1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
|
namespace Death {
//###==##====#=====--==~--~=~- --- -- - - - -
/** @mainpage
This is an API documentation for Jazz² Resurrection. For user documentation, please visit [project homepage](https://deat.tk/jazz2/).
Additionaly, the project is hosted on https://github.com/deathkiller/jazz2-native/.
Jazz² Resurrection is reimplementation of the game Jazz Jackrabbit 2 released in 1998. Supports
various versions of the game (Shareware Demo, Holiday Hare '98, The Secret Files and Christmas
Chronicles). Also, it partially supports some features of JJ2+ extension and MLLE. **Online multiplayer**
and **scripting support** (AngelScript) is currently in development, everything else, including
story episodes fully playable in cooperation, is already implemented.
To get in touch with the developers and the community, you can use the official [Discord server](https://discord.gg/Y7SBvkD).
For getting started guide, see @ref building. For game-specific API documentation, see @ref Jazz2
namespace. For common utility functions and generic containers, see @ref Death "the shared root namespace".
In addition, @ref CommonBase.h contains common configuration-specific and platform-specific
definitions. For **nCine** game engine documentation, see @ref nCine namespace. The **nCine** game
engine used in this game has been extensively modified, so the original documentation no longer
matches the current implementation.
@section mainpage-platforms Supported platforms
- **Android**
- **FreeBSD**
- **Linux** and other Unix-like systems
- **macOS**
- **Windows**
- **Nintendo Switch** using [devkitPro toolchain](https://devkitpro.org/wiki/devkitPro_pacman)
- **Xbox** (Universal Windows Platform) using ANGLE/Mesa
- **Web** (WebAssembly) using [Emscripten](https://kripken.github.io/emscripten-site/)
The code is mainly optimized to run on 64-bit **x86** and **ARM** processors including advanced
instruction sets. Additionally, **OpenGL** 3.3, **OpenGL|ES** 3.0 or **WebGL** 2.0 is required
to run the application. However, Google ANGLE or Mesa can be used to translate OpenGL calls to
the native graphics API. See also @ref death-partialsupport "the list of partially supported features"
that depend on specific platforms.
@section mainpage-license License
This project is licensed under the terms of the [GNU General Public License v3.0](https://github.com/deathkiller/jazz2-native/blob/master/LICENSE).
See also @ref third-party for the licenses of the libraries used.
*/
/** @dir Shared
@brief Namespace @ref Death
*/
/** @namespace Death
@brief Shared root namespace
The shared root namespace contains definitions and classes that don't depend on any other namespace.
Most of the definitions are defined in @ref CommonBase.h, which should be included (even transitively)
in every `.h`/`.cpp` file to avoid issues due to missing configuration-specific and platform-specific
definitions. Besides that, some definitions are @ref Death.dox "listed separately". Most of the time
@ref Common.h should be used instead, which also includes @cpp <cstddef> @ce, @cpp <cstdint> @ce
and some function-like macros. For event tracing and assertions, see @ref Asserts.h.
*/
/** @file Shared/Asserts.h
@brief Assertions and event tracing
Most functions and macros for event tracing require `DEATH_TRACE` to be defined. Otherwise, no operation is performed.
In addition, assert statements can be suppressed with `DEATH_NO_ASSERT` define or redirected to the standard
@cpp assert() @ce with `DEATH_STANDARD_ASSERT` define. See also @ref Death::ITraceSink companion interface.
*/
/** @file Shared/CommonBase.h
@brief Basic definitions
Some configuration-specific and platform-specific definitions, including `DEATH_TARGET_*`, are
@ref Death.dox "listed separately". Some of them are supplied via a compiler flag by CMake,
the rest of them also requires this header file to work properly.
*/
/** @file Shared/Common.h
@brief Common header file, includes also @ref CommonBase.h, `<cstddef>` and `<cstdint>`
*/
/** @file Shared/CommonWindows.h
@brief Windows®-specific header file, falls back to @ref Common.h on other platforms
This file should be included instead of `<windows.h>` to avoid potential issues.
It automatically defines @cpp WIN32_LEAN_AND_MEAN @ce, @cpp WINRT_LEAN_AND_MEAN @ce and
@cpp NOMINMAX @ce to include only the smallest part of `<windows.h>` as possible.
Afterwards, it removes the definitions that cause the most collisions using @cpp #undef @ce.
*/
/** @namespace Death::Cpu
@brief Compile-time and runtime CPU instruction set detection and dispatch
This namespace provides *tags* for x86, ARM and WebAssembly instruction sets,
which can be used for either system introspection or for choosing a particular
implementation based on the available instruction set. These tags build on top
of the @ref DEATH_TARGET_SSE2, @ref DEATH_TARGET_SSE3 etc. preprocessor
macros and provide a runtime feature detection as well.
@section Cpu-usage Usage
The @ref Cpu namespace contains tags such as @ref Cpu::Avx2, @ref Cpu::Sse2,
@ref Cpu::Neon or @ref Cpu::Simd128. These tags behave similarly to enum values
and their combination result in @ref Cpu::Features.
The most advanced base CPU instruction set enabled at compile time is then
exposed through the @ref Cpu::DefaultBase variable, which is an alias to one of
those tags, and it matches the architecture-specific @ref DEATH_TARGET_SSE2
etc. macros. Since it's a @cpp constexpr @ce variable, it's usable in a
compile-time context:
@code{.cpp}
if constexpr (Cpu::DefaultBase >= Cpu::Avx2) {
// AVX2 code
} else {
// Scalar code
}
@endcode
<b></b>
@m_class{m-note m-info}
@par
If you're writing multiplatform code targeting multiple architectures, you
still need to partially rely on the preprocessor when using the
architecture-specific tags, as those are defined only on the architecture
they apply to. The above would need to be wrapped in
@cpp #ifdef DEATH_TARGET_X86 @ce; if you would be checking for
@ref Cpu::Neon instead, then you'd need to wrap it in a
@ref DEATH_TARGET_ARM check. On the other hand, the per-architecture tags
are available on given architecture always --- so for example
@ref Cpu::Avx512f is present even on a compiler that doesn't even recognize
AVX-512 yet.
@subsection Cpu-usage-dispatch-compile-time Dispatching on available CPU instruction set at compile time
The main purpose of these tags, however, is to provide means for a compile-time
overload resolution. In other words, picking the best candidate among a set of
functions implemented with various instruction sets. As an example, let's say
you have three different implementations of a certain algorithm transforming
numeric data. One is using AVX2 instructions, another is a slower variant using
just SSE 4.2 and as a fallback there's one with just regular scalar code. To
distinguish them, the functions have the same name, but use a different *tag
type*:
@code{.cpp}
void transform(Cpu::ScalarT, Containers::ArrayView<float> data);
void transform(Cpu::Sse42T, Containers::ArrayView<float> data);
void transform(Cpu::Avx2T, Containers::ArrayView<float> data);
@endcode
Then you can either call a particular implementation directly --- for example
to test it --- or you can pass @ref Cpu::DefaultBase, and it'll pick the best
overload candidate for the set of CPU instruction features enabled at compile
time:
@code{.cpp}
transform(Cpu::DefaultBase, data);
@endcode
- If the user code was compiled with AVX2 or higher enabled, the
@ref Cpu::Avx2 overload will be picked.
- Otherwise, if just AVX, SSE 4.2 or anything else that includes SSE 4.2 was
enabled, the @ref Cpu::Sse42 overload will be picked.
- Otherwise (for example when compiling for generic x86-64 that has just the
SSE2 feature set), the @ref Cpu::Scalar overload will be picked. If you
wouldn't provide this overload, the compilation would fail for such a
target --- which is useful for example to enforce a certain CPU feature set
to be enabled in order to use a certain API.
@m_class{m-block m-warning}
@par SSE3, SSSE3, SSE4.1/SSE4.2, POPCNT, LZCNT, BMI1, BMI2, AVX F16C and AVX FMA on MSVC
A special case worth mentioning are SSE3 and newer instructions on Windows.
MSVC only provides a very coarse `/arch:SSE2`, `/arch:AVX` and `/arch:AVX2`
for either @ref Sse2, @ref Avx or @ref Avx2, but nothing in between. That
means it's impossible to rely just on compile-time detection to use the
later SSE features on machines that don't support AVX yet (or the various
AVX additions on machines without AVX2), you have to use runtime dispatch
there, as shown below.
@subsection Cpu-usage-dispatch-runtime Runtime detection and manual dispatch
So far that was all compile-time detection, which has use mainly when a binary
can be optimized directly for the machine it will run on. But such approach is
not practical when shipping to a heterogenous set of devices. Instead, the
usual workflow is that the majority of code uses the lowest common
denominator (such as SSE2 on x86), with the most demanding functions having
alternative implementations --- picked at runtime --- that make use of more
advanced instructions for better performance.
Runtime detection is exposed through @ref Cpu::runtimeFeatures(). It will
detect CPU features on platforms that support it, and fall back to
@ref Cpu::compiledFeatures() on platforms that don't. You can then match the
returned @ref Cpu::Features against particular tags to decide which variant to use:
@code{.cpp}
Cpu::Features features = Cpu::runtimeFeatures();
if(features & Cpu::Avx2)
transform(Cpu::Avx2, data);
else if(features & Cpu::Sse41)
transform(Cpu::Sse41, data);
else
transform(Cpu::Scalar, data);
@endcode
While such approach gives you the most control, manually managing the dispatch
branches is error prone and the argument passthrough may also add nontrivial
overhead. See below for an
@ref Cpu-usage-automatic-runtime-dispatch "efficient automatic runtime dispatch".
@section Cpu-usage-extra Usage with extra instruction sets
Besides the base instruction set, which on x86 is @ref Sse2 through
@ref Avx512f, with each tag being a superset of the previous one, there are
* *extra* instruction sets such as @ref Popcnt or @ref AvxFma. Basic
compile-time detection for these is still straightforward, only now using
@ref Default instead of @link DefaultBase @endlink:
@code{.cpp}
if constexpr (Cpu::Default >= (Cpu::Avx2 | Cpu::AvxFma)) {
// AVX2+FMA code
} else {
// Scalar code
}
@endcode
The process of defining and dispatching to function variants that include extra
instruction sets gets moderately more complex, however. As shown on the diagram
below, those are instruction sets that neither fit into the hierarchy nor are
unambiguously included in a later instruction set. For example, some CPUs are
known to have @ref Avx and just @ref AvxFma, some @ref Avx and just
@ref AvxF16c and there are even CPUs with @ref Avx2 but no @ref AvxFma.
While there's no possibility of having a total ordering between all possible
combinations for dispatching, the following approach is chosen:
1. The base instruction set has the main priority. For example, if both an
@ref Avx2 and a @ref Sse2 variant are viable candidates, the @ref Avx2
variant gets picked, even if the @ref Sse2 variant uses extra
instruction sets that the @ref Avx2 doesn't.
2. After that, the variant with the most extra instruction sets is chosen. For
example, an @ref Avx + @ref AvxFma variant is chosen over plain @ref Avx.
On the declaration side, the desired base instruction set gets ORed with as
many extra instruction sets as needed, and then wrapped in a
@ref DEATH_CPU_DECLARE() macro. For example, a lookup algorithm may have a
@ref Sse41 implementation which however also relies on @ref Popcnt and
@ref Lzcnt, and a fallback @ref Sse2 implementation that uses neither:
@code{.cpp}
int lookup(DEATH_CPU_DECLARE(Cpu::Sse41 | Cpu::Popcnt), …);
int lookup(DEATH_CPU_DECLARE(Cpu::Sse41 | Cpu::Lzcnt), …);
@endcode
And a concrete overload gets picked at compile-time by passing a desired
combination of CPU tags as well --- or @ref Default for the set of features
enabled at compile time --- this time wrapped in a @ref DEATH_CPU_SELECT():
@code{.cpp}
int found = lookup(DEATH_CPU_SELECT(Cpu::Default), …);
@endcode
<b></b>
@m_class{m-block m-success}
@par Resolving overload ambiguity
Because the best overload is picked based on the count of extra instruction
sets used, it may happen that two different variants get assigned the same
priority, causing an ambiguity. For example, the two variants below would
be abiguous for a CPU with @ref Sse41 and both @ref Popcnt and @ref Lzcnt
present:
@par
@code{.cpp}
int lookup(DEATH_CPU_DECLARE(Cpu::Sse41 | Cpu::Popcnt), …);
int lookup(DEATH_CPU_DECLARE(Cpu::Sse41 | Cpu::Lzcnt), …);
@endcode
@par
It's not desirable for this library to arbitrarily decide which instruction
set should be preferred --- only the implementation itself can know that.
Thus, to resolve such potential conflict, provide an overload with both
extra tags and delegate from there:
@par
@code{.cpp}
int lookup(DEATH_CPU_DECLARE(Cpu::Sse41 | Cpu::Popcnt | Cpu::Lzcnt), …) {
// Or the other variant, or a custom third implementation ...
return lookup(DEATH_CPU_SELECT(Cpu::Sse41 | Cpu::Lzcnt), …);
}
@endcode
@section Cpu-usage-target-attributes Enabling instruction sets for particular functions
On GCC and Clang, a machine target has to be enabled in order to use a
particular CPU instruction set or its intrinsics. While it's possible to do
that for the whole compilation unit by passing for example `-mavx2` to the
compiler, it would force you to create dedicated files for every architecture
variant you want to support. Instead, it's possible to equip particular
functions with *target attributes* defined by @ref DEATH_ENABLE_SSE2 and
related macros, which then makes a particular instruction set enabled for given
function.
In contrast, MSVC doesn't restrict intrinsics usage in any way, so you can
freely call e.g. AVX2 intrinsics even if the whole file is compiled with just
SSE2 enabled. The @ref DEATH_ENABLE_SSE2 and related macros are thus defined
to be empty on this compiler.
@m_class{m-note m-warning}
@par
On the other hand, on MSVC, using just the baseline target on the file
level means the compiler will not be able to use any advanced instructions
apart from what you call explicitly via intrinsics. You can try extracting
all AVX+ variants into a dedicated file with `/arch:AVX` enabled and see
if it makes any performance difference.
For developer convenience, the @ref DEATH_ENABLE_SSE2 etc. macros are defined
only on matching architectures, and generally only if the compiler itself has
given feature set implemented and usable. Which means you can easily use them
to @cpp #ifdef @ce your variants to be compiled only where it makes sense, or
even guard intrinsics includes with them to avoid including potentially heavy
headers you won't use anyway. In comparison, using the @ref DEATH_TARGET_SSE2
etc. macros would only make the variant available if the whole compilation unit
has a corresponding `-m` or `/arch:` option passed to the compiler.
Finally, the @ref DEATH_ENABLE() function allows multiple instruction sets to
be enabled at the same time in a more concise way and consistently on both GCC
and Clang.
Definitions of the `lookup()` function variants from above would then look like
below with the target attributes added. The extra instruction sets get
explicitly enabled as well, in contrast a scalar variant would have no
target-specific annotations at all:
@code{.cpp}
int lookup(DEATH_CPU_DECLARE(Cpu::Scalar), …) {
…
}
#if defined(DEATH_ENABLE_SSE2)
DEATH_ENABLE_SSE2 int lookup(DEATH_CPU_DECLARE(Cpu::Sse2), …) {
…
}
#endif
#if defined(DEATH_ENABLE_SSE41) && \
defined(DEATH_ENABLE_POPCNT) && \
defined(DEATH_ENABLE_LZCNT)
DEATH_ENABLE(SSE41,POPCNT,LZCNT) int lookup(
DEATH_CPU_DECLARE(Cpu::Sse41|Cpu::Popcnt|Cpu::Lzcnt), …) {
…
}
#endif
@endcode
@section Cpu-usage-automatic-runtime-dispatch Automatic runtime dispatch
Similarly to how the best-matching function variant can be picked at compile
time, there's a possibility to do the same at runtime without maintaining a
custom dispatch code for each case
@ref Cpu-usage-dispatch-runtime "as was shown above". To avoid having to
dispatch on every call and to remove the argument passthrough overhead, all
variants need to have the same function signature, separate from the CPU tags.
That's achievable by putting them into lambdas with a common signature, and
returning that lambda from a wrapper function that contains the CPU tag. After
that, a runtime dispatcher function that is created with the
@ref DEATH_CPU_DISPATCHER_BASE() macro. The @cpp transform() @ce variants
from above would then look like this instead:
@code{.cpp}
using TransformT = void(*)(Containers::ArrayView<float>);
TransformT transformImplementation(Cpu::ScalarT) {
return [](Containers::ArrayView<float> data) { … };
}
TransformT transformImplementation(Cpu::Sse42T) {
return [](Containers::ArrayView<float> data) { … };
}
TransformT transformImplementation(Cpu::Avx2T) {
return [](Containers::ArrayView<float> data) { … };
}
DEATH_CPU_DISPATCHER_BASE(transformImplementation)
@endcode
The macro creates an overload of the same name, but taking @ref Features
instead, and internally dispatches to one of the overloads using the same rules
as in the compile-time dispatch. Which means you can now call it with e.g.
@ref runtimeFeatures(), get a function pointer back and then call it with the
actual arguments:
@code{.cpp}
// Dispatch once and cache the function pointer
TransformT transform = transformImplementation(Cpu::runtimeFeatures());
// Call many times
transform(data);
@endcode
<b></b>
@m_class{m-block m-danger}
@par Instruction enabling macros and lambdas
An important difference with the @ref DEATH_ENABLE_SSE2 "DEATH_ENABLE_*"
macros is that they now have to go also directly next to the lambda as GCC
[currently doesn't propagate the attributes](https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80439)
from the wrapper function to the nested lambda. To make matters worse,
older versions of Clang suffer from the inverse problem and ignore lambda
attributes, so you have to specify them on both the lambda and the wrapper
function. GCC 9.1 to 9.3 also has a [bug where it can't parse attributes on lambdas with a trailing return type](https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90333).
The preferrable solution is to not use a trailing return type at the cost
of potentially more verbose @cpp return @ce statements. Alternatively you
can require version 8, 9.4 or 10 instead, but note that 9.3 is the default
compiler on Ubuntu 20.04.
@par
All things considered, the above AVX variant would look like this with
relevant macros added:
@par
@code{.cpp}
#ifdef DEATH_ENABLE_AVX2
DEATH_ENABLE_AVX2 TransformT transformImplementation(Cpu::Avx2T) {
return [](Containers::ArrayView<float> data) DEATH_ENABLE_AVX2 { … };
}
#endif
@endcode
@subsection Cpu-usage-automatic-runtime-dispatch-extra Automatic runtime dispach with extra instruction sets
If the variants are tagged with extra instruction sets instead of just the
base instruction set like in the @cpp lookup() @ce case
@ref Cpu-usage-extra "shown above", you'll use the @ref DEATH_CPU_DISPATCHER()
macro instead. There, to avoid a combinatorial explosion of cases to check,
you're expected to list the actual extra tags the overloads use. Which is
usually just one or two out of the whole set:
@code{.cpp}
using LookupT = int(*)(…);
LookupT lookupImplementation(DEATH_CPU_DECLARE(Cpu::Scalar)) {
…
}
LookupT lookupImplementation(DEATH_CPU_DECLARE(Cpu::Sse2)) {
…
}
LookupT lookupImplementation(DEATH_CPU_DECLARE(Cpu::Sse41 | Cpu::Popcnt | Cpu::Lzcnt)) {
…
}
DEATH_CPU_DISPATCHER(lookupImplementation, Cpu::Popcnt, Cpu::Lzcnt)
@endcode
If some extra instruction sets are always used together (like it is above with
@ref Popcnt and @ref Lzcnt), you can reduce the amount of tested combinations
by specifying them as a single ORed argument instead:
@code{.cpp}
DEATH_CPU_DISPATCHER(lookupImplementation, Cpu::Popcnt | Cpu::Lzcnt)
@endcode
On the call side, there's no difference compared to using just the base
instruction sets. The created dispatcher function takes @ref Features as well.
@section Cpu-usage-automatic-cached-dispatch Automatic cached dispatch
Ultimately, the dispatch can be performed implicitly, exposing only the final
function or a function pointer, with no additional steps needed from the user
side. There's three possible scenarios with varying performance tradeoffs.
Continuing from the @cpp lookupImplementation() @ce example above:
<ul>
<li>
On Linux and Android with API 30+ it's possible to use the
[GNU IFUNC](https://sourceware.org/glibc/wiki/GNU_IFUNC) mechanism, where the
dynamic linker performs a dispatch during the early startup. This is the
fastest variant of runtime dispatch, as it results in an equivalent of a
regular dynamic library function call. Assuming a dispatcher was created using
either @ref DEATH_CPU_DISPATCHER() or @ref DEATH_CPU_DISPATCHER_BASE(),
it's implemented using the @ref DEATH_CPU_DISPATCHED_IFUNC() macro:
@code{.cpp}
DEATH_CPU_DISPATCHED_IFUNC(lookupImplementation, int lookup(…))
@endcode
</li>
<li>
On platforms where IFUNC isn't available, a function pointer can be used
for runtime dispatch instead. It's one additional indirection, which may have a
visible effect if the dispatched-to code is relatively tiny and is called from
within a tight loop. Assuming a dispatcher was created using
either @ref DEATH_CPU_DISPATCHER() or @ref DEATH_CPU_DISPATCHER_BASE(),
it's implemented using the @ref DEATH_CPU_DISPATCHED_POINTER() macro:
@code{.cpp}
DEATH_CPU_DISPATCHED_POINTER(lookupImplementation, int(*lookup)(…))
@endcode
</li>
<li>
For the least amount of overhead, the compile-time dispatch can be used, with
arguments passed through by hand. Similarly to IFUNC, this will also result in
a regular function, but without the indirect overhead. Furthermore, since it's
a direct call to the lambda inside, compiler optimizations will fully inline
its contents, removing any remaining overhead and allowing LTO and other
inter-procedural optimizations that wouldn't be possible with the indirect
calls. This option is best suited for scenarios where it's possible to build
and optimize code for a single target platform. In this case it calls directly
to the original variants, so no macro is needed and
@ref DEATH_CPU_DISPATCHER() / @ref DEATH_CPU_DISPATCHER_BASE() is not
needed either:
@code{.cpp}
int lookup(…) {
return lookupImplementation(DEATH_CPU_SELECT(Cpu::Default))(…);
}
@endcode
</li>
</ul>
With all three cases, you end up with either a function or a function pointer.
The macro signatures are deliberately similar to each other and to the direct
function declaration to make it possible to unify them under a single wrapper
macro in case a practical use case needs to handle more than one variant.
The mechanism can be selected automatically according to the build configuration
using the @ref DEATH_CPU_DISPATCHED macro:
@code{.cpp}
DEATH_CPU_DISPATCHED(lookupImplementation, bool DEATH_CPU_DISPATCHED_DECLARATION(lookup)(…)({
return lookupImplementation(Cpu::DefaultBase)(…);
})
@endcode
*/
/** @namespace Death::Environment
@brief Platform-specific environment helper functions
*/
/** @dir Shared/Base
@brief Basic utilities for memory management and type information
*/
/** @file Shared/Base/Format.h
@brief Function @ref Death::format(), @ref Death::formatInto()
*/
/** @file Shared/Base/IDisposable.h
@brief Interface @ref Death::IDisposable
*/
/** @file Shared/Base/Memory.h
@brief Namespace @ref Death::Memory
*/
/** @namespace Death::Memory
@brief Memory-related utilities
*/
/** @file Shared/Base/Move.h
@brief Function @ref Death::forward(), @ref Death::move(), @ref Death::swap()
*/
/** @file Shared/Base/TypeInfo.h
@brief Function @ref Death::runtime_cast()
*/
/** @dir Shared/Containers
@brief Namespace @ref Death::Containers, @ref Death::Containers::Literals
*/
/** @namespace Death::Containers
@brief Container implementations
Implementations for various containers which don't have direct equivalents in
STL or are better tailored to specific use cases than general standard
implementations.
*/
/** @namespace Death::Containers::Literals
@brief Container literals
Literals for easy construction of string views.
*/
/** @file Shared/Containers/Array.h
@brief Class @ref Death::Containers::Array
*/
/** @file Shared/Containers/ArrayView.h
@brief Class @ref Death::Containers::ArrayView, @ref Death::Containers::StaticArrayView
*/
/** @file Shared/Containers/ComPtr.h
@brief Class @ref Death::Containers::ComPtr
*/
/** @file Shared/Containers/DateTime.h
@brief Class @ref Death::Containers::DateTime, @ref Death::Containers::TimeSpan
*/
/** @file Shared/Containers/Function.h
@brief Class @ref Death::Containers::Function, @ref Death::Containers::FunctionData
*/
/** @file Shared/Containers/GrowableArray.h
@brief Class @ref Death::Containers::ArrayAllocator, @ref Death::Containers::ArrayNewAllocator, @ref Death::Containers::ArrayMallocAllocator, function @ref Death::Containers::arrayAllocatorCast(), @ref Death::Containers::arrayIsGrowable(), @ref Death::Containers::arrayCapacity(), @ref Death::Containers::arrayReserve(), @ref Death::Containers::arrayResize(), @ref Death::Containers::arrayAppend(), @ref Death::Containers::arrayInsert(), @ref Death::Containers::arrayRemove(), @ref Death::Containers::arrayRemoveUnordered(), @ref Death::Containers::arrayRemoveSuffix(), @ref Death::Containers::arrayClear(), @ref Death::Containers::arrayShrink()
See @ref Containers-Array-growable for more information.
*/
/** @file Shared/Containers/Pair.h
@brief Class @ref Death::Containers::Pair
*/
/** @file Shared/Containers/Reference.h
@brief Class @ref Death::Containers::Reference
*/
/** @file Shared/Containers/SmallVector.h
@brief Class @ref Death::Containers::SmallVector
*/
/** @file Shared/Containers/StaticArray.h
@brief Class @ref Death::Containers::StaticArray
*/
/** @file Shared/Containers/String.h
@brief Class @ref Death::Containers::String, tag @ref Death::Containers::AllocatedInit
*/
/** @file Shared/Containers/StringUtils.h
@brief Namespace @ref Death::Containers::StringUtils
*/
/** @namespace Death::Containers::StringUtils
@brief String utilities
*/
/** @file Shared/Containers/StringView.h
@brief Class @ref Death::Containers::BasicStringView, typedef @ref Death::Containers::StringView, @ref Death::Containers::MutableStringView
*/
/** @file Shared/Containers/Tags.h
@brief Tag @ref Death::Containers::DefaultInit, @ref Death::Containers::ValueInit, @ref Death::Containers::NoInit, @ref Death::Containers::NoCreate, @ref Death::Containers::DirectInit, @ref Death::Containers::InPlaceInit
*/
/** @dir Shared/Core
@brief Namespace @ref Death::Backward, @ref Death::Trace
*/
/** @file Shared/Core/Backward.h
@brief Namespace @ref Death::Backward
*/
/** @namespace Death::Backward
@brief Exception handling implementation
*/
/** @file Shared/Core/Logger.h
@brief Class @ref Death::Trace::LoggerBackend, @ref Death::Trace::Logger
*/
/** @file Shared/Core/ITraceSink.h
@brief Interface @ref Death::ITraceSink
*/
/** @dir Shared/Cryptography
@brief Namespace @ref Death::Cryptography
*/
/** @namespace Death::Cryptography
@brief Cryptographic and hashing utilities
Provides cryptographic services, including secure encoding and decoding
of data, as well as many other operations, such as hashing, random number
generation, and message authentication.
*/
/** @file Shared/Cryptography/xxHash.h
@brief Function @ref Death::Cryptography::xxHash3
*/
/** @dir Shared/IO
@brief Namespace @ref Death::IO
*/
/** @namespace Death::IO
@brief File system, streaming and IO-related classes
Contains types that allow reading and writing to files and data streams,
and types that provide basic file and directory support.
*/
/** @file Shared/IO/AndroidAssetStream.h
@brief Class @ref Death::IO::AndroidAssetStream
*/
/** @file Shared/IO/BoundedFileStream.h
@brief Class @ref Death::IO::BoundedFileStream
*/
/** @file Shared/IO/EmscriptenFileStream.h
@brief Class @ref Death::IO::EmscriptenFileStream, @ref Death::IO::EmscriptenFilePicker
*/
/** @file Shared/IO/FileAccess.h
@brief Enum @ref Death::IO::FileAccess
*/
/** @file Shared/IO/FileStream.h
@brief Class @ref Death::IO::FileStream
*/
/** @file Shared/IO/FileSystem.h
@brief Class @ref Death::IO::FileSystem
*/
/** @file Shared/IO/MemoryStream.h
@brief Class @ref Death::IO::MemoryStream
*/
/** @file Shared/IO/PakFile.h
@brief Class @ref Death::IO::PakFile
*/
/** @file Shared/IO/Stream.h
@brief Class @ref Death::IO::Stream
*/
/** @file Shared/IO/WebRequest.h
@brief Class @ref Death::IO::WebAuthChallenge @ref Death::IO::WebCredentials, @ref Death::IO::WebProxy, @ref Death::IO::WebRequest, @ref Death::IO::WebRequestAsync, @ref Death::IO::WebResponse, @ref Death::IO::WebSession, @ref Death::IO::WebSessionAsync
*/
/** @dir Shared/IO/Compression
@brief Namespace @ref Death::IO::Compression
*/
/** @namespace Death::IO::Compression
@brief Data compression streaming interfaces
*/
/** @file Shared/IO/Compression/DeflateStream.h
@brief Class @ref Death::IO::Compression::DeflateStream
*/
/** @file Shared/IO/Compression/Lz4Stream.h
@brief Class @ref Death::IO::Compression::Lz4Stream
*/
/** @file Shared/IO/Compression/ZstdStream.h
@brief Class @ref Death::IO::Compression::ZstdStream
*/
/** @dir Shared/Threading
@brief Namespace @ref Death::Threading
*/
/** @namespace Death::Threading
@brief Multithreading-related classes
Provides classes that enable multithreaded programming, synchronizing
thread activities and access to data.
*/
/** @file Shared/Threading/Event.h
@brief Class @ref Death::Threading::Event, typedef @ref Death::Threading::AutoResetEvent, @ref Death::Threading::ManualResetEvent
*/
/** @file Shared/Threading/Spinlock.h
@brief Class @ref Death::Threading::Spinlock
*/
/** @namespace Death::Trace
@brief Runtime event tracing implementation, should be used along with @ref Asserts.h
*/
/** @namespace Death::Utf8
@brief Unicode (UTF-8. UTF-16 and UTF-32) utilities
*/
/** @file Main.h
@brief Common nCine header file, includes @ref Common.h and project metadata
*/
/** @dir nCine
@brief Namespace @ref nCine
*/
/** @namespace nCine
@brief Root namespace of nCine game engine
*/
/** @file nCine/AppConfiguration.h
@brief Class @ref nCine::AppConfiguration
*/
/** @file nCine/Application.h
@brief Class @ref nCine::Application
*/
/** @file nCine/CommonConstants.h
@brief Common mathematical constants
*/
/** @file nCine/I18n.h
@brief Class @ref nCine::I18n
*/
/** @file nCine/IAppEventHandler.h
@brief Interface @ref nCine::IAppEventHandler
*/
/** @file nCine/MainApplication.h
@brief Class @ref nCine::MainApplication
*/
/** @file nCine/ServiceLocator.h
@brief Class @ref nCine::ServiceLocator
*/
/** @dir nCine/Backends
@brief Namespace @ref nCine::Backends
*/
/** @namespace nCine::Backends
@brief Platform-specific backends
*/
/** @dir nCine/Primitives
@brief Namespace @ref nCine::Primitives
*/
/** @namespace nCine::Primitives
@brief Primitives
*/
/** @namespace nCine::Primitives::Literals
@brief Literals for primitives
*/
/** @dir Jazz2
@brief Namespace @ref Jazz2
*/
/** @namespace Jazz2
@brief Root namespace of Jazz² Resurrection
*/
/** @dir Jazz2/Actors
@brief Namespace @ref Jazz2::Actors
*/
/** @namespace Jazz2::Actors
@brief Implementation of all objects
*/
/** @dir Jazz2/Actors/Collectibles
@brief Namespace @ref Jazz2::Actors::Collectibles
*/
/** @namespace Jazz2::Actors::Collectibles
@brief Collectibles
*/
/** @dir Jazz2/Actors/Enemies
@brief Namespace @ref Jazz2::Actors::Enemies
*/
/** @namespace Jazz2::Actors::Enemies
@brief Enemies
*/
/** @dir Jazz2/Actors/Enemies/Bosses
@brief Namespace @ref Jazz2::Actors::Bosses
*/
/** @namespace Jazz2::Actors::Bosses
@brief Enemy bosses
*/
/** @dir Jazz2/Actors/Environment
@brief Namespace @ref Jazz2::Actors::Environment
*/
/** @namespace Jazz2::Actors::Environment
@brief Environmental objects
*/
/** @dir Jazz2/Actors/Lighting
@brief Namespace @ref Jazz2::Actors::Lighting
*/
/** @namespace Jazz2::Actors::Lighting
@brief Lighting effects
*/
/** @dir Jazz2/Actors/Multiplayer
@brief Namespace @ref Jazz2::Actors::Multiplayer
*/
/** @namespace Jazz2::Actors::Multiplayer
@brief Multiplayer-related objects, compiled only if `WITH_MULTIPLAYER`
*/
/** @dir Jazz2/Actors/Solid
@brief Namespace @ref Jazz2::Actors::Solid
*/
/** @namespace Jazz2::Actors::Solid
@brief Solid objects
*/
/** @dir Jazz2/Actors/Weapons
@brief Namespace @ref Jazz2::Actors::Weapons
*/
/** @namespace Jazz2::Actors::Weapons
@brief Weapons
*/
/** @dir Jazz2/Collisions
@brief Namespace @ref Jazz2::Collisions
*/
/** @namespace Jazz2::Collisions
@brief Collision checking
*/
/** @dir Jazz2/Compatibility
@brief Namespace @ref Jazz2::Compatibility
*/
/** @namespace Jazz2::Compatibility
@brief Translation layer for original data files
*/
/** @dir Jazz2/Events
@brief Namespace @ref Jazz2::Events
*/
/** @namespace Jazz2::Events
@brief Events and object spawning
*/
/** @dir Jazz2/Input
@brief Namespace @ref Jazz2::Input
*/
/** @namespace Jazz2::Input
@brief Input handling
*/
/** @dir Jazz2/Multiplayer
@brief Namespace @ref Jazz2::Multiplayer
*/
/** @namespace Jazz2::Multiplayer
@brief Multiplayer-related classes, compiled only if `WITH_MULTIPLAYER`
@experimental
*/
/** @dir Jazz2/Rendering
@brief Namespace @ref Jazz2::Rendering
*/
/** @namespace Jazz2::Rendering
@brief Scene rendering and viewport management
*/
/** @namespace Jazz2::Resources
@brief Structures for game resources
*/
/** @dir Jazz2/Scripting
@brief Namespace @ref Jazz2::Scripting
*/
/** @namespace Jazz2::Scripting
@brief Scripting-related classes, compiled only if `WITH_ANGELSCRIPT`
@experimental
*/
/** @namespace Jazz2::Scripting::Legacy
@brief Legacy JJ2+ definitions
@experimental
*/
/** @dir Jazz2/Tiles
@brief Namespace @ref Jazz2::Tiles
*/
/** @namespace Jazz2::Tiles
@brief Tile sets and maps
*/
/** @dir Jazz2/UI
@brief Namespace @ref Jazz2::UI
*/
/** @namespace Jazz2::UI
@brief User interface and menus
*/
/** @dir Jazz2/UI/Menu
@brief Namespace @ref Jazz2::UI::Menu
*/
/** @namespace Jazz2::UI::Menu
@brief Menu implementation
*/
/** @namespace Jazz2::UI::Menu::Resources
@brief Common menu resources defined in `Metadata/UI/MainMenu.res`
*/
/** @dir Jazz2/UI/Multiplayer
@brief Namespace @ref Jazz2::UI::Multiplayer
*/
/** @namespace Jazz2::UI::Multiplayer
@brief Multiplayer-related user interface, compiled only if `WITH_MULTIPLAYER`
@experimental
*/
}
|