return RingElem.new( ps );
end
=begin rdoc
Create a power series as fixed point of the given mapping.
psmap must implement the MultiVarPowerSeriesMap interface.
=end
def fixPoint(psmap)
ps = @ring.fixPoint( psmap );
return RingElem.new( ps );
end
=begin rdoc
Compute the greatest common divisor of a and b.
=end
def gcd(a,b)
if a.is_a? RingElem
a = a.elem;
end
if b.is_a? RingElem
b = b.elem;
end
return RingElem.new( a.gcd(b) );
end
=begin rdoc
Convert a GenPolynomial to a power series.
=end
def fromPoly(a)
if a.is_a? RingElem
a = a.elem;
end
return RingElem.new( @ring.fromPolynomial(a) );
end
end
=begin rdoc
Represents a JAS power series ideal.
Method for Standard bases.
=end
class PSIdeal
# the Java powerseries ring, powerseries list
attr_reader :ring, :list
=begin rdoc
PSIdeal constructor.
=end
def initialize(ring,polylist,ideal=nil,list=nil)
if ring.is_a? Ring or ring.is_a? PolyRing
ring = MultiVarPowerSeriesRing.new(ring.ring);
elsif ring.is_a? MultiSeriesRing
ring = ring.ring;
end
@ring = ring;
#puts "ring = ", ring.toScript();
if ideal != nil
polylist = ideal.pset.list;
end
if list == nil
@polylist = rbarray2arraylist( polylist.map { |a| a.elem } );
#puts "polylist = ", @polylist;
@list = @ring.fromPolynomial(@polylist);
else
@polylist = nil;
@list = rbarray2arraylist( list.map { |a| a.elem } );
end
end
=begin rdoc
Create a string representation.
=end
def to_s()
return "( " + @list.map { |a| a.toScript() }.join(", ") + " )";
end
=begin rdoc
Compute a standard base.
=end
def STD(trunc=nil)
pr = @ring;
if trunc != nil
pr.setTruncate(trunc);
end
#puts "pr = ", pr.toScript();
ff = @list;
#puts "ff = ", ff;
tm = StandardBaseSeq.new();
t = System.currentTimeMillis();
ss = tm.STD(ff);
t = System.currentTimeMillis() - t;
puts "sequential standard base executed in #{t} ms\n";
#Sp = [ RingElem.new(a.asPolynomial()) for a in S ];
sp = ss.map { |a| RingElem.new(a) };
#return sp;
return PSIdeal.new(@ring,nil,nil,sp);
end
end
=begin rdoc
(Was interior) class which extends edu.jas.ps.Coefficients
=end
class Coeff < Coefficients
=begin rdoc
Constructor.
cof RingFactory for coefficients.
f(int i) must return a value of type cof.
=end
def initialize(cof,&f)
super() # this is important in jruby 1.5.6!
#puts "cof type(#{cof}) = #{cof.class}\n";
@coFac = cof;
#puts "f type(#{f}) = #{f.class}\n";
@func = f
end
=begin rdoc
Generator for a coefficient.
long i parameter.
returns a value of type cof.
=end
def generate(i)
#puts "f_3 type(#{@func}) = #{@func.class}\n";
#puts "f_3 type(#{i}) = #{i.class}\n";
#return @coFac.getZERO()
c = @func.call(i)
#puts "f_3 type(#{c}) = #{c.class}\n";
if c.is_a? RingElem
c = c.elem
end
return c
end
end
=begin rdoc
Create JAS UnivPowerSeries as ring element.
=end
def PS(cofac,name,truncate=nil,&f) #=nil,truncate=nil)
cf = cofac;
if cofac.is_a? RingElem
cf = cofac.elem.factory();
end
if cofac.is_a? Ring
cf = cofac.ring;
end
if truncate.is_a? RingElem
truncate = truncate.elem;
end
if truncate == nil
ps = UnivPowerSeriesRing.new(cf,name);
else
ps = UnivPowerSeriesRing.new(cf,truncate,name);
end
#puts "ps type(#{ps}) = #{ps.class}\n";
#puts "f type(#{f}) = #{f.class}\n";
if f == nil
r = ps.getZERO();
else
#Bug in JRuby 1.5.6? move outside method
r = UnivPowerSeries.new(ps,Coeff.new(cf,&f));
end
return RingElem.new(r);
end
=begin rdoc
(Was interior) class which extends edu.jas.ps.MultiVarCoefficients
=end
class MCoeff < MultiVarCoefficients
=begin rdoc
Constructor.
r polynomial RingFactory.
f(ExpVector e) must return a value of type r.coFac.
=end
def initialize(r,&f)
super(r) # this is important in jruby 1.5.6!
@coFac = r.coFac;
@func = f
end
=begin rdoc
Generator for a coefficient.
ExpVector e parameter.
returns a value of type r.coFac
=end
def generate(i)
a = @func.call(i);
if a.is_a? RingElem
a = a.elem;
end
#puts "f_5 type(#{a}) = #{a.class}\n";
return a;
end
end
=begin rdoc
Create JAS MultiVarPowerSeries as ring element.
=end
def MPS(cofac,names,truncate=nil,&f)
cf = cofac;
if cofac.is_a? RingElem
cf = cofac.elem.factory();
elsif cofac.is_a? Ring
cf = cofac.ring;
end
vars = names;
if vars.is_a? String
vars = GenPolynomialTokenizer.variableList(vars);
end
nv = vars.size;
if truncate.is_a? RingElem
truncate = truncate.elem;
end
if truncate == nil
ps = MultiVarPowerSeriesRing.new(cf,nv,vars);
else
ps = MultiVarPowerSeriesRing.new(cf,nv,vars,truncate);
end
if f == nil
r = ps.getZERO();
else
r = MultiVarPowerSeries.new(ps,MCoeff.new(ps,&f));
#puts "r = " + str(r);
end
return RingElem.new(r);
end
java_import "edu.jas.vector.GenVector";
java_import "edu.jas.vector.GenVectorModul";
java_import "edu.jas.vector.GenMatrix";
java_import "edu.jas.vector.GenMatrixRing";
java_import "edu.jas.vector.LinAlg";
java_import "edu.jas.vector.BasicLinAlg";
=begin rdoc
Create JAS GenVector ring element.
=end
def Vec(cofac,n,v=nil)
cf = cofac;
if cofac.is_a? RingElem
cf = cofac.elem.factory();
elsif cofac.is_a? Ring
cf = cofac.ring;
end
if n.is_a? RingElem
n = n.elem;
end
if v.is_a? RingElem
v = v.elem;
end
if v.is_a? Array
v = rbarray2arraylist(v,cf,rec=1);
end
vr = GenVectorModul.new(cf,n);
if v == nil
r = GenVector.new(vr);
else
r = GenVector.new(vr,v);
end
return RingElem.new(r);
end
=begin rdoc
Create JAS GenMatrix ring element.
=end
def Mat(cofac,n,m,v=nil)
cf = cofac;
if cofac.is_a? RingElem
cf = cofac.elem.factory();
elsif cofac.is_a? Ring
cf = cofac.ring;
end
if n.is_a? RingElem
n = n.elem;
end
if m.is_a? RingElem
m = m.elem;
end
if v.is_a? RingElem
v = v.elem;
end
#puts "cf type(#{cf}) = #{cf.class}";
if v.is_a? Array
v = rbarray2arraylist(v,cf,rec=2);
end
mr = GenMatrixRing.new(cf,n,m);
if v == nil
r = GenMatrix.new(mr);
else
r = GenMatrix.new(mr,v);
end
return RingElem.new(r);
end
java_import "edu.jas.application.ExtensionFieldBuilder";
=begin rdoc
Extension ring and field builder.
Construction of extension ring and field towers using the builder pattern.
=end
class EF
# the Java extension field builder
attr_reader :builder
=begin rdoc
Constructor to set base field.
=end
def initialize(base)
if base.is_a? RingElem
#factory = base.elem;
factory = base.ring;
else
factory = base;
end
begin
factory = factory.factory();
rescue
#pass
end
puts "extension field factory: " + factory.toScript(); # + " :: " + factory.toString();
if factory.is_a? ExtensionFieldBuilder
@builder = factory;
else
@builder = ExtensionFieldBuilder.new(factory);
end
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @builder.toScript();
#return @builder.toString();
end
=begin rdoc
Create an extension field. If algebraic is given as
string expression, then an algebraic extension field is constructed,
else a transcendental extension field is constructed.
=end
def extend(vars,algebraic=nil)
if algebraic == nil
ef = @builder.transcendentExtension(vars);
else if algebraic.is_a? Integer
ef = @builder.finiteFieldExtension(algebraic);
else
ef = @builder.algebraicExtension(vars,algebraic);
end
end
return EF.new(ef.build());
end
=begin rdoc
Create a real extension field.
Construct a real algebraic extension field with an isolating interval for a real root.
=end
def realExtend(vars,algebraic,interval)
ef = @builder.realAlgebraicExtension(vars,algebraic,interval);
return EF.new(ef.build());
end
=begin rdoc
Create a complex extension field.
Construct a complex algebraic extension field with an isolating rectangle for a complex root.
=end
def complexExtend(vars,algebraic,rectangle)
ef = @builder.complexAlgebraicExtension(vars,algebraic,rectangle);
return EF.new(ef.build());
end
=begin rdoc
Create a polynomial ring extension.
=end
def polynomial(vars)
ef = @builder.polynomialExtension(vars);
return EF.new(ef.build());
end
=begin rdoc
Create a matrix ring extension.
=end
def matrix(n)
ef = @builder.matrixExtension(n);
return EF.new(ef.build());
end
=begin rdoc
Get extension ring or field tower.
=end
def build()
rf = @builder.build();
if rf.is_a? GenPolynomialRing
return PolyRing.new(rf.coFac,rf.getVars(),rf.tord);
else
return Ring.new("", rf);
end
end
end
#------------------------------------
=begin rdoc
Represents a JAS exterior vector / polynomial ring: GenExteriorPolynomialRing.
=end
class ExtRing < Ring
#@auto_inject = true
#@auto_lowervar = false
#class << self # means add to class
# # inject variables into environment
# attr_accessor :auto_inject
# # avoid capital letter variables
# attr_accessor :auto_lowervar
#end
=begin rdoc
Exterior form / vector / polynomial ring constructor.
=end
def initialize(ringstr="",ring=nil)
#puts "ExtRing.new"
if ring == nil
#raise "parse of ext polynomial rings not implemented"
sr = StringReader.new( ringstr );
tok = RingFactoryTokenizer.new(sr);
pfac = tok.nextPolynomialRing();
efac = GenExtPolynomialRing.new(pfac);
@list = tok.nextExteriorPolynomialList(wfac);
@ring = efac;
else
if ring.is_a? Ring
@ring = ring.ring
else
@ring = ring;
end
end
super("",@ring)
#puts "ExtRing.new: self.class.auto_inject = " + self.class.auto_inject.to_s
#inject_variables();
#puts "ExtRing.new: self.class.superclass.auto_inject = " + self.class.superclass.auto_inject.to_s
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @ring.toScript(); #.to_s;
end
#=begin rdoc
#Create a exterior ideal.
#=end
# def ideal(ringstr="",list=nil)
# return ExtPolyIdeal.new(self, ringstr, list);
# end
=begin rdoc
Get the one of the exterior vector / polynomial ring.
=end
def one()
return RingElem.new( @ring.getONE() );
end
=begin rdoc
Get the zero of the exterior vector / polynomial ring.
=end
def zero()
return RingElem.new( @ring.getZERO() );
end
=begin rdoc
Get a random exterior vector / polynomial.
=end
def random(n=5)
r = @ring.random(n);
if @ring.coFac.isField()
r = r.monic();
end
return RingElem.new( r );
end
=begin rdoc
Get a random exterior vector / polynomial.
=end
def random(k=5,l=7,d=3)
r = @ring.random(k,l,d);
if @ring.coFac.isField()
r = r.monic();
end
return RingElem.new( r );
end
=begin rdoc
Create an element from a string or object.
=end
def element(poly)
if not poly.is_a? String
begin
if @ring == poly.ring
return RingElem.new(poly);
end
rescue => e
# pass
end
poly = str(poly);
end
sr = StringReader.new(poly);
tok = GenPolynomialTokenizer.new(sr);
ep = tok.nextExteriorPolynomial(@ring);
if ep != nil
return RingElem.new( ep );
end
end
end
=begin rdoc
Represents a JAS exterior form / vector / polynomial ring: GenExteriorPolynomialRing.
Provides more convenient constructor.
Then returns a Ring.
=end
class ExtPolyRing < ExtRing
@auto_inject = true
@auto_lowervar = true
class << self # means add to class
# inject variables into environment
attr_accessor :auto_inject
# avoid capital letter variables
attr_accessor :auto_lowervar
end
=begin rdoc
Ring constructor.
coeff = factory for coefficients,
s = size of index list,
var = string with one variable name.
=end
def initialize(coeff, s, var="E")
#puts "ExtPolyRing.new"
if coeff == nil
raise ArgumentError, "No coefficient given."
end
cf = coeff;
if coeff.is_a? RingElem
cf = coeff.elem.factory();
end
if coeff.is_a? Ring
cf = coeff.ring;
end
if s == nil
raise ArgumentError, "No variable size given."
end
names = var;
if not var.is_a? String
names = GenPolynomialTokenizer.variableList(var);
end
wf = IndexFactory.new(s, names);
@ring = GenExteriorPolynomialRing.new(cf, wf);
super("",@ring)
#puts "ExtPolyRing.new: self.class.auto_inject = " + self.class.auto_inject.to_s
#inject_variables();
#puts "ExtPolyRing.new: self.class.superclass.auto_inject = " + self.class.superclass.auto_inject.to_s
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @ring.toScript();
end
end
#------------------------------------
=begin rdoc
Represents a JAS non-commutative polynomial ring: GenWordPolynomialRing.
Has a method to create non-commutative ideals.
<b>Note:</b> watch your step: check that jruby does not reorder multiplication.
=end
class WordRing < Ring
=begin rdoc
Word polynomial ring constructor.
=end
def initialize(ringstr="",ring=nil)
if ring == nil
#raise "parse of word polynomial rings not implemented"
sr = StringReader.new( ringstr );
tok = RingFactoryTokenizer.new(sr);
pfac = tok.nextPolynomialRing();
wfac = GenWordPolynomialRing.new(pfac);
#@list = tok.nextWordPolynomialList(wfac);
@ring = wfac;
else
if ring.is_a? Ring
@ring = ring.ring
else
@ring = ring;
end
end
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @ring.toScript(); #.to_s;
end
=begin rdoc
Create a word ideal.
=end
def ideal(ringstr="",list=nil)
return WordPolyIdeal.new(self, ringstr, list);
end
=begin rdoc
Get the one of the word polynomial ring.
=end
def one()
return RingElem.new( @ring.getONE() );
end
=begin rdoc
Get the zero of the word polynomial ring.
=end
def zero()
return RingElem.new( @ring.getZERO() );
end
=begin rdoc
Get a random word polynomial.
=end
def random(n=5)
r = @ring.random(n);
if @ring.coFac.isField()
r = r.monic();
end
return RingElem.new( r );
end
=begin rdoc
Get a random word polynomial.
=end
def random(k=5,l=7,d=3)
r = @ring.random(k,l,d);
if @ring.coFac.isField()
r = r.monic();
end
return RingElem.new( r );
end
=begin rdoc
Create an element from a string or object.
=end
def element(poly)
if not poly.is_a? String
begin
if @ring == poly.ring
return RingElem.new(poly);
end
rescue => e
# pass
end
poly = str(poly);
end
ii = WordPolyIdeal.new(self, "( " + poly + " )"); # should work
list = ii.list;
if list.size > 0
return RingElem.new( list[0] );
end
end
end
=begin rdoc
Represents a JAS non-commutative polynomial ring: GenWordPolynomialRing.
Provides more convenient constructor.
Then returns a Ring.
<b>Note:</b> watch your step: check that jruby does not reorder multiplication.
=end
class WordPolyRing < WordRing
=begin rdoc
Ring constructor.
coeff = factory for coefficients,
vars = string with variable names.
=end
def initialize(coeff,vars)
if coeff == nil
raise ArgumentError, "No coefficient given."
end
cf = coeff;
if coeff.is_a? RingElem
cf = coeff.elem.factory();
end
if coeff.is_a? Ring
cf = coeff.ring;
end
if vars == nil
raise ArgumentError, "No variable names given."
end
names = vars;
if vars.is_a? String
names = GenPolynomialTokenizer.variableList(vars);
end
wf = WordFactory.new(names);
@ring = GenWordPolynomialRing.new(cf, wf);
end
=begin rdoc
Create a string representation.
=end
def to_s()
return @ring.toScript();
end
end
=begin rdoc
Represents a JAS non-commutative polynomial ideal.
Methods for two-sided Groebner bases and others.
<b>Note:</b> watch your step: check that jruby does not reorder multiplication.
=end
class WordPolyIdeal
# the Java word polynomial ring, word polynomial list, word ideal
attr_reader :ring, :list, :ideal
=begin rdoc
Constructor for an ideal in a non-commutative polynomial ring.
=end
def initialize(ring,ringstr="",list=nil)
@ring = ring;
if list == nil
#raise "parse of non-commutative polynomials not implemented"
sr = StringReader.new( ringstr );
tok = GenPolynomialTokenizer.new(sr);
@list = tok.nextWordPolynomialList(ring.ring);
@ideal = WordIdeal.new(ring.ring, @list);
else
if list.is_a? WordIdeal
@list = list.list;
@ideal = list;
else
@list = rbarray2arraylist(list, rec=1);
@ideal = WordIdeal.new(ring.ring, @list);
end
end
end
=begin rdoc
Create a string representation.
=end
def to_s()
# return "( " + @list.map{ |e| e.toScript() }.join(", ") + " )";
#return "( " + @list.map{ |e| e.toScript() }.join(",\n") + " )";
return @ideal.toScript();
end
=begin rdoc
Compute a two-sided Groebner base.
=end
def GB()
return twosidedGB();
end
=begin rdoc
Compute a two-sided Groebner base.
=end
def twosidedGB()
cofac = @ring.ring.coFac;
kind = "";
t = System.currentTimeMillis();
if cofac.isField() or not cofac.isCommutative()
gg = @ideal.GB();
kind = "field|nocom"
else
#puts "is ring: " + str(cofac.is_a? GenPolynomialRing)
if cofac.is_a? GenPolynomialRing #and cofac.isCommutative()
ff = @ideal.list;
fg = WordGroebnerBasePseudoRecSeq.new(cofac).GB(ff);
@ideal = WordIdeal.new(ring.ring, fg);
kind = "pseudoRec"
else
ff = @ideal.list;
fg = WordGroebnerBasePseudoSeq.new(cofac).GB(ff);
@ideal = WordIdeal.new(ring.ring, fg);
kind = "pseudo"
end
end
t = System.currentTimeMillis() - t;
puts "executed(#{kind}) twosidedGB in #{t} ms\n";
return self;
end
=begin rdoc
Test if this is a two-sided Groebner base.
=end
def isGB()
return isTwosidedGB();
end
=begin rdoc
Test if this is a two-sided Groebner base.
=end
def isTwosidedGB()
cofac = @ring.ring.coFac;
kind = "";
t = System.currentTimeMillis();
if cofac.isField() or not cofac.isCommutative()
b = @ideal.isGB();
kind = "field|nocom"
else
if cofac.is_a? GenPolynomialRing
ff = @ideal.list;
b = WordGroebnerBasePseudoRecSeq.new(cofac).isGB(ff);
kind = "pseudoRec"
else
ff = @ideal.list;
b = WordGroebnerBasePseudoSeq.new(cofac).isGB(ff);
kind = "pseudo"
end
end
t = System.currentTimeMillis() - t;
puts "isTwosidedGB(#{kind}) = #{b} executed in #{t} ms\n";
return b;
end
=begin rdoc
Compare two ideals.
=end
def <=>(other)
s = @ideal;
o = other.ideal;
return s.compareTo(o);
end
=begin rdoc
Test if two ideals are equal.
=end
def ==(other)
if not other.is_a? WordPolyIdeal
return false;
end
s = @ideal;
t = other.ideal;
return s.equals(t);
end
=begin rdoc
Compute the sum of this and the ideal.
=end
def sum(other)
s = @ideal;
t = other.ideal;
nn = s.sum( t );
return WordPolyIdeal.new(@ring,"",nn);
end
end
=begin rdoc
Create JAS polynomial WordResidue as ring element.
=end
def WRC(ideal,r=0)
if ideal == nil
raise ArgumentError, "No ideal given."
end
if ideal.is_a? WordPolyIdeal
#puts "ideal = " + str(ideal) + "\n";
#ideal = Java::EduJasApplication::WordIdeal.new(ideal.ring,ideal.list);
ideal = ideal.ideal;
#ideal.doGB();
end
if not ideal.is_a? WordIdeal
raise ArgumentError, "No word ideal given."
end
#puts "ideal.getList().get(0).ring.ideal = #{ideal.getList().get(0).ring.ideal}\n";
if ideal.getList().get(0).ring.is_a? WordResidueRing
rc = WordResidueRing.new( ideal.getList().get(0).ring.ideal );
else
rc = WordResidueRing.new(ideal);
end
if r.is_a? RingElem
r = r.elem;
end
if r == 0
r = WordResidue.new(rc);
else
r = WordResidue.new(rc,r);
end
return RingElem.new(r);
end
# define some shortcuts
# big integers
ZZ = ZZ();
# big rational numbers
QQ = QQ();
# complex big rational numbers
CC = CC();
#generic complex numbers
CR = CR();
#big decimal numbers
DD = DD();
#no GF = GF();
end
include JAS
|