1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
'''
Access to the database of ideals as provided by the
SymbolicData Project (http://symbolicdata.org).
Adapted from the Symbolicdata and Sage code
'''
#
# $Id$
#
# adapted from the Symbolicdata and Sage code
#
# communicate with the SPARQL endpoint (http request)
#import requests
import httplib, urllib
# easily handle URLs
from os.path import split as pathsplit
from urlparse import urlsplit
# for nice output of dictionaries: json.dumps(dict, indent = 4)
# mostly for debugging reasons (will be removed later)
# for old jython versions it must be loaded from an
# external library jyson-1.0.2.jar
#import json
from com.xhaus.jyson import JysonCodec as json
# parse the sd.ini file
from ConfigParser import SafeConfigParser
# parse the xml of the resource files
from xml.dom.minidom import parse, parseString
# output lists nicely (there might be a better way)
from textwrap import wrap as textwrap
# not needed
#from jas import *
# Some internal helper functions that are not meant to be
# called by the user
def _uri_to_name(uri):
"""
Converts a uri to a name or key by only taking everything
after the last / or (if present) #.
Examples:
- http://example.com/test -> test
- http://example.com/model#testedBy -> testedBy
"""
usplit = urlsplit(uri)
if usplit.fragment != '':
return usplit.fragment
else:
return pathsplit(usplit.path)[-1]
def _pprint(l):
"""
Formats a list l to be displayed in a tabular layout. It is
possible to pass an integer width to the textwrap function.
The width of the terminal window could be obtained via the
Python console module. However, since it is not included
in Jas, we decided not to use it. The default width that
textwrap uses is set to 70. There might be a better way to
do this.
"""
col = max([len(x) for x in l]) + 3
padded = ''.join([x.ljust(col) for x in l])
print '\n'.join(textwrap(padded))
def get_value_for_URI(sd, URI, predicate):
"""
A quick convienience function to retrieve a single value
of a given triple (object, predicate, ...)
The parameter sd is a SymbolicData object that contains
information about the SPARQL endpoint.
"""
result = None
query = '''SELECT * WHERE { <%s> <%s> ?x }''' % (URI, predicate)
try:
result = SPARQL(sd, query).json['results']['bindings'][0]['x']['value']
except:
pass
return result
# Class definitions start here
class SymbolicData:
"""
Access to the database of ideals as provided by the
SymbolicData Project (http://symbolicdata.org).
"""
def __init__(self, sparql = 'symbolicdata.org'):
"""
The constructor parses the sd.ini file and sets up some variables.
An optional parameter can be passed to select the SPARQL endpoint
that should be used. The keywords for different SPARQL endpoints are
defined in the sd.ini file.
The default SPARQL endpoint is the one from symbolicdata.org
"""
self._sparql = sparql
self._ideals = None
self._parser = SafeConfigParser()
self._parser.read(['sd.ini','examples/sd.ini'])
self.sd = self._parser.get('symbolicdata', 'sd')
try:
self.url = self._parser.get('sparql', self._sparql)
except:
raise ValueError("The SPARQL endpoint referenced by '%s' was not found in the sd.ini file." % self._sparql)
self.sdhost = self._parser.get('DEFAULT', 'sdhost')
self.sqpath = self._parser.get('sparql', 'path')
#print "SymbolicData() initialized"
#print "url = " + str(self.url)
#print "sdhost = " + str(self.sdhost)
def get_ideals(self, force_reload = False):
"""
Returns a Python list of ideals.
"""
if self._ideals == None or force_reload == True:
self.list_ideals(False, force_reload)
return self._ideals
def list_ideals(self, output = True, force_reload = False):
"""
Lists all the available ideals.
"""
if self._ideals == None or force_reload == True:
r = SPARQL(self, self._parser.get('queries', 'list_ideals'))
self._ideals = [_uri_to_name(x['ideal']['value']) for
x in r.json['results']['bindings']]
if output:
_pprint(self._ideals)
def get_ideal(self, uri):
"""
Returns an ideal as a Jas object that is ready to be used by
Jas.
"""
return SD_Ideal(self, uri).get_ideal();
def get_sd_ideal(self, uri):
"""
Returns an internal object that represents the SymbolicData
database object. (See below for details)
"""
return SD_Ideal(self, uri)
class SPARQL:
"""
This is a 'wrapper' class for SPARQL queries. A class might be
a slight overkill. It was made with the idea, that one can store
the query and the result together, to re-evaluate both without
having to access the server. However, in the end this feature
was not really needed.
"""
def __init__(self, sd, query, output = 'json'):
"""
Execute the query and store the results.
"""
self._sd = sd;
self._query = query;
self._data = {
'output' : output,
'query' : query
}
#self.response = requests.get(self._sd.url, params = self._data)
#print "url = " + str(self._sd.url)
conn = httplib.HTTPConnection(self._sd.url)
#print "conn = " + str(conn)
#print "query = " + str(query)
_path = self._sd.sqpath + "?" + urllib.urlencode(self._data)
#print "path = " + str(_path)
conn.request("GET", _path );
response = conn.getresponse();
if response.status != 200:
print response.status, response.reason, "\n"
raise IOError, "HTTP GET %s not successful" % _path
head = response.msg
#print "head = " + str(head)
self.text = response.read()
#print "body = " + str(self.text)
self.json = json.loads(self.text)
#print "json = " + str(self.json)
conn.close()
class SD_Ideal:
"""
This class represents a SymbolicData database object. The
constructor takes a complete URI or a name SUBJ (the latter of which
will be prefixed with the 'ideal' value from the sd.ini)
Any triple of the form (SUBJ, PRED, OBJ) will yield a field PRED*
for the SD_Ideal object with the value OBJ, where PRED* is the
ending piece of PRED URI as defined by the function _uri_to_name()
A SPARQL endpoint is needed. As a future improvement, it could be
nice to directly parse an RDF in a convienient serialization.
"""
def __init__(self, sd, name):
"""
sd is a SymbolicData object, the name can be a complete URI or shortened
name as defined by _uri_to_name(). The latter will be prefixed with the
'ideal' value from the sd.ini. Namespaces like "sd:Wu-90" are not
(yet) supported.
Appart from retrieving the information from the SPARQL endpoint, the
resource data (XML files) is needed as well. While the SPARQL endpoint
can be substituted by another SPARQL endpoint, the links to the resource
files are 'hard-coded' into the RDF data. The possibility to use a
(possibly 'hand-filled') cache will be included in the next update.
"""
self._sd = sd
# quick test, if the given name already is an uri
if name[:7] == 'http://':
self.uri = name
else:
self.uri = "%s%s" % (self._sd._parser.get("symbolicdata", "ideal"), name)
self.hasXMLResource = False
self.hasLengthsList = ''
self.hasDegreeList = ''
self.hasParameters = ''
# we set up the query to get all predicate values
# of the URI/polynomial system/ideal
query = '''
PREFIX sd: <%s>
SELECT ?p ?o WHERE {
<%s> ?p ?o
}''' % (self._sd.sd, self.uri)
self._request = SPARQL(self._sd, query)
if len(self._request.json['results']['bindings']) == 0:
raise ValueError("No data found for <%s>.\nMaybe the name was misspelled or the SPARQL endpoint is unavailable." % self.uri)
# append the keys to the self.__dict__.
for t in self._request.json['results']['bindings']:
uri = t['p']['value']
obj = t['o']['value']
self.__dict__[_uri_to_name(uri)] = obj
# Next we need a resource file with the actual expressions that are
# used to generate the ideal.
#
# There are four cases that need to be dealt with
# (1) the ideal is constructed direclty
# from an IntPS with related XML resource
# (2) the ideal is a flat variant of another
# ideal
# (3) the ideal is obtained by homogenizing
# another ideal
# (4) the ideal is obtained by parameterizing another
# ideal
# Please note: While it might seem that only one of (2) and (4)
# should be included, both are needed to map the actual history
# of how these ideals were obtained.
# case 1
if 'relatedPolynomialSystem' in self.__dict__.keys():
self.__addXMLResource(get_value_for_URI(self._sd, self.relatedPolynomialSystem, self._sd.sd+'relatedXMLResource'))
self.hasXMLResource = True
#print "relatedPolynomialSystem " + str(name)
# case 2
if 'flatten' in self.__dict__.keys():
parent_name = self.flatten
parent = SD_Ideal(self._sd, parent_name)
self.variablesCSV = self.hasVariables
self.variables = map(lambda x: str(x).strip(), self.variablesCSV.rsplit(","))
self.basis = parent.basis
#print "flatten " + str(parent_name) + ", name = " + str(name)
# case 3
if 'homogenize' in self.__dict__.keys():
parent_name = self.homogenize
if 'homogenizedWith' in self.__dict__.keys():
hv = self.homogenizedWith
parent = SD_Ideal(self._sd, parent_name)
self.variablesCSV = parent.variablesCSV + "," + hv
self.variables = parent.variables
self.variables.append(hv)
self.basis = parent.jas_homogenize(hv)
#print "homogenize " + str(parent_name) + ", name = " + str(name)
# case 4
if 'parameterize' in self.__dict__.keys():
parent_name = self.parameterize
parent = SD_Ideal(self._sd, parent_name)
self.variablesCSV = self.hasVariables
self.variables = map(lambda x: str(x).strip(), self.variablesCSV.rsplit(","))
self.basis = parent.basis
#print "parameterize " + str(parent_name) + ", name = " + str(name)
# now we got the variables, the parameters and
# the strings/expressions for the polynomials
self.__constructJasObject()
def get_ideal(self):
"""
Return the ideal as a Jas objects.
"""
#return ideal(self.sageBasis)
#print "jasRing = " + str(self.jasRing)
return self.jasRing.ideal(list=self.jasBasis)
def __addXMLResource(self, link):
#xml = requests.get(link).text
#print "link = " + str(link)
#url = link[0:23]
path = link[23:] # hack for lost domain
#print "url = " + str(url)
#url = self._sd.url[:-5]
url = self._sd.sdhost
#print "url = " + str(url)
conn = httplib.HTTPConnection(url)
#print "conn = " + str(conn)
#print "path = " + str(path)
conn.request("GET", path );
xml = conn.getresponse().read();
print _uri_to_name(link) + " = " + str(xml)
xmlTree = parseString(xml)
# Code snipped borrowed from Albert Heinle
if (xmlTree.getElementsByTagName("vars") == []): # Check, if vars are there
raise IOERROR("The given XMLString does not contain variables for the IntPS System")
if (xmlTree.getElementsByTagName("basis") == []): # Check, if we have a basis
raise IOERROR("The given XMLString does not contain a basis for the IntPS System")
# -------------------- Input Check finished --------------------
# From here, we can assume that the input is given correct
self.variablesCSV = (xmlTree.getElementsByTagName("vars")[0]).firstChild.data
self.variables = map(lambda x: str(x).strip(), self.variablesCSV.rsplit(","))
polynomials = xmlTree.getElementsByTagName("basis")[0]
self.basis = map(lambda poly: str(poly.firstChild.data).strip(),polynomials.getElementsByTagName("poly"))
def __constructJasObject(self):
#from types import StringType
from jas import PolyRing, ZZ
# set up the polynomial ring (Jas syntax)
if 'hasParameters' in self.__dict__ and self.hasParameters != '':
#K = 'K.<%s> = PolynomialRing(ZZ)' % self.hasParameters
#R = K + '; R.<%s> = PolynomialRing(K)' % self.hasVariables
K = PolyRing(ZZ(), str(self.hasParameters) )
R = PolyRing(K, str(self.hasVariables))
gens = '%s,%s' % (self.hasParameters, self.hasVariables)
else:
#R = 'R.<%s> = PolynomialRing(ZZ)' % (self.hasVariables)
R = PolyRing(ZZ(), str(self.hasVariables) )
gens = str(self.hasVariables)
# translate Jas syntax to pure Python and execute
#exec(preparse(R))
Rg = "(one," + gens + ") = R.gens();"
#print str(R)
exec(str(Rg)) # safe here since R did evaluate
#print "R = " + str(R)
self.jasRing = R;
# avoid XSS: check if polynomials are clean
from edu.jas.poly import GenPolynomialTokenizer
vs = GenPolynomialTokenizer.expressionVariables(str(gens))
vs = sorted(vs)
#print "vs = " + str(vs)
vsb = set()
[ vsb.update(GenPolynomialTokenizer.expressionVariables(str(s))) for s in self.basis]
vsb = sorted(list(vsb))
#print "vsb = " + str(vsb)
if vs != vsb:
raise ValueError("invalid variables: expected " + str(vs) + ", got " + str(vsb))
# construct polynomials in the constructed ring from
# the polynomial expressions
self.jasBasis = []
for ps in self.basis:
#print "ps = " + str(ps)
ps = str(ps)
ps = ps.replace('^', '**')
#exec(preparse("symbdata_ideal = %s" % ps))
#exec("symbdata_poly = %s" % ps)
pol = eval(ps)
self.jasBasis.append(pol)
#print "jasBasis = " + str([ str(p) for p in self.jasBasis])
# the following functions will all use Jas to
# calculate metadata
def jas_hasLengthsList(self):
"""
This is the implementation of the predicate "sd:hasLengthsList".
The lengths lists is the sorted list of the number of monomials of
the generator of the ideal.
Along with the output, there will also be generated a field
FROM_JAS_hasLengthsList which can be used to later access the
data without recalculating. The main reason for this is that the
SymbolicData properties are converted into field, not getter
functions. So to have some symmetry, the Jas calculations will
end up in fields as well.
"""
try:
LL = sorted(map(lambda x : len(x.monomials()), self.jasBasis))
self.FROM_JAS_hasLengthsList = ",".join(map(lambda x: str(x), LL))
except:
self.FROM_JAS_hasLengthsList = ''
return self.FROM_JAS_hasLengthsList
def jas_hasDegreeList(self):
"""
This is the implementation of the predicate "sd:hasDegreeList".
The degree list is the sorted list of the degree of the generator
of the ideal.
Along with the output, there will also be generated a field
FROM_JAS_hasDegreeList which can be used to later access the
data without recalculating. The main reason for this is that the
SymbolicData properties are converted into field, not getter
functions. So to have some symmetry, the Jas calculations will
end up in fields as well.
"""
try:
LL = sorted(map(lambda x : x.degree(), self.jasBasis))
self.FROM_JAS_hasDegreeList = ",".join(map(lambda x: str(x), LL))
except:
self.FROM_JAS_hasDegreeList = ''
return self.FROM_JAS_hasDegreeList
def jas_hasVariables(self):
"""
This is the implementation of the predicate "sd:hasVariables". This
is actually not needed.
"""
#K = []
#DL = map(lambda m : K.extend(map(lambda l : str(l), m.variables())), self.sageBasis)
K = self.jasRing.ring.vars
return ",".join(sorted(list(set(K))))
def jas_homogenize(self, hv):
"""
Homogenize a basis, which here means actually nothing more than
homogenizing every element of the basis.
"""
homBasis = map(lambda x : x.homogenize(hv), self.jasBasis)
return homBasis
|