File: Resample.java

package info (click to toggle)
java-imaging-utilities 0.14.3-7
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,556 kB
  • sloc: java: 31,233; python: 71; xml: 31; makefile: 26; sh: 5
file content (701 lines) | stat: -rw-r--r-- 21,309 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
/*
 * Resample
 * 
 * Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007 Marco Schmidt.
 * All rights reserved.
 */

package net.sourceforge.jiu.geometry;

import net.sourceforge.jiu.data.PixelImage;
import net.sourceforge.jiu.data.IntegerImage;
import net.sourceforge.jiu.ops.ImageToImageOperation;
import net.sourceforge.jiu.ops.MissingParameterException;
import net.sourceforge.jiu.ops.WrongParameterException;

// 2007-04-19 optimization results
//* 10393 original speed in ms
//* 6053 innerloop fix
//* 5688 if .. continue loop break
//* 5485 replaced contrib[] array access by variable
//* 5173 doing the same on first pass (except innerloop fix which was ok there)
// global gain is 2x faster

/* This is the beginning of resample.pas, the Unit on which this class is based:
// -----------------------------------------------------------------------------
// Project:	bitmap resampler
// Module:	resample
// Description: Interpolated Bitmap Resampling using filters.
// Version:	01.03
// Release:	4
// Date:	29-JUN-1999
// Target:	Win32, Delphi 2, 3 & 4
// Author(s):	anme: Anders Melander, anders@melander.dk
// Copyright	(c) 1997-99 by Anders Melander
// Formatting:	2 space indent, 8 space tabs, 80 columns.
// -----------------------------------------------------------------------------
// This software is copyrighted as noted above.  It may be freely copied,
// modified, and redistributed, provided that the copyright notice(s) is
// preserved on all copies.
//
// There is no warranty or other guarantee of fitness for this software,
// it is provided solely "as is".  Bug reports or fixes may be sent
// to the author, who may or may not act on them as he desires.
//
// You may not include this software in a program or other software product
// without supplying the source, or without informing the end-user that the
// source is available for no extra charge.
//
// If you modify this software, you should include a notice in the "Revision
// history" section giving the name of the person performing the modification,
// the date of modification, and the reason for such modification.
// -----------------------------------------------------------------------------
// Here's some additional copyrights for you:
//
// From filter.c:
// The authors and the publisher hold no copyright restrictions
// on any of these files; this source code is public domain, and
// is freely available to the entire computer graphics community
// for study, use, and modification.  We do request that the
// comment at the top of each file, identifying the original
// author and its original publication in the book Graphics
// Gems, be retained in all programs that use these files.
//
// -----------------------------------------------------------------------------
// Revision history:
//
// 0100	110997	anme	- Adapted from Dale Schumacher's fzoom v0.20.
//
// 0101	110198	anme	- Added Lanczos3 and Mitchell filters.
//			- Fixed range bug.
//			  Min value was not checked on conversion from Single to
//			  byte.
//			- Numerous optimizations.
//			- Added TImage stretch on form resize.
//			- Added support for Delphi 2 via TCanvas.Pixels.
//			- Renamed module from stretch to resample.
//			- Moved demo code to separate module.
//
// 0102 150398	anme	- Fixed a problem that caused all pixels to be shifted
//			  1/2 pixel down and to the right (in source
//			  coordinates). Thanks to David Ullrich for the
//			  solution.
//
// 0103	170898	anme	- Fixed typo: Renamed Strecth function to Stretch.
//			  Thanks to Graham Stratford for spotting it.
//			  Sorry about that.
//	081298	anme	- Added check for too small destination bitmap.
//			  Thanks to Jeppe Oland for bringing this problem to my
//			  attention.
// 	260399	anme	- Fixed a problem with resampling of very narrow
//			  bitmaps. Thanks to Holger Dors for bringing the
//			  problem to my attention.
//			- Removed dependency of math unit.
//	290699	jobe	- Subsampling improvements by Josha Beukema.
//
// -----------------------------------------------------------------------------
// Credits:
// The algorithms and methods used in this library are based on the article
// "General Filtered Image Rescaling" by Dale Schumacher which appeared in the
// book Graphics Gems III, published by Academic Press, Inc.
//
// The edge offset problem was fixed by:
//   * David Ullrich <ullrich@hardy.math.okstate.edu>
//
// The subsampling problem was fixed by:
//   * Josha Beukema <jbeukema@inn.nl>
// -----------------------------------------------------------------------------
// To do (in rough order of priority):
// * Implement Dale Schumacher's "Optimized Bitmap Scaling Routines".
// * Optimize to use integer math instead of floating point where possible.
// -----------------------------------------------------------------------------
*/

/**
 * Resizes grayscale and truecolor images using filters.
 * For other image types (including paletted or bilevel images), you might
 * want to use the {@link ScaleReplication} class or convert the images to
 * grayscale (or RGB truecolor) first and then use this class.
 * Several algorithms for resampling are implemented, they differ in resulting image quality 
 * and computational complexity.
 *
 * <h3>Usage example</h3>
 * This will scale <code>image</code> to 150 percent of its original size
 * in both directions, using the Lanczos3 filter type:
 * <pre>
 * Resample resample = new Resample();
 * resample.setInputImage(image);
 * resample.setSize(image.getWidth() * 3 / 2, image.getHeight() * 3 / 2);
 * resample.setFilter(Resample.FILTER_TYPE_LANCZOS3);
 * resample.process();
 * PixelImage scaledImage = resample.getOutputImage();
 * </pre>
 * 
 * <h3>Known problems</h3>
 * <ul>
 * <li>Scaling down certain images (with stripe or checkers patterns in them) will
 *  lead to moire effects in the resulting image.
 *  These effects can be somewhat reduced by scaling down in several step (e.g.
 *  first from 1600 x 1200 to 800 x 600, then from 800 x 600 to 400 x 300, and so on).</li>
 * <li>Scaling down with filter type {@link #FILTER_TYPE_BOX} can lead to errors in the scaled image.
 *  No fix known yet. Workaround: Use the class {@link ScaleReplication}.</li>
 * </ul>
 *
 * <h3>Origin</h3>
 * This code is a port of Anders Melander's
 * Object Pascal (Delphi) unit <tt>resample.pas</tt> to Java.
 * The Delphi code is an adaptation (with some improvements) of 
 * Dale Schumacher's <tt>fzoom</tt> C code.
 * <del>Check out the homepage for the Delphi resample code, a demo application
 * to compare the different filtering algorithms is also provided:
 * <a target="_top" href="http://www.melander.dk/delphi/resampler/index.html">http://www.melander.dk/delphi/resampler/index.html</a>.
 * You will also find the original C code there.</del>
 * <ins>The site seems to have gone for good.</ins>
 *
 * <h3>Theory</h3>
 * The theoretical background for all implementations is Dale Schumacher's article
 * <em>General Filtered Image Rescaling</em>
 * in <em>Graphics Gems III</em>, editor David Kirk, Academic Press, pages 8-16, 1994.
 * <p>
 * The <em>Graphics Gems Repository</em> can be found at
 * <a target="_top" href="http://www.acm.org/tog/GraphicsGems/">http://www.acm.org/tog/GraphicsGems/</a>.
 * It also includes information on the books and how to order them.
 *
 * @author Marco Schmidt
 */
public class Resample extends ImageToImageOperation
{
	/**
	 * Constant for the Box filter (also known as Nearest Neighbor filter).
	 */
	public static final int FILTER_TYPE_BOX = 0;

	/**
	 * Constant for the Triangle filter (also known as Linear filter or Bilinear filter).
	 */
	public static final int FILTER_TYPE_TRIANGLE = 1;

	/**
	 * Constant for the Hermite filter.
	 */
	public static final int FILTER_TYPE_HERMITE = 2;

	/**
	 * Constant for the Bell filter.
	 */
	public static final int FILTER_TYPE_BELL = 3;

	/**
	 * Constant for the B-Spline filter.
	 */
	public static final int FILTER_TYPE_B_SPLINE = 4;

	/**
	 * Constant for the Lanczos3 filter.
	 */
	public static final int FILTER_TYPE_LANCZOS3 = 5;

	/**
	 * Constant for the Mitchell filter.
	 */
	public static final int FILTER_TYPE_MITCHELL = 6;

	class Contributor
	{
		int pixel; // Source pixel
		float weight; // Pixel weight
	}

	class CList
	{
		int n;
		Contributor[] p;
	}

	private Integer outWidth;
	private Integer outHeight;
	private ResampleFilter filter;

	private static ResampleFilter createFilter(int filterType)
	{
		switch(filterType)
		{
			case(FILTER_TYPE_BOX): return new BoxFilter();
			case(FILTER_TYPE_TRIANGLE): return new TriangleFilter();
			case(FILTER_TYPE_HERMITE): return new HermiteFilter();
			case(FILTER_TYPE_BELL): return new BellFilter();
			case(FILTER_TYPE_B_SPLINE): return new BSplineFilter();
			case(FILTER_TYPE_LANCZOS3): return new Lanczos3Filter();
			case(FILTER_TYPE_MITCHELL): return new MitchellFilter();
			default:
			{
				throw new IllegalArgumentException("Unknown filter type in Resample: " + filterType);
			}
		}
	}

	/**
	 * Returns the filter to be used in this operation.
	 * @return ResampleFilter object or <code>null</code> if none was defined yet
	 */
	public ResampleFilter getFilter()
	{
		return filter;
	}

	/**
	 * Returns the names of all predefined filters.
	 * Each FILTER_TYPE_xyz constant can be used as an index into the array that is returned.
	 * Names are retrieved by creating an object of each predefined filter class and calling its
	 * getName method.
	 * @return String array with filter names
	 */
	public static String[] getFilterNames()
	{
		String[] result = new String[getNumFilters()];
		for (int i = 0; i < getNumFilters(); i++)
		{
			ResampleFilter filter = createFilter(i);
			result[i] = filter.getName();
		}
		return result;
	}

	/**
	 * Returns the number of predefined filters.
	 * @return number of filters
	 */
	public static int getNumFilters()
	{
		return 7;
	}

	/**
	 * This method does the actual work of rescaling an image.
	 */
	private void process(IntegerImage in, IntegerImage out)
	{
		if (out == null)
		{
			out = (IntegerImage)in.createCompatibleImage(outWidth.intValue(), outHeight.intValue());
			setOutputImage(out);
		}
		if (filter == null)
		{
			filter = new TriangleFilter();
		}
		float fwidth = filter.getSamplingRadius();
		final int dstWidth = outWidth.intValue();
		final int dstHeight = outHeight.intValue();
		final int srcWidth = in.getWidth();
		final int srcHeight = in.getHeight();
 		/* if (SrcWidth < 1) or (SrcHeight < 1) then
    raise Exception.Create('Source bitmap too small');*/
		// Create intermediate image to hold horizontal zoom
		IntegerImage work = (IntegerImage)in.createCompatibleImage(dstWidth, srcHeight);
		float xscale;
		float yscale;
		if (srcWidth == 1)
		{
			xscale = (float)dstWidth / (float)srcWidth;
		}
		else
		{
			xscale = (float)(dstWidth - 1) / (float)(srcWidth - 1);
		}
		if (srcHeight == 1)
		{
			yscale = (float)dstHeight / (float)srcHeight;
		}
		else
		{
			yscale = (float)(dstHeight - 1) / (float)(srcHeight - 1);
		}

		/* Marco: the following two variables are used for progress notification */
		int processedItems = 0;
		int totalItems = /*dstWidth +*/ srcHeight + /*dstHeight +*/ dstWidth;

		// --------------------------------------------
		// Pre-calculate filter contributions for a row
		// -----------------------------------------------
		CList[] contrib = new CList[dstWidth];
		for (int i = 0; i < contrib.length; i++)
		{
			contrib[i] = new CList();
		}
		
		// Horizontal sub-sampling
		// Scales from bigger to smaller width
		if (xscale < 1.0f)
		{
			float width = fwidth / xscale;
			float fscale = 1.0f / xscale;
			int numPixels = (int)(width * 2.0f + 1);
			for (int i = 0; i < dstWidth; i++)
			{
				contrib[i].n = 0;
				contrib[i].p = new Contributor[numPixels];
				for (int j = 0; j < contrib[i].p.length; j++)
				{
					contrib[i].p[j] = new Contributor();
				}
				float center = i / xscale;
				int left = (int)Math.floor(center - width);
				int right = (int)Math.ceil(center + width);
				for (int j = left; j <= right; j++)
				{
					float weight = filter.apply((center - j) / fscale) / fscale;
					if (weight == 0.0f)
					{
						continue;
					}
					int n;
					if (j < 0)
					{
						n = -j;
					}
					else
					if (j >= srcWidth)
					{
						n = srcWidth - j + srcWidth - 1;
					}
					else
					{
						n = j;
					}
					int k = contrib[i].n;
					contrib[i].n = contrib[i].n + 1;
					contrib[i].p[k].pixel = n;
					contrib[i].p[k].weight = weight;
				}
				//setProgress(processedItems++, totalItems);
			}
		}
		else
    	// Horizontal super-sampling
	   	// Scales from smaller to bigger width
    	{
			int numPixels = (int)(fwidth * 2.0f + 1);
			for (int i = 0; i < dstWidth; i++)
			{
    			contrib[i].n = 0;
				contrib[i].p = new Contributor[numPixels];
				for (int j = 0; j < contrib[i].p.length; j++)
				{
					contrib[i].p[j] = new Contributor();
				}
				float center = i / xscale;
				int left = (int)Math.floor(center - fwidth);
				int right = (int)Math.ceil(center + fwidth);
				for (int j = left; j <= right; j++)
				{
					float weight = filter.apply(center - j);
					if (weight == 0.0f)
					{
						continue;
					}
					int n;
					if (j < 0)
					{
						n = -j;
					}
					else
					if (j >= srcWidth)
					{
						n = srcWidth - j + srcWidth - 1;
					}
					else
					{
						n = j;
					}
					int k = contrib[i].n;
					if (n < 0 || n >= srcWidth)
					{
						weight = 0.0f;
					}
					contrib[i].n = contrib[i].n + 1;
					contrib[i].p[k].pixel = n;
					contrib[i].p[k].weight = weight;
				}
				//setProgress(processedItems++, totalItems);
			}
		}
		
		// ----------------------------------------------------
		// Apply filter to sample horizontally from Src to Work
		// ----------------------------------------------------

		// start of Java-specific code
		// Marco: adjusted code to work with multi-channel images
		//        where each channel can have a different maximum sample value (not only 255)
		final int NUM_CHANNELS = work.getNumChannels();
		final int[] MAX = new int[NUM_CHANNELS];
		for (int k = 0; k < NUM_CHANNELS; k++)
		{
			MAX[k] = work.getMaxSample(k);
		}
		// end of Java-specific code

		for (int k = 0; k < srcHeight; k++)
		{
			for (int i = 0; i < dstWidth; i++)
			{
				for (int channel = 0; channel < NUM_CHANNELS; channel++)
				{
                    CList c=contrib[i];
					float sample = 0.0f;
                    int max=c.n;
					for (int j = 0; j < max; j++)
					{
						sample+=in.getSample(channel, c.p[j].pixel, k) * c.p[j].weight;
					}
					// Marco: procedure BoundRound included directly
					int result = (int)sample;
					if (result < 0)
					{
						result = 0;
					}
					else
					if (result > MAX[channel])
					{
						result = MAX[channel];
					}
					work.putSample(channel, i, k, result);
				}
			}
			setProgress(processedItems++, totalItems);
		}

		/* Marco: no need for "free memory" code as Java has garbage collection:
		    // Free the memory allocated for horizontal filter weights
    		for i := 0 to DstWidth-1 do
		      	FreeMem(contrib^[i].p);

		    FreeMem(contrib);
		*/

		// -----------------------------------------------
		// Pre-calculate filter contributions for a column
		// -----------------------------------------------

    	/*GetMem(contrib, DstHeight* sizeof(TCList));*/
		contrib = new CList[dstHeight];
		for (int i = 0; i < contrib.length; i++)
		{
			contrib[i] = new CList();
		}
		// Vertical sub-sampling
		// Scales from bigger to smaller height
		if (yscale < 1.0f)
		{
			float width = fwidth / yscale;
			float fscale = 1.0f / yscale;
			int numContributors = (int)(width * 2.0f + 1);
			for (int i = 0; i < dstHeight; i++)
			{
				contrib[i].n = 0;
				contrib[i].p = new Contributor[numContributors];
				for (int j = 0; j < contrib[i].p.length; j++)
				{
					contrib[i].p[j] = new Contributor();
				}
				float center = i / yscale;
				int left = (int)Math.floor(center - width);
				int right = (int)Math.ceil(center + width);
				for (int j = left; j <= right; j++)
				{
					float weight = filter.apply((center - j) / fscale) / fscale;
					// change suggested by Mike Dillon; not thoroughly tested;
					// old version:
					// float weight = filter.apply(center - j);
					if (weight == 0.0f)
					{
						continue;
					}
					int n;
					if (j < 0)
					{
						n = -j;
					}
					else
					if (j >= srcHeight)
					{
						n = srcHeight - j + srcHeight - 1;
					}
					else
					{
						n = j;
					}
					int k = contrib[i].n;
					contrib[i].n = contrib[i].n + 1;
					if (n < 0 || n >= srcHeight)
					{
						weight = 0.0f;// Flag that cell should not be used
					}
					contrib[i].p[k].pixel = n;
					contrib[i].p[k].weight = weight;
				}
				//setProgress(processedItems++, totalItems);
			}
		}
		else
		// Vertical super-sampling
		// Scales from smaller to bigger height
		{
			int numContributors = (int)(fwidth * 2.0f + 1);
			for (int i = 0; i < dstHeight; i++)
			{
				contrib[i].n = 0;
				contrib[i].p = new Contributor[numContributors];
				for (int j = 0; j < contrib[i].p.length; j++)
				{
					contrib[i].p[j] = new Contributor();
				}
				float center = i / yscale;
				int left = (int)Math.floor(center - fwidth);
				int right = (int)Math.ceil(center + fwidth);
				for (int j = left; j <= right; j++)
				{
					float weight = filter.apply(center - j);
					if (weight == 0.0f)
					{
						continue;
					}
					int n;
					if (j < 0)
					{
						n = -j;
					}
					else
					if (j >= srcHeight)
					{
						n = srcHeight - j + srcHeight - 1;
					}
					else
					{
						n = j;
					}
					int k = contrib[i].n;
					contrib[i].n = contrib[i].n + 1;
					if (n < 0 || n >= srcHeight)
					{
						weight = 0.0f;// Flag that cell should not be used
					}
					contrib[i].p[k].pixel = n;
					contrib[i].p[k].weight = weight;
				}
				//setProgress(processedItems++, totalItems);
			}
		}

		// --------------------------------------------------
		// Apply filter to sample vertically from Work to Dst
		// --------------------------------------------------
		for (int k = 0; k < dstWidth; k++)
		{
			for (int i = 0; i < dstHeight; i++)
			{
				for (int channel = 0; channel < NUM_CHANNELS; channel++)
				{
					float sample = 0.0f;
                    CList c=contrib[i];
                    int max=c.n;
                    for (int j = 0; j < max; j++)
					{
                      sample += work.getSample(channel, k, c.p[j].pixel) * c.p[j].weight;
					}
                    int result = (int)sample; 
                    if (result < 0)
                    {
                        result = 0;
                    }
                    else
                    if (result > MAX[channel])
                    {
                        result = MAX[channel];
                    }
                    out.putSample(channel, k, i, result);
				}
			}
			setProgress(processedItems++, totalItems);
		}
	}

	public void process() throws
		MissingParameterException,
		WrongParameterException
	{
		ensureInputImageIsAvailable();
		if (outWidth == null && outHeight == null && getOutputImage() != null)
		{
			PixelImage out = getOutputImage();
			outWidth = new Integer(out.getWidth());
			outHeight = new Integer(out.getHeight());
		}
		if (outWidth == null)
		{
			throw new MissingParameterException("Output width has not been initialized");
		}
		if (outHeight == null)
		{
			throw new MissingParameterException("Output height has not been initialized");
		}
		PixelImage image = getInputImage();
		if (image.getWidth() == outWidth.intValue() && 
		    image.getHeight() == outHeight.intValue())
		{
			throw new WrongParameterException("Input image already has the size specified by setSize.");
		}
		ensureOutputImageResolution(outWidth.intValue(), outHeight.intValue());
		if (image instanceof IntegerImage)
		{
			process((IntegerImage)image, (IntegerImage)getOutputImage());
		}
		else
		{
			throw new WrongParameterException("Input image must implement IntegerImage.");
		}
	}

	/**
	 * Set the pixel resolution of the output image.
	 * @param width the horizontal resolution of the output image
	 * @param height the vertical resolution of the output image
	 */
	public void setSize(int width, int height)
	{
		outWidth = new Integer(width);
		outHeight = new Integer(height);
	}

	/**
	 * Set a new filter object to be used with this operation.
	 * @param newFilter a resample filter to be used for scaling
	 */
	public void setFilter(ResampleFilter newFilter)
	{
		filter = newFilter;
	}

	/**
	 * Sets a new filter type, using the default sampling radius of that filter.
	 * @param filterType the new filter type, one of the FILTER_TYPE_xyz constants of this class
	 */
	public void setFilter(int filterType)
	{
		setFilter(createFilter(filterType));
	}

	/**
	 * Sets a new filter type with a user-defined sampling radius.
	 * @param filterType the new filter type, one of the FILTER_TYPE_xyz constants of this class
	 * @param samplingRadius the sampling radius to be used with that filter, must be larger than 0.0f
	 */
	public void setFilter(int filterType, float samplingRadius)
	{
		ResampleFilter newFilter = createFilter(filterType);
		newFilter.setSamplingRadius(samplingRadius);
		setFilter(newFilter);
	}
}