File: examples.md

package info (click to toggle)
javacc 7.0.13-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,712 kB
  • sloc: java: 27,671; xml: 2,305; cpp: 404; sh: 128; makefile: 24
file content (1279 lines) | stat: -rw-r--r-- 33,564 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
[Home](../index.md) > [Tutorials](index.md) > Examples

---

This section contains some examples to get you started using JavaCC and JJTree.

Once you have tried out and understood each of these examples, you should take a look at the [grammar repository](http://mindprod.com/jgloss/javacc.html), and more complex examples under the `examples/` directory.

But even with just these examples, you should be able to get started on reasonably complex grammars.

### <a name="toc"></a>Contents

- [**JavaCC Examples**](#javacc)
  * [Instructions](#javacc-instructions)
  * [Example1.jj](#javacc-example-1)
  * [Example2.jj](#javacc-example-2)
  * [Example3.jj](#javacc-example-3)
  * [NL_Xlator.jj](#javacc-nl-xlator)
  * [IdList.jj](#javacc-id-list)
- [**JJTree Examples**](#jjtree)
  * [Instructions](#jjtree-instructions)
  * [Example1.jjt](#jjtree-example-1)
  * [Example2.jjt](#jjtree-example-2)
  * [Example3.jjt](#jjtree-example-3)
  * [Example4.jjt](#jjtree-example-4)
- [**Example Grammars**](#examples)


## <a name="javacc"></a>JavaCC Examples

### <a name="javacc-instructions"></a>Instructions

---

The following instructions show you how to get started with JavaCC. The instructions below are with respect to Example1.jj, but you can build any parser using the same set of commands.

1. Run `javacc` on the grammar input file to generate a bunch of Java files that implement the parser and lexical analyzer (or token manager):

```java
javacc Example1.jj
```

2. Now compile the resulting Java programs:

```java
javac *.java
```

3. The parser is now ready to use. To run the parser, type:

```java
java Example1
```

The `Example1` parser and others in this directory are designed to take input from standard input. `Example1` recognizes matching braces followed by zero or more line terminators and then an end of file.

Examples of legal strings in this grammar are:

`{}`, `{{{{{}}}}}` // ... etc

Examples of illegal strings are:

`{}{}`, `}{}}`, `{ }`, `{x}` // ... etc

Try typing various different inputs to `Example1`. Remember `<control-d>` may be used to indicate the end of file (this is on the UNIX platform).

#### Output

Here are some sample runs:

1. The parser processes the string `{{}}` successfully.

```java
$ java Example1
{{}}<return>
<control-d>
```

2. The parser tries to process the string `{x` but throws a `TokenMgrError`.

```
$ java Example1
{x<return>
Lexical error at line 1, column 2.  Encountered: "x"
TokenMgrError: Lexical error at line 1, column 2.  Encountered: "x" (120), after : ""
        at Example1TokenManager.getNextToken(Example1TokenManager.java:146)
        at Example1.getToken(Example1.java:140)
        at Example1.MatchedBraces(Example1.java:51)
        at Example1.Input(Example1.java:10)
        at Example1.main(Example1.java:6)
```

3. The parser tries to process the string `{}}` but throws a `ParseException`.

```
$ java Example1
{}}<return>
ParseException: Encountered "}" at line 1, column 3.
Was expecting one of:
    <EOF>
    "\n" ...
    "\r" ...
        at Example1.generateParseException(Example1.java:184)
        at Example1.jj_consume_token(Example1.java:126)
        at Example1.Input(Example1.java:32)
        at Example1.main(Example1.java:6)
```

<br>

### <a name="javacc-example-1"></a>Example1.jj

---

`Example1.jj` is a simple JavaCC grammar that recognizes a set of left braces followed by the same number of right braces and finally followed by zero or more line terminators and finally an end of file.

```java
options {
  LOOKAHEAD = 1;
  CHOICE_AMBIGUITY_CHECK = 2;
  OTHER_AMBIGUITY_CHECK = 1;
  STATIC = true;
  DEBUG_PARSER = false;
  DEBUG_LOOKAHEAD = false;
  DEBUG_TOKEN_MANAGER = false;
  ERROR_REPORTING = true;
  JAVA_UNICODE_ESCAPE = false;
  UNICODE_INPUT = false;
  IGNORE_CASE = false;
  USER_TOKEN_MANAGER = false;
  USER_CHAR_STREAM = false;
  BUILD_PARSER = true;
  BUILD_TOKEN_MANAGER = true;
  SANITY_CHECK = true;
  FORCE_LA_CHECK = false;
}

PARSER_BEGIN(Example1)

/**
 * Simple brace matcher.
 */
public class Example1 {

  /** Main entry point. */
  public static void main(String args[]) throws ParseException {
    Example1 parser = new Example1(System.in);
    parser.Input();
  }

}

PARSER_END(Example1)

/** Root production. */
void Input() :
{}
{
  MatchedBraces() ("\n"|"\r")* <EOF>
}

/** Brace matching production. */
void MatchedBraces() :
{}
{
  "{" [ MatchedBraces() ] "}"
}
```

This grammar file starts with settings for all the options offered by JavaCC. In this case the option settings are their default values. Hence these option settings were really not necessary. One could as well have completely omitted the options section, or omitted one or more of the individual option settings. The details of the individual options is described in the JavaCC [documentation](../documentation/grammar.md#options).

Following this is a Java compilation unit enclosed between `PARSER_BEGIN(name)` and `PARSER_END(name)`. This compilation unit can be of arbitrary complexity. The only constraint on this compilation unit is that it must define a class called `name` - the same as the arguments to `PARSER_BEGIN` and `PARSER_END`. This is the name that is used as the prefix for the Java files generated by the parser generator. The parser code that is generated is inserted immediately before the closing brace of the class called `name`.

In the above example, the class in which the parser is generated contains a main program. This main program creates an instance of the parser object (an object of type `Example1`) by using a constructor that takes one argument of type `java.io.InputStream` (`System.in` in this case).

The main program then makes a call to the non-terminal in the grammar that it would like to parse - `Input` in this case. All non-terminals have equal status in a JavaCC generated parser, and hence one may parse with respect to any grammar non-terminal.

Following this is a list of productions. In this example, there are two productions that define the non-terminals `Input` and `MatchedBraces` respectively. In JavaCC grammars, non-terminals are written and implemented (by JavaCC) as Java methods. When the non-terminal is used on the left-hand side of a production, it is considered to be declared and its syntax follows the Java syntax. On the right-hand side, its use is similar to a method call in Java.

Each production defines its left-hand side non-terminal followed by a colon. This is followed by a bunch of declarations and statements within braces (in both cases in the above example, there are no declarations and hence this appears as `{}`) which are generated as common declarations and statements into the generated method. This is then followed by a set of expansions also enclosed within braces.

Lexical tokens (regular expressions) in a JavaCC input grammar are either simple strings (`{`, `}`, `\n`, and `\r` in the above example), or a more complex regular expression. In our example above, there is one such regular expression `<EOF>` which is matched by the end of file. All complex regular expressions are enclosed within angular brackets.

The first production above says that the non-terminal `Input` expands to the non-terminal `MethodBraces` followed by zero or more line terminators (`\n` or `\r`) and then the end of file.

The second production above says that the non-terminal `MatchedBraces` expands to the token `{` followed by an optional nested expansion of `MatchedBraces` followed by the token `}`. Square brackets `[...]` in a JavaCC input file indicate that the `...` is optional.

`[...]` may also be written as `(...)?`. These two forms are equivalent. Other structures that may appear in expansions are:

```java
e1 | e2 | e3 | ... : A choice of e1, e2, e3, etc.
( e )+             : One or more occurrences of e
( e )*             : Zero or more occurrences of e
```

Note that these may be nested within each other, so we can have something like:

```java
(( e1 | e2 )* [ e3 ] ) | e4
```

To build this parser, simply run JavaCC on this file and compile the resulting Java files:

```java
javacc Example1.jj
javac *.java
```

Now you should be able to run the generated parser. Make sure that the current directory is in your `CLASSPATH` and type:

```java
java Example1
```

Now type a sequence of matching braces followed by a return and an end of file (`CTRL-D` on UNIX machines). If this is a problem on your machine, you can create a file and pipe it as input to the generated parser in this manner (piping also does not work on all machines - if this is a problem, just replace `System.in` in the grammar file with `new FileInputStream("testfile")` and place your input inside this file):

```java
java Example1 < myfile
```

Also try entering illegal sequences such as mismatched braces, spaces, and carriage returns between braces as well as other characters and take a look at the error messages produced by the parser.

<br>

### <a name="javacc-example-2"></a>Example2.jj

---

`Example2.jj` is a minor modification to `Example1.jj` to allow white space characters to be interspersed among the braces such that the following input will now be legal:

`{}{}`, `{ }`, `{\n}` // ... etc

```java
PARSER_BEGIN(Example2)

/**
 * Simple brace matcher.
 */
public class Example2 {

  /** Main entry point. */
  public static void main(String args[]) throws ParseException {
    Example2 parser = new Example2(System.in);
    parser.Input();
  }

}

PARSER_END(Example2)

SKIP :
{
  " "
| "\t"
| "\n"
| "\r"
}

/** Root production. */
void Input() :
{}
{
  MatchedBraces() <EOF>
}

/** Brace matching production. */
void MatchedBraces() :
{}
{
  "{" [ MatchedBraces() ] "}"
}
```

The first thing you will note is that we have omitted the options section. This does not change anything since the options in `Example1.jj` were all assigned their default values.

The other difference between this file and `Example1.jj` is that this file contains a lexical specification - the region that starts with `SKIP`. Within this region are 4 regular expressions - `space`, `tab`, `newline`, and `return`. This says that matches of these regular expressions are to be ignored (and not considered for parsing).

Hence whenever any of these 4 characters are encountered, they are just thrown away.

In addition to `SKIP`, JavaCC has three other lexical specification regions. These are:


`. TOKEN:`         This is used to specify lexical tokens (see next example)
`. SPECIAL_TOKEN:` This is used to specify lexical tokens that are to be
                   ignored during parsing.  In this sense, `SPECIAL_TOKEN` is
                   the same as `SKIP`.  However, these tokens can be recovered
                   within parser actions to be handled appropriately.
`. MORE:`          This specifies a partial token.  A complete token is
                   made up of a sequence of MORE's followed by a `TOKEN`
                   or `SPECIAL_TOKEN`.

Please take a look at some of the more complex grammars such as the Java grammars for examples of usage of these lexical specification regions.

You may build `Example2` and invoke the generated parser with input from the keyboard as standard input.

You can also try generating the parser with the various debug options turned on and see what the output looks like. To do this type:

```java
javacc -debug_parser Example2.jj
javac Example2*.java
java Example2
```

Then type:

```java
javacc -debug_token_manager Example2.jj
javac Example2*.java
java Example2
```

Note that token manager debugging produces a lot of diagnostic information and it is typically used to look at debug traces a single token at a time.

<br>

### <a name="javacc-example-3"></a>Example3.jj

---

`Example3.jj` is the third and final version of our matching brace detector.

```java
PARSER_BEGIN(Example3)

/**
 * Simple brace matcher.
 */
public class Example3 {

  /** Main entry point. */
  public static void main(String args[]) throws ParseException {
    Example3 parser = new Example3(System.in);
    parser.Input();
  }

}

PARSER_END(Example3)

SKIP :
{
  " "
| "\t"
| "\n"
| "\r"
}

TOKEN :
{
  <LBRACE: "{">
| <RBRACE: "}">
}

/** Root production. */
void Input() :
{ int count; }
{
  count=MatchedBraces() <EOF>
  { System.out.println("The levels of nesting is " + count); }
}

/** Brace counting production. */
int MatchedBraces() :
{ int nested_count=0; }
{
  <LBRACE> [ nested_count=MatchedBraces() ] <RBRACE>
  { return ++nested_count; }
}
```

This example illustrates the use of the `TOKEN` region for specifying lexical tokens. In this case, `{` and `}` are defined as tokens and given names `LBRACE` and `RBRACE` respectively. These labels can then be used within angular brackets (as in the example) to refer to this token. Typically such token specifications are used for complex tokens such as identifiers and literals. Tokens that are simple strings are left as is (in the previous examples).

This example also illustrates the use of actions in the grammar productions. The actions inserted in this example count the number of matching braces. Note the use of the declaration region to declare variables `count` and `nested_count`. Also note how the non-terminal `MatchedBraces` returns its value as a function return value.

<br>

### <a name="javacc-nl-xlator"></a>NL_Xlator.jj

---

This example goes into the details of writing regular expressions in JavaCC grammar files. It also illustrates a slightly more complex set of actions that translate the expressions described by the grammar into English.

```java
PARSER_BEGIN(NL_Xlator)

/**
 * New line translator.
 */
public class NL_Xlator {

  /** Main entry point. */
  public static void main(String args[]) throws ParseException {
    NL_Xlator parser = new NL_Xlator(System.in);
    parser.ExpressionList();
  }

}

PARSER_END(NL_Xlator)

SKIP :
{
  " "
| "\t"
| "\n"
| "\r"
}

TOKEN :
{
  < ID: ["a"-"z","A"-"Z","_"] ( ["a"-"z","A"-"Z","_","0"-"9"] )* >
|
  < NUM: ( ["0"-"9"] )+ >
}

/** Top level production. */
void ExpressionList() :
{
	String s;
}
{
	{
	  System.out.println("Please type in an expression followed by a \";\" or ^D to quit:");
	  System.out.println("");
	}
  ( s=Expression() ";"
	{
	  System.out.println(s);
	  System.out.println("");
	  System.out.println("Please type in another expression followed by a \";\" or ^D to quit:");
	  System.out.println("");
	}
  )*
  <EOF>
}

/** An Expression. */
String Expression() :
{
	java.util.Vector termimage = new java.util.Vector();
	String s;
}
{
  s=Term()
	{
	  termimage.addElement(s);
	}
  ( "+" s=Term()
	{
	  termimage.addElement(s);
	}
  )*
	{
	  if (termimage.size() == 1) {
	    return (String)termimage.elementAt(0);
          } else {
            s = "the sum of " + (String)termimage.elementAt(0);
	    for (int i = 1; i < termimage.size()-1; i++) {
	      s += ", " + (String)termimage.elementAt(i);
	    }
	    if (termimage.size() > 2) {
	      s += ",";
	    }
	    s += " and " + (String)termimage.elementAt(termimage.size()-1);
            return s;
          }
	}
}

/** A Term. */
String Term() :
{
	java.util.Vector factorimage = new java.util.Vector();
	String s;
}
{
  s=Factor()
	{
	  factorimage.addElement(s);
	}
  ( "*" s=Factor()
	{
	  factorimage.addElement(s);
	}
  )*
	{
	  if (factorimage.size() == 1) {
	    return (String)factorimage.elementAt(0);
          } else {
            s = "the product of " + (String)factorimage.elementAt(0);
	    for (int i = 1; i < factorimage.size()-1; i++) {
	      s += ", " + (String)factorimage.elementAt(i);
	    }
	    if (factorimage.size() > 2) {
	      s += ",";
	    }
	    s += " and " + (String)factorimage.elementAt(factorimage.size()-1);
            return s;
          }
	}
}

/** A Factor. */
String Factor() :
{
	Token t;
	String s;
}
{
  t=<ID>
	{
	  return t.image;
	}
|
  t=<NUM>
	{
	  return t.image;
	}
|
  "(" s=Expression() ")"
	{
	  return s;
	}
}
```

The new concept in the above example is the use of more complex regular expressions. The regular expression:

```java
< ID: ["a"-"z","A"-"Z","_"] ( ["a"-"z","A"-"Z","_","0"-"9"] )* >
```

creates a new regular expression whose name is `ID`. This can be referred anywhere else in the grammar simply as `<ID>`. What follows in square brackets are a set of allowable characters - in this case it is any of the lower or upper case letters or the underscore. This is followed by `0` or more occurrences of any of the lower or upper case letters, digits, or the underscore.

Other constructs that may appear in regular expressions are:

```java
( ... )+	: One or more occurrences of ...
( ... )?	: An optional occurrence of ... (Note that in the case
            of lexical tokens, (...)? and [...] are not equivalent)
( r1 | r2 | ... ) : Any one of r1, r2, ...
```

A construct of the form `[...]` is a pattern that is matched by the characters specified in `...` . These characters can be individual characters or character ranges. A `~` before this construct is a pattern that matches any character not specified in `...`. Therefore:

```java
["a"-"z"] matches all lower case letters
~[] matches any character
~["\n","\r"] matches any character except the new line characters
```

When a regular expression is used in an expansion, it takes a value of type `Token`. This is generated into the generated parser directory as `Token.java`. In the above example, we have defined a variable of type `Token` and assigned the value of the regular expression to it.

<br>

### <a name="javacc-id-list"></a>IdList.jj

---
This example illustrates an important attribute of the `SKIP` specification.

```java
PARSER_BEGIN(IdList)

/**
 * ID lister.
 */
public class IdList {

  /** Main entry point. */
  public static void main(String args[]) throws ParseException {
    IdList parser = new IdList(System.in);
    parser.Input();
  }

}

PARSER_END(IdList)

SKIP : {
  " "
| "\t"
| "\n"
| "\r"
}

TOKEN : {
  < Id: ["a"-"z","A"-"Z"] ( ["a"-"z","A"-"Z","0"-"9"] )* >
}

/** Top level production. */
void Input() :
{}
{
  ( <Id> )+ <EOF>
}
```java


The main point to note is that the regular expressions in the `SKIP` specification are only ignored *between tokens* and not *within tokens*. This grammar accepts any sequence of identifiers with white space in between.

A legal input for this grammar is:

```java
abc xyz123 A B C \t\n aaa
```

This is because any number of the `SKIP` regular expressions are allowed in between consecutive `<Id>`'s. However, the following is not a legal input:

```java
xyz 123
```

This is because the space character after `xyz` is in the `SKIP`category and therefore causes one token to end and another to begin. This requires `123` to be a separate token and hence does not match the grammar.

If spaces were OK within `<Id>`'s, then all one has to do is to replace the definition of Id to:

```java
TOKEN : {
  < Id: ["a"-"z","A"-"Z"] ( (" ")* ["a"-"z","A"-"Z","0"-"9"] )* >
}
```

Note that having a space character within a `TOKEN` specification does not mean that the space character cannot be used in the `SKIP` specification. All this means is that any space character that appears in the context where it can be placed within an identifier will participate in the match for `<Id>`, whereas all other space characters will be ignored. The details of the matching algorithm are described in the JavaCC documentation.

As a corollary, one must define as tokens anything within which characters such as white space characters must not be present. In the above example, if `<Id>` was defined as a grammar production rather than a lexical token as shown below this paragraph, then `xyz 123` would have been recognized as a legitimate `<Id>` (wrongly).

```java
void Id() : {
}
{
  <["a"-"z","A"-"Z"]> ( <["a"-"z","A"-"Z","0"-"9"]> )*
}
```

Note that in the above definition of non-terminal `Id`, it is made up of a sequence of single character tokens (note the location of `<...>`s), and hence white space is allowed between these characters.

<br>

## <a name="jjtree"></a>JJTree Examples

### <a name="jjtree-instructions"></a>Instructions

---

This section gives instructions on how to run the JJTree examples and the output you can expect to see.

<br>

### <a name="jjtree-example-1"></a>Example1.jjt

---

This example is just the JavaCC grammar, with a little extra code in the parser's main method to call the dump method on the generated tree. It illustrates how the default behavior of JJTree will produce a tree of non-terminals.

```java
PARSER_BEGIN(Example1)

/**
 * An Arithmetic Grammar.
 */
public class Example1 {

  /** Main entry point. */
  public static void main(String args[]) {
    System.out.println("Reading from standard input...");
    Example1 t = new Example1(System.in);
    try {
      SimpleNode n = t.Start();
      n.dump("");
      System.out.println("Thank you.");
    } catch (Exception e) {
      System.out.println("Oops.");
      System.out.println(e.getMessage());
      e.printStackTrace();
    }
  }
}

PARSER_END(Example1)


SKIP :
{
  " "
| "\t"
| "\n"
| "\r"
| <"//" (~["\n","\r"])* ("\n"|"\r"|"\r\n")>
| <"/*" (~["*"])* "*" (~["/"] (~["*"])* "*")* "/">
}

TOKEN : /* LITERALS */
{
  < INTEGER_LITERAL:
        <DECIMAL_LITERAL> (["l","L"])?
      | <HEX_LITERAL> (["l","L"])?
      | <OCTAL_LITERAL> (["l","L"])?
  >
|
  < #DECIMAL_LITERAL: ["1"-"9"] (["0"-"9"])* >
|
  < #HEX_LITERAL: "0" ["x","X"] (["0"-"9","a"-"f","A"-"F"])+ >
|
  < #OCTAL_LITERAL: "0" (["0"-"7"])* >
}

TOKEN : /* IDENTIFIERS */
{
  < IDENTIFIER: <LETTER> (<LETTER>|<DIGIT>)* >
|
  < #LETTER: ["_","a"-"z","A"-"Z"] >
|
  < #DIGIT: ["0"-"9"] >
}

/** Main production. */
SimpleNode Start() : {}
{
  Expression() ";"
  { return jjtThis; }
}

/** An Expression. */
void Expression() : {}
{
  AdditiveExpression()
}

/** An Additive Expression. */
void AdditiveExpression() : {}
{
  MultiplicativeExpression() ( ( "+" | "-" ) MultiplicativeExpression() )*
}

/** A Multiplicative Expression. */
void MultiplicativeExpression() : {}
{
  UnaryExpression() ( ( "*" | "/" | "%" ) UnaryExpression() )*
}

/** A Unary Expression. */
void UnaryExpression() : {}
{
  "(" Expression() ")" | Identifier() | Integer()
}

/** An Identifier. */
void Identifier() : {}
{
  <IDENTIFIER>
}

/** An Integer. */
void Integer() : {}
{
  <INTEGER_LITERAL>
}
```

The only bit of JJTree-specific code is an action in the start production that dumps the constructed parse tree when the parse is complete. It uses JJTree simple mode.

The input file is `Example1.jjt`.

```java
$ jjtree Example1.jjt
> Reading from file Example1.jjt . . .
> Annotated grammar generated successfully in Example1.jj
```

JJTree has now generated the JavaCC parser source, as well as Java source for the parse tree node building classes. Running JavaCC in the normal way generates the remaining Java code.

```java
$ javacc Example1.jj
> Reading from file Example1.jj . . .
> File "TokenMgrError.java" does not exist.  Will create one.
> File "ParseException.java" does not exist.  Will create one.
> File "Token.java" does not exist.  Will create one.
> File "ASCII_CharStream.java" does not exist.  Will create one.
> Parser generated successfully.
```

Compile and run the Java program as usual. The expression is read from the standard input (you type in `(a + b) * (c + 1);`):

```java
$ javac Example1.java
$ java Example1
> Reading from standard input...
(a + b) * (c + 1);
Start
 Expression
  AdditiveExpression
   MultiplicativeExpression
    UnaryExpression
     Expression
      AdditiveExpression
       MultiplicativeExpression
        UnaryExpression
         Identifier
       MultiplicativeExpression
        UnaryExpression
         Identifier
    UnaryExpression
     Expression
      AdditiveExpression
       MultiplicativeExpression
        UnaryExpression
         Identifier
       MultiplicativeExpression
        UnaryExpression
         Integer
```
<br>

### <a name="jjtree-example-2"></a>Example2.jjt

---

This example is the same grammar as `Example1.jjt` with modifications to customize the generated tree. It illustrates how unnecessary intermediate nodes can be suppressed, and how actions in the grammar can attach extra information to the nodes.

```java
options {
  MULTI=true;
  KEEP_LINE_COLUMN = false;
}

PARSER_BEGIN(Example2)

/**
 * An Arithmetic Grammar.
 */
public class Example2 {

  /** Main entry point. */
  public static void main(String args[]) {
    System.out.println("Reading from standard input...");
    Example2 t = new Example2(System.in);
    try {
      ASTStart n = t.Start();
      n.dump("");
      System.out.println("Thank you.");
    } catch (Exception e) {
      System.out.println("Oops.");
      System.out.println(e.getMessage());
      e.printStackTrace();
    }
  }
}

PARSER_END(Example2)

SKIP :
{
  " "
| "\t"
| "\n"
| "\r"
| <"//" (~["\n","\r"])* ("\n"|"\r"|"\r\n")>
| <"/*" (~["*"])* "*" (~["/"] (~["*"])* "*")* "/">
}

TOKEN : /* LITERALS */
{
  < INTEGER_LITERAL:
        <DECIMAL_LITERAL> (["l","L"])?
      | <HEX_LITERAL> (["l","L"])?
      | <OCTAL_LITERAL> (["l","L"])?
  >
|
  < #DECIMAL_LITERAL: ["1"-"9"] (["0"-"9"])* >
|
  < #HEX_LITERAL: "0" ["x","X"] (["0"-"9","a"-"f","A"-"F"])+ >
|
  < #OCTAL_LITERAL: "0" (["0"-"7"])* >
}

TOKEN : /* IDENTIFIERS */
{
  < IDENTIFIER: <LETTER> (<LETTER>|<DIGIT>)* >
|
  < #LETTER: ["_","a"-"z","A"-"Z"] >
|
  < #DIGIT: ["0"-"9"] >
}

/** Main production. */
ASTStart Start() : {}
{
  Expression() ";"
  { return jjtThis; }
}

/** An Expression. */
void Expression() #void : {}
{
  AdditiveExpression()
}

/** An Additive Expression. */
void AdditiveExpression() #void : {}
{
  (
    MultiplicativeExpression() ( ( "+" | "-" ) MultiplicativeExpression() )*
  ) #Add(>1)
}

/** A Multiplicative Expression. */
void MultiplicativeExpression() #void : {}
{
  (
    UnaryExpression() ( ( "*" | "/" | "%" ) UnaryExpression() )*
  ) #Mult(>1)
}

/** A Unary Expression. */
void UnaryExpression() #void : {}
{
  "(" Expression() ")" | MyID() | Integer()
}

/** An Identifier. */
void MyID() :
{
  Token t;
}
{
  t=<IDENTIFIER>
  {
    jjtThis.setName(t.image);
  }
}

/** An Integer. */
void Integer() : {}
{
  <INTEGER_LITERAL>
}
```

This is a modification of the first example to illustrate how the parse tree can be customized:

```java
$ jjtree Example2.jjt
> Reading from file Example2.jjt . . .
> File "Node.java" does not exist.  Will create one.
> File "SimpleNode.java" does not exist.  Will create one.
> File "ASTStart.java" does not exist.  Will create one.
> File "ASTAdd.java" does not exist.  Will create one.
> File "ASTMult.java" does not exist.  Will create one.
> File "ASTInteger.java" does not exist.  Will create one.
> Annotated grammar generated successfully in Example2.jj
```

```java
$ javacc Example2.jj
> Reading from file Example2.jj . . .
> File "TokenMgrError.java" does not exist.  Will create one.
> File "ParseException.java" does not exist.  Will create one.
> File "Token.java" does not exist.  Will create one.
> File "ASCII_CharStream.java" does not exist.  Will create one.
> Parser generated successfully.
```

```java
$ javac Example2.java
$ java Example2
> Reading from standard input...
(a + b) * (c + 1);
Start
 Mult
  Add
   Identifier: a
   Identifier: b
  Add
   Identifier: c
   Integer
```

Look at `Example.jjt` to see how node annotations can be used to restructure the parse tree, and at `ASTMyID.java` to see how you can write your own node classes that maintain more information from the input stream.

<br>

### <a name="jjtree-example-3"></a>Example3.jjt

---

This example is a modification of `Example2.jjt` with the `NODE_DEFAULT_VOID` option set. This instructs JJTree to treat all undecorated non-terminals as if they were decorated as `#void`. The default JJTree behavior is to treat such non-terminals as if they were decorated with the name of the non-terminal.

```java
options {
  MULTI=true;
  NODE_DEFAULT_VOID=true;
}

PARSER_BEGIN(Example3)

/**
 * An Arithmetic Grammar.
 */
public class Example3 {
  /** Main entry point. */
  public static void main(String args[]) {
    System.out.println("Reading from standard input...");
    Example3 t = new Example3(System.in);
    try {
      ASTStart n = t.Start();
      n.dump("");
      System.out.println("Thank you.");
    } catch (Exception e) {
      System.out.println("Oops.");
      System.out.println(e.getMessage());
      e.printStackTrace();
    }
  }
}

PARSER_END(Example3)


SKIP :
{
  " "
| "\t"
| "\n"
| "\r"
| <"//" (~["\n","\r"])* ("\n"|"\r"|"\r\n")>
| <"/*" (~["*"])* "*" (~["/"] (~["*"])* "*")* "/">
}

TOKEN : /* LITERALS */
{
  < INTEGER_LITERAL:
        <DECIMAL_LITERAL> (["l","L"])?
      | <HEX_LITERAL> (["l","L"])?
      | <OCTAL_LITERAL> (["l","L"])?
  >
|
  < #DECIMAL_LITERAL: ["1"-"9"] (["0"-"9"])* >
|
  < #HEX_LITERAL: "0" ["x","X"] (["0"-"9","a"-"f","A"-"F"])+ >
|
  < #OCTAL_LITERAL: "0" (["0"-"7"])* >
}

TOKEN : /* IDENTIFIERS */
{
  < IDENTIFIER: <LETTER> (<LETTER>|<DIGIT>)* >
|
  < #LETTER: ["_","a"-"z","A"-"Z"] >
|
  < #DIGIT: ["0"-"9"] >
}

/** Main production. */
ASTStart Start() #Start : {}
{
  Expression() ";"
  { return jjtThis; }
}

/** An Expression. */
void Expression() : {}
{
  AdditiveExpression()
}

/** An Additive Expression. */
void AdditiveExpression() : {}
{
  (
    MultiplicativeExpression() ( ( "+" | "-" ) MultiplicativeExpression() )*
  ) #Add(>1)
}

/** A Multiplicative Expression. */
void MultiplicativeExpression() : {}
{
  (
    UnaryExpression() ( ( "*" | "/" | "%" ) UnaryExpression() )*
  ) #Mult(>1)
}

/** A Unary Expression. */
void UnaryExpression() : {}
{
  "(" Expression() ")" | Identifier() | Integer()
}

/** An Identifier. */
void Identifier() #MyID :
{
  Token t;
}
{
  t=<IDENTIFIER>
  {
    jjtThis.setName(t.image);
  }
}

/** An Integer. */
void Integer() #Integer : {}
{
  <INTEGER_LITERAL>
}
```

This example can be run in the same manner as you ran `Example2.jjt`.

<br>

### <a name="jjtree-example-4"></a>Example4.jjt

---

This is a modification of `Example3.jjt` with the `VISITOR` option set. This instructs JJTree to insert a `jjtAccept()` method into all nodes it generates, and to produce a visitor class. The visitor is used to dump the tree.

```java
options {
  MULTI=true;
  VISITOR=true;
  NODE_DEFAULT_VOID=true;
}

PARSER_BEGIN(Example4)

/**
 * An Arithmetic Grammar.
 */
public class Example4 {

  /** Main entry point. */
  public static void main(String args[]) {
    System.out.println("Reading from standard input...");
    Example4 t = new Example4(System.in);
    try {
      ASTStart n = t.Start();
      Eg4Visitor v = new Eg4DumpVisitor();
      n.jjtAccept(v, null);
      System.out.println("Thank you.");
    } catch (Exception e) {
      System.out.println("Oops.");
      System.out.println(e.getMessage());
      e.printStackTrace();
    }
  }
}

PARSER_END(Example4)


SKIP :
{
  " "
| "\t"
| "\n"
| "\r"
| <"//" (~["\n","\r"])* ("\n"|"\r"|"\r\n")>
| <"/*" (~["*"])* "*" (~["/"] (~["*"])* "*")* "/">
}

TOKEN : /* LITERALS */
{
  < INTEGER_LITERAL:
        <DECIMAL_LITERAL> (["l","L"])?
      | <HEX_LITERAL> (["l","L"])?
      | <OCTAL_LITERAL> (["l","L"])?
  >
|
  < #DECIMAL_LITERAL: ["1"-"9"] (["0"-"9"])* >
|
  < #HEX_LITERAL: "0" ["x","X"] (["0"-"9","a"-"f","A"-"F"])+ >
|
  < #OCTAL_LITERAL: "0" (["0"-"7"])* >
}

TOKEN : /* IDENTIFIERS */
{
  < IDENTIFIER: <LETTER> (<LETTER>|<DIGIT>)* >
|
  < #LETTER: ["_","a"-"z","A"-"Z"] >
|
  < #DIGIT: ["0"-"9"] >
}

/** Main production. */
ASTStart Start() #Start : {}
{
  Expression() ";"
  { return jjtThis; }
}


/** An Expression. */
void Expression() : {}
{
  AdditiveExpression()
}

/** An Additive Expression. */
void AdditiveExpression() : {}
{
  (
    MultiplicativeExpression() ( ( "+" | "-" ) MultiplicativeExpression() )*
  ) #Add(>1)
}

/** A Multiplicative Expression. */
void MultiplicativeExpression() : {}
{
  (
    UnaryExpression() ( ( "*" | "/" | "%" ) UnaryExpression() )*
  ) #Mult(>1)
}

/** A Unary Expression. */
void UnaryExpression() : {}
{
  "(" Expression() ")" | Identifier() | Integer()
}

/** An Identifier. */
void Identifier() #MyOtherID :
{
  Token t;
}
{
  t=<IDENTIFIER>
  {
    jjtThis.setName(t.image);
  }
}

/** An Integer. */
void Integer() #Integer : {}
{
  <INTEGER_LITERAL>
}
```

This example again can be run in the same manner as you ran `Example2.jjt`. One thing to take care in this case is that you must run `jjtree` on a clean directory (that does not contain previously generated files).

For example, the file `SimpleNode.java` is different when the option `VISITOR` is set to `true`.

<br>

### <a name="examples"></a>Example Grammars

---

The following list of grammars was created by the JavaCC community.

* [AsnParser.jj](../grammars/AsnParser.jj)
* [CPPParser.jj](../grammars/CPPParser.jj)
* [CParser.jj](../grammars/CParser.jj)
* [ChemNumber.jj](../grammars/ChemNumber.jj)
* [Cobol.jj](../grammars/Cobol.jj)
* [DTDParser.jj](../grammars/DTDParser.jj)
* [EcmaScript.jjt](../grammars/EcmaScript.jjt)
* [ExpressParser.jj](../grammars/ExpressParser.jj)
* [FormsPlSql.jj](../grammars/FormsPlSql.jj)
* [GdmoTranslator.jj](../grammars/GdmoTranslator.jj)
* [IDLParser.jj](../grammars/IDLParser.jj)
* [JSONParser.jjt](../grammars/JSONParser.jjt)
* [OberonParser.jj](../grammars/OberonParser.jj)
* [PHP.jj](../grammars/PHP.jj)
* [PetalParser.jj](../grammars/PetalParser.jj)
* [PlSql.jj](../grammars/PlSql.jj)
* [RTFParser.jj](../grammars/RTFParser.jj)
* [infosapient.jj](../grammars/infosapient.jj)

<br>

---

You're done with the JavaCC tutorials!

[Home](../index.md)

<br>