1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
/*
* BufferedRGB24Image
*
* Copyright (c) 2002 Marco Schmidt.
* All rights reserved.
*/
package net.sourceforge.jiu.gui.awt;
import java.awt.image.BufferedImage;
import net.sourceforge.jiu.data.PixelImage;
import net.sourceforge.jiu.data.RGB24Image;
/**
* A bridge class to use {@link java.awt.image.BufferedImage} objects (class defined
* in the standard runtime library, package <code>java.awt.image</code>) as
* {@link net.sourceforge.jiu.data.RGB24Image} objects within JIU.
* This class encapsulates a single {@link java.awt.image.BufferedImage} object.
* It enables reusing existing BufferedImage objects as input or
* output of JIU operations,
* removing the necessity for the conversion step from <code>java.awt.Image</code>
* to <code>net.sourceforge.jiu.data.PixelImage</code> (or vice versa)
* and thus reducing memory consumption.
* The name of this class is a combination of BufferedImage (the class of the object
* that is encapsulated) and RGB24Image (the JIU image data interface).
* <p>
* Internally, this class uses {@link java.awt.image.BufferedImage}'s getRGB and
* setRGB methods to access image data.
* This approach is slower than working directly on the BufferedImage's data
* buffers.
* However, using getRGB and setRGB, this class will work with all types of BufferedImage objects.
* <p>
* Note that while the abstract <code>java.awt.Image</code> class existed from the very
* beginning (version 1.0) of the Java runtime library, <code>java.awt.image.BufferedImage</code>
* has not been added until version 1.2.
* <h3>Usage example</h3>
* This code snippet demonstrates to how combine functionality from Java's runtime
* library with JIU by using this class.
* Requires Java 1.4 or higher.
* Obviously, BufferedRGB24Image objects can only be used with operations that
* work on classes implementing RGB24Image.
* <pre>
* import java.awt.image.BufferedImage;
* import java.io.File;
* import javax.imageio.ImageIO;
* import net.sourceforge.jiu.color.Invert;
* import net.sourceforge.jiu.data.PixelImage;
* import net.sourceforge.jiu.gui.awt.BufferedRGB24Image;
* ...
* BufferedImage bufferedImage = ImageIO.read(new File("image.jpg"));
* BufferedRGB24Image image = new BufferedRGB24Image(bufferedImage);
* Invert invert = new Invert();
* invert.setInputImage(image);
* invert.process();
* PixelImage outputImage = invert.getOutputImage();
* </pre>
* If you can be sure that an image object can be input and output
* image at the same time (as is the case with some operations), you
* can even work with only one BufferedRGB24Image object.
* Invert is one of these operations, so the following would work:
* <pre>
* Invert invert = new Invert();
* invert.setInputImage(image);
* invert.setOutputImage(image);
* invert.process();
* // image now is inverted
* </pre>
*
* @author Marco Schmidt
* @since 0.10.0
*/
public class BufferedRGB24Image implements RGB24Image
{
private static final int RED_SHIFT = 16;
private static final int GREEN_SHIFT = 8;
private static final int BLUE_SHIFT = 0;
/**
* Masks for the three RGB channels.
* RGB_CLEAR[i] is an int with all bits on, except for those occupied by the channel i.
* RGB_CLEAR[i] can thus be used to bitwise AND an ARGB value so that the sample for channel i will be cleared.
*/
private static final int[] RGB_CLEAR = new int[3];
private static final int[] RGB_SHIFT = new int[3];
static
{
RGB_SHIFT[INDEX_RED] = RED_SHIFT;
RGB_SHIFT[INDEX_GREEN] = GREEN_SHIFT;
RGB_SHIFT[INDEX_BLUE] = BLUE_SHIFT;
RGB_CLEAR[INDEX_RED] = 0xff00ffff;
RGB_CLEAR[INDEX_GREEN] = 0xffff00ff;
RGB_CLEAR[INDEX_BLUE] = 0xffffff00;
}
private final int HEIGHT;
private final BufferedImage image;
private final int WIDTH;
/**
* Creates a new BufferedRGB24Image object, storing the argument
* BufferedImage object internally.
* All image data access will be delegated to that BufferedImage object's methods.
* @param bufferedImage the underlying BufferedImage object for this BufferedRGB24Image object
*/
public BufferedRGB24Image(BufferedImage bufferedImage)
{
image = bufferedImage;
if (image == null)
{
throw new IllegalArgumentException("Argument image object must not be null.");
}
WIDTH = image.getWidth();
HEIGHT = image.getHeight();
}
/**
* Sets all the RGB samples in this image to the argument, keeping
* the alpha value.
* @param newValue all samples in the image will be set to this value
*/
public void clear(byte newValue)
{
final int RGB = (newValue & 0xff) | (newValue & 0xff) << 8 | (newValue & 0xff) << 16;
for (int y = 0; y < getHeight(); y++)
{
for (int x = 0; x < getWidth(); x++)
{
int rgba = image.getRGB(x, y);
rgba = (rgba & 0xff000000) | RGB;
image.setRGB(x, y, rgba);
}
}
}
public void clear(int newValue)
{
clear((byte)newValue);
}
public void clear(int channelIndex, byte newValue)
{
final int MASK = RGB_CLEAR[channelIndex];
final int SAMPLE = (newValue & 0xff) << RGB_SHIFT[channelIndex];
for (int y = 0; y < getHeight(); y++)
{
for (int x = 0; x < getWidth(); x++)
{
int rgba = image.getRGB(x, y);
rgba = (rgba & MASK) | SAMPLE;
image.setRGB(x, y, rgba);
}
}
}
public void clear(int channelIndex, int newValue)
{
clear(channelIndex, (byte)newValue);
}
public PixelImage createCompatibleImage(int width, int height)
{
BufferedImage newBufferedImage = new BufferedImage(width, height, image.getType());
return new BufferedRGB24Image(newBufferedImage);
}
public PixelImage createCopy()
{
BufferedImage newBufferedImage = new BufferedImage(getWidth(), getHeight(), image.getType());
image.copyData(newBufferedImage.getRaster());
return new BufferedRGB24Image(newBufferedImage);
}
public long getAllocatedMemory()
{
/* actually, number of pixels times 4 is just a guess,
BufferedImage allows for all kinds of data buffers;
for a more accurate approximation these data buffers
must be examined */
return 4L * (long)getWidth() * (long)getHeight();
}
public int getBitsPerPixel()
{
return 24;
}
public byte getByteSample(int x, int y)
{
return getByteSample(0, x, y);
}
public byte getByteSample(int channelIndex, int x, int y)
{
return (byte)((image.getRGB(x, y) >> RGB_SHIFT[channelIndex]) & 0xff);
}
public void getByteSamples(int channelIndex, int x, int y, int w, int h, byte[] dest, int destOffset)
{
final int SHIFT = RGB_SHIFT[channelIndex];
int[] row = new int[w];
while (h-- > 0)
{
image.getRGB(x, y++, w, 1, row, 0, w);
int columns = w;
int rowIndex = 0;
while (columns-- > 0)
{
dest[destOffset++] = (byte)((row[rowIndex++] >> SHIFT) & 0xff);
}
}
}
public void getByteSamples(int x, int y, int w, int h, byte[] dest, int destOffset)
{
getByteSamples(0, x, y, w, h, dest, destOffset);
}
public int getHeight()
{
return HEIGHT;
}
public Class getImageType()
{
return RGB24Image.class;
}
public int getMaxSample(int channel)
{
if (channel == INDEX_BLUE || channel == INDEX_RED || channel == INDEX_GREEN)
{
return 255;
}
else
{
throw new IllegalArgumentException("Not a valid channel index: " + channel);
}
}
public int getNumChannels()
{
return 3;
}
public int getSample(int x, int y)
{
return getSample(0, x, y);
}
public int getSample(int channelIndex, int x, int y)
{
return (image.getRGB(x, y) >> RGB_SHIFT[channelIndex]) & 0xff;
}
public void getSamples(int x, int y, int w, int h, int[] dest, int destOffs)
{
getSamples(0, x, y, w, h, dest, destOffs);
}
public void getSamples(int channelIndex, int x, int y, int w, int h, int[] dest, int destOffs)
{
final int SHIFT = RGB_SHIFT[channelIndex];
int[] row = new int[w];
while (h-- > 0)
{
image.getRGB(x, y++, w, 1, row, 0, w);
int columns = w;
int rowIndex = 0;
while (columns-- > 0)
{
dest[destOffs++] = (row[rowIndex++] >> SHIFT) & 0xff;
}
}
}
public int getWidth()
{
return WIDTH;
}
public void putByteSample(int channelIndex, int x, int y, byte newValue)
{
int argb = image.getRGB(x, y) & RGB_CLEAR[channelIndex];
image.setRGB(x, y, argb | ((newValue & 0xff) << RGB_SHIFT[channelIndex]));
}
public void putByteSample(int x, int y, byte newValue)
{
putByteSample(0, x, y, newValue);
}
public void putByteSamples(int channelIndex, int x, int y, int w, int h, byte[] src, int srcOffset)
{
final int SHIFT = RGB_SHIFT[channelIndex];
final int MASK = RGB_CLEAR[channelIndex];
int[] row = new int[w];
while (h-- > 0)
{
image.getRGB(x, y, w, 1, row, 0, w);
int columns = w;
int rowIndex = 0;
while (columns-- > 0)
{
int argb = row[rowIndex] & MASK;
row[rowIndex++] = argb | ((src[srcOffset++] & 0xff) << SHIFT);
}
image.setRGB(x, y++, w, 1, row, 0, w);
}
}
public void putByteSamples(int x, int y, int w, int h, byte[] src, int srcOffset)
{
putByteSamples(0, x, y, w, h, src, srcOffset);
}
public void putSample(int x, int y, int newValue)
{
putSample(0, x, y, newValue);
}
public void putSample(int channelIndex, int x, int y, int newValue)
{
int argb = image.getRGB(x, y) & RGB_CLEAR[channelIndex];
image.setRGB(x, y, argb | (newValue << RGB_SHIFT[channelIndex]));
}
public void putSamples(int channelIndex, int x, int y, int w, int h, int[] src, int srcOffset)
{
final int SHIFT = RGB_SHIFT[channelIndex];
final int MASK = RGB_CLEAR[channelIndex];
int[] row = new int[w];
while (h-- > 0)
{
image.getRGB(x, y, w, 1, row, 0, w);
int columns = w;
int rowIndex = 0;
while (columns-- > 0)
{
int argb = row[rowIndex] & MASK;
row[rowIndex++] = argb | (src[srcOffset++] << SHIFT);
}
image.setRGB(x, y++, w, 1, row, 0, w);
}
}
}
|