1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
#include "RenderBatcher.h"
#include "RenderCommand.h"
#include "RenderCommandPool.h"
#include "RenderResources.h"
#include "GL/GLShaderProgram.h"
#include "../Application.h"
#include "../ServiceLocator.h"
#include "../Base/StaticHashMapIterator.h"
#include <cstring> // for memcpy()
namespace nCine
{
std::uint32_t RenderBatcher::UboMaxSize = 0;
RenderBatcher::RenderBatcher()
{
const IGfxCapabilities& gfxCaps = theServiceLocator().GetGfxCapabilities();
UboMaxSize = std::uint32_t(gfxCaps.GetValue(IGfxCapabilities::GLIntValues::MAX_UNIFORM_BLOCK_SIZE_NORMALIZED));
// Create the first buffer right away
CreateBuffer(UboMaxSize);
}
void RenderBatcher::CreateBatches(const SmallVectorImpl<RenderCommand*>& srcQueue, SmallVectorImpl<RenderCommand*>& destQueue)
{
std::uint32_t minBatchSize, maxBatchSize;
std::uint32_t fixedBatchSize = theApplication().GetAppConfiguration().fixedBatchSize;
if (fixedBatchSize > 0) {
minBatchSize = fixedBatchSize;
maxBatchSize = fixedBatchSize;
} else {
auto& renderingSettings = theApplication().GetRenderingSettings();
minBatchSize = renderingSettings.minBatchSize;
maxBatchSize = renderingSettings.maxBatchSize;
}
DEATH_ASSERT(minBatchSize > 1);
DEATH_ASSERT(maxBatchSize >= minBatchSize);
std::uint32_t lastSplit = 0;
for (std::uint32_t i = 1; i < srcQueue.size(); i++) {
const RenderCommand* command = srcQueue[i];
const GLenum primitive = command->GetGeometry().GetPrimitiveType();
const RenderCommand* prevCommand = srcQueue[i - 1];
const GLenum prevPrimitive = prevCommand->GetGeometry().GetPrimitiveType();
// Should split if material sort key (that takes into account shader program, textures and blending) or primitive type differs
// GL_LINE_STRIP is split always, because it cannot be batched
const bool shouldSplit = (command->GetLowerMaterialSortKey() != prevCommand->GetLowerMaterialSortKey() || prevPrimitive != primitive || primitive == GL_LINE_STRIP);
// Also collect the very last command if it can be batched with the previous one
std::uint32_t endSplit = (i == srcQueue.size() - 1 && !shouldSplit ? i + 1 : i);
// Split point if last command or split condition
if (i == srcQueue.size() - 1 || shouldSplit) {
const GLShaderProgram* batchedShader = RenderResources::GetBatchedShader(prevCommand->GetMaterial().GetShaderProgram());
if (batchedShader && (endSplit - lastSplit) >= minBatchSize) {
// Split point for the maximum batch size
while (lastSplit < endSplit) {
std::uint32_t currentMaxBatchSize = maxBatchSize;
const std::uint32_t shaderBatchSize = batchedShader->GetBatchSize();
if (shaderBatchSize > 0 && currentMaxBatchSize > shaderBatchSize) {
currentMaxBatchSize = shaderBatchSize;
}
const std::uint32_t batchSize = endSplit - lastSplit;
std::uint32_t nextSplit = endSplit;
if (batchSize > currentMaxBatchSize) {
nextSplit = lastSplit + currentMaxBatchSize;
} else if (batchSize < minBatchSize) {
break;
}
SmallVectorImpl<RenderCommand*>::const_iterator start = srcQueue.begin() + lastSplit;
SmallVectorImpl<RenderCommand*>::const_iterator end = srcQueue.begin() + nextSplit;
// Handling early splits while collecting (not enough UBO free space)
RenderCommand* batchCommand = CollectCommands(start, end, start);
destQueue.push_back(batchCommand);
lastSplit = std::uint32_t(start - srcQueue.begin());
}
}
// Also collect the very last command
endSplit = (i == srcQueue.size() - 1 ? i + 1 : i);
// Passthrough for unsupported command types and for the last few commands that are less than the minimum batch size
for (std::uint32_t j = lastSplit; j < endSplit; j++) {
destQueue.push_back(srcQueue[j]);
}
lastSplit = endSplit;
}
}
// If the queue has only one command the for loop didn't execute, the command has to passthrough
if (srcQueue.size() == 1) {
destQueue.push_back(srcQueue[0]);
}
}
void RenderBatcher::Reset()
{
// Reset managed buffers
for (ManagedBuffer& buffer : buffers_) {
buffer.freeSpace = buffer.size;
}
}
RenderCommand* RenderBatcher::CollectCommands(
SmallVectorImpl<RenderCommand*>::const_iterator start,
SmallVectorImpl<RenderCommand*>::const_iterator end,
SmallVectorImpl<RenderCommand*>::const_iterator& nextStart)
{
DEATH_ASSERT(end > start);
const RenderCommand* refCommand = *start;
RenderCommand* batchCommand = nullptr;
GLUniformBlockCache* instancesBlock = nullptr;
// Tracking the amount of memory required by uniform blocks, vertices and indices of all instances
std::uint32_t instancesBlockSize = 0;
std::uint32_t instancesVertexDataSize = 0;
std::uint32_t instancesIndicesAmount = 0;
const GLShaderProgram* refShader = refCommand->GetMaterial().GetShaderProgram();
GLShaderProgram* batchedShader = RenderResources::GetBatchedShader(refShader);
// The following check should never fail as it is already checked by the calling function
FATAL_ASSERT_MSG(batchedShader != nullptr, "Unsupported shader for batch element");
bool commandAdded = false;
batchCommand = RenderResources::GetRenderCommandPool().RetrieveOrAdd(batchedShader, commandAdded);
// Retrieving the original block instance size without the uniform buffer offset alignment
const GLUniformBlockCache* singleInstanceBlock = (*start)->GetMaterial().UniformBlock(Material::InstanceBlockName);
const std::uint32_t singleInstanceBlockSizePacked = singleInstanceBlock->GetSize() - singleInstanceBlock->GetAlignAmount(); // remove the uniform buffer offset alignment
const std::uint32_t singleInstanceBlockSize = singleInstanceBlockSizePacked + (16 - singleInstanceBlockSizePacked % 16) % 16; // but add the std140 vec4 layout alignment
#if defined(NCINE_PROFILING)
batchCommand->SetType(refCommand->GetType());
#endif
instancesBlock = batchCommand->GetMaterial().UniformBlock(Material::InstancesBlockName);
FATAL_ASSERT_MSG(instancesBlock != nullptr, "Batched shader does not have an \"{}\" uniform block", Material::InstancesBlockName);
const std::uint32_t nonBlockUniformsSize = batchCommand->GetMaterial().GetShaderProgram()->GetUniformsSize();
// Determine how much memory is needed by uniform blocks that are not for instances
std::uint32_t nonInstancesBlocksSize = 0;
const GLShaderUniformBlocks::UniformHashMapType allUniformBlocks = refCommand->GetMaterial().GetAllUniformBlocks();
for (const GLUniformBlockCache& uniformBlockCache : allUniformBlocks) {
const char* uniformBlockName = uniformBlockCache.uniformBlock()->GetName();
if (strcmp(uniformBlockName, Material::InstanceBlockName) == 0) {
continue;
}
GLUniformBlockCache* batchBlock = batchCommand->GetMaterial().UniformBlock(uniformBlockName);
DEATH_ASSERT(batchBlock);
if (batchBlock) {
nonInstancesBlocksSize += uniformBlockCache.GetSize() - uniformBlockCache.GetAlignAmount();
}
}
// Set to true if at least one command in the batch has indices or forced by a rendering settings
bool batchingWithIndices = theApplication().GetRenderingSettings().batchingWithIndices;
// Sum the amount of UBO memory required by the batch and determine if indices are needed
SmallVectorImpl<RenderCommand*>::const_iterator it = start;
while (it != end) {
if ((*it)->GetGeometry().GetIndexCount() > 0) {
batchingWithIndices = true;
}
// Don't request more bytes than an instances block or an UBO can hold (also protects against big `RenderingSettings::maxBatchSize` values)
const std::uint32_t currentSize = nonBlockUniformsSize + nonInstancesBlocksSize + instancesBlockSize;
if (instancesBlockSize + singleInstanceBlockSize > instancesBlock->GetSize() || currentSize + singleInstanceBlockSize > UboMaxSize) {
break;
}
instancesBlockSize += singleInstanceBlockSize;
++it;
}
nextStart = it;
batchCommand->GetMaterial().SetUniformsDataPointer(AcquireMemory(nonBlockUniformsSize + nonInstancesBlocksSize + instancesBlockSize));
// Copying data for non-instances uniform blocks from the first command in the batch
for (const GLUniformBlockCache& uniformBlockCache : allUniformBlocks) {
const char* uniformBlockName = uniformBlockCache.uniformBlock()->GetName();
if (strcmp(uniformBlockName, Material::InstanceBlockName) == 0) {
continue;
}
GLUniformBlockCache* batchBlock = batchCommand->GetMaterial().UniformBlock(uniformBlockName);
const bool dataCopied = batchBlock->CopyData(uniformBlockCache.GetDataPointer());
DEATH_ASSERT(dataCopied);
batchBlock->SetUsedSize(uniformBlockCache.usedSize());
}
// Setting sampler uniforms for GL_TEXTURE* units
const GLShaderUniforms::UniformHashMapType allUniforms = refCommand->GetMaterial().GetAllUniforms();
for (const GLUniformCache& uniformCache : allUniforms) {
if (uniformCache.GetUniform()->GetType() == GL_SAMPLER_2D) {
GLUniformCache* batchUniformCache = batchCommand->GetMaterial().Uniform(uniformCache.GetUniform()->GetName());
const std::int32_t refValue = uniformCache.GetIntValue(0);
const std::int32_t batchValue = batchUniformCache->GetIntValue(0);
// Also checking if the command has just been added, as the memory at the
// uniforms data pointer is not cleared and might contain the reference value
if (batchValue != refValue || commandAdded) {
batchUniformCache->SetIntValue(refValue);
}
}
}
const std::uint32_t maxVertexDataSize = RenderResources::GetBuffersManager().Specs(RenderBuffersManager::BufferTypes::Array).maxSize;
const std::uint32_t maxIndexDataSize = RenderResources::GetBuffersManager().Specs(RenderBuffersManager::BufferTypes::ElementArray).maxSize;
// Sum the amount of VBO and IBO memory required by the batch
it = start;
const bool refShaderHasAttributes = (refShader->GetAttributeCount() > 0);
while (it != nextStart) {
std::uint32_t vertexDataSize = 0;
std::uint32_t numIndices = (*it)->GetGeometry().GetIndexCount();
if (refShaderHasAttributes) {
std::uint32_t numVertices = (*it)->GetGeometry().GetVertexCount();
if (!batchingWithIndices) {
numVertices += 2; // plus two degenerates if indices are not used
}
const std::uint32_t numElementsPerVertex = (*it)->GetGeometry().GetElementsPerVertex() + 1; // plus the mesh index
vertexDataSize = numVertices * numElementsPerVertex * sizeof(GLfloat);
if (batchingWithIndices) {
numIndices = (numIndices > 0) ? numIndices + 2 : numVertices + 2;
}
}
// Don't request more bytes than a common VBO or IBO can hold
if (instancesVertexDataSize + vertexDataSize > maxVertexDataSize ||
(instancesIndicesAmount + numIndices) * sizeof(GLushort) > maxIndexDataSize ||
instancesIndicesAmount + numIndices > 65535) {
break;
}
instancesVertexDataSize += vertexDataSize;
instancesIndicesAmount += numIndices;
++it;
}
nextStart = it;
// Remove the two missing degenerate vertices or indices from first and last elements
const std::uint32_t twoVerticesDataSize = 2 * (refCommand->GetGeometry().GetElementsPerVertex() + 1) * sizeof(GLfloat);
if (instancesIndicesAmount >= 2) {
instancesIndicesAmount -= 2;
} else if (instancesVertexDataSize >= twoVerticesDataSize) {
instancesVertexDataSize -= twoVerticesDataSize;
}
const std::uint32_t NumFloatsVertexFormat = refCommand->GetGeometry().GetElementsPerVertex();
const std::uint32_t NumFloatsVertexFormatAndIndex = NumFloatsVertexFormat + 1; // index is an `int`, same size as a `float`
const std::uint32_t SizeVertexFormat = NumFloatsVertexFormat * 4;
const std::uint32_t SizeVertexFormatAndIndex = SizeVertexFormat + sizeof(std::uint32_t);
float* destVtx = nullptr;
GLushort* destIdx = nullptr;
const bool batchedShaderHasAttributes = (batchedShader->GetAttributeCount() > 1);
if (batchedShaderHasAttributes) {
const std::uint32_t numFloats = instancesVertexDataSize / sizeof(GLfloat);
destVtx = batchCommand->GetGeometry().AcquireVertexPointer(numFloats, NumFloatsVertexFormat + 1); // aligned to vertex format with index
if (instancesIndicesAmount > 0) {
destIdx = batchCommand->GetGeometry().AcquireIndexPointer(instancesIndicesAmount);
}
}
it = start;
std::uint32_t instancesBlockOffset = 0;
std::uint16_t batchFirstVertexId = 0;
while (it != nextStart) {
RenderCommand* command = *it;
command->CommitNodeTransformation();
const GLUniformBlockCache* singleInstanceBlock = command->GetMaterial().UniformBlock(Material::InstanceBlockName);
const bool dataCopied = instancesBlock->CopyData(instancesBlockOffset, singleInstanceBlock->GetDataPointer(), singleInstanceBlockSize);
DEATH_ASSERT(dataCopied);
instancesBlockOffset += singleInstanceBlockSize;
if (batchedShaderHasAttributes) {
const std::uint32_t numVertices = command->GetGeometry().GetVertexCount();
const std::int32_t meshIndex = std::int32_t(it - start);
const float* srcVtx = command->GetGeometry().GetHostVertexPointer();
FATAL_ASSERT(srcVtx != nullptr);
// Vertex of a degenerate triangle, if not a starting element and there are more than one in the batch
if (it != start && nextStart - start > 1 && !batchingWithIndices) {
std::memcpy(destVtx, srcVtx, SizeVertexFormat);
*reinterpret_cast<std::int32_t*>(static_cast<void*>(&destVtx[NumFloatsVertexFormat])) = meshIndex; // last element is the index
destVtx += NumFloatsVertexFormatAndIndex;
}
for (std::uint32_t i = 0; i < numVertices; i++) {
std::memcpy(destVtx, srcVtx, SizeVertexFormat);
*reinterpret_cast<std::int32_t*>(static_cast<void*>(&destVtx[NumFloatsVertexFormat])) = meshIndex; // last element is the index
destVtx += NumFloatsVertexFormatAndIndex;
srcVtx += NumFloatsVertexFormat; // source format does not include an index
}
// Vertex of a degenerate triangle, if not an ending element and there are more than one in the batch
if (it != nextStart - 1 && nextStart - start > 1 && !batchingWithIndices) {
srcVtx -= NumFloatsVertexFormat;
std::memcpy(destVtx, srcVtx, SizeVertexFormat);
*reinterpret_cast<std::int32_t*>(static_cast<void*>(&destVtx[NumFloatsVertexFormat])) = meshIndex; // last element is the index
destVtx += NumFloatsVertexFormatAndIndex;
}
if (instancesIndicesAmount > 0) {
std::uint16_t vertexId = 0;
const std::uint32_t numIndices = command->GetGeometry().GetIndexCount() ? command->GetGeometry().GetIndexCount() : numVertices;
const GLushort* srcIdx = command->GetGeometry().GetHostIndexPointer();
// Index of a degenerate triangle, if not a starting element and there are more than one in the batch
if (it != start && nextStart - start > 1) {
*destIdx = batchFirstVertexId + (srcIdx ? *srcIdx : vertexId);
destIdx++;
}
for (std::uint32_t i = 0; i < numIndices; i++) {
*destIdx = batchFirstVertexId + (srcIdx ? *srcIdx : vertexId);
destIdx++;
vertexId++;
if (srcIdx != nullptr) {
srcIdx++;
}
}
// Index of a degenerate triangle, if not an ending element and there are more than one in the batch
if (it != nextStart - 1 && nextStart - start > 1) {
if (srcIdx != nullptr) {
srcIdx--;
}
*destIdx = batchFirstVertexId + (srcIdx ? *srcIdx : vertexId - 1);
destIdx++;
}
batchFirstVertexId += srcIdx ? numVertices : vertexId;
}
}
++it;
}
instancesBlock->SetUsedSize(instancesBlockOffset);
if (batchedShaderHasAttributes) {
batchCommand->GetGeometry().ReleaseVertexPointer();
if (destIdx) {
batchCommand->GetGeometry().ReleaseIndexPointer();
}
}
for (std::uint32_t i = 0; i < GLTexture::MaxTextureUnits; i++) {
batchCommand->GetMaterial().SetTexture(i, refCommand->GetMaterial().GetTexture(i));
}
batchCommand->GetMaterial().SetBlendingEnabled(refCommand->GetMaterial().IsBlendingEnabled());
batchCommand->GetMaterial().SetBlendingFactors(refCommand->GetMaterial().GetSrcBlendingFactor(), refCommand->GetMaterial().GetDestBlendingFactor());
batchCommand->SetBatchSize(std::int32_t(nextStart - start));
batchCommand->SetLayer(refCommand->GetLayer());
batchCommand->SetVisitOrder(refCommand->GetVisitOrder());
if (batchedShaderHasAttributes) {
const std::uint32_t totalVertices = instancesVertexDataSize / SizeVertexFormatAndIndex;
batchCommand->GetGeometry().SetDrawParameters(refCommand->GetGeometry().GetPrimitiveType(), 0, totalVertices);
batchCommand->GetGeometry().SetElementsPerVertex(NumFloatsVertexFormatAndIndex);
batchCommand->GetGeometry().SetIndexCount(instancesIndicesAmount);
} else {
batchCommand->GetGeometry().SetDrawParameters(GL_TRIANGLES, 0, 6 * GLsizei(nextStart - start));
}
return batchCommand;
}
unsigned char* RenderBatcher::AcquireMemory(std::uint32_t bytes)
{
FATAL_ASSERT(bytes <= UboMaxSize);
std::uint8_t* ptr = nullptr;
for (ManagedBuffer& buffer : buffers_) {
if (buffer.freeSpace >= bytes) {
const std::uint32_t offset = buffer.size - buffer.freeSpace;
ptr = buffer.buffer.get() + offset;
buffer.freeSpace -= bytes;
break;
}
}
if (ptr == nullptr) {
CreateBuffer(UboMaxSize);
ptr = buffers_.back().buffer.get();
buffers_.back().freeSpace -= bytes;
}
return ptr;
}
void RenderBatcher::CreateBuffer(std::uint32_t size)
{
ManagedBuffer& managedBuffer = buffers_.emplace_back();
managedBuffer.size = size;
managedBuffer.freeSpace = size;
managedBuffer.buffer = std::make_unique<std::uint8_t[]>(size);
}
}
|