1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
|
// Copyright © 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016,
// 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024
// Vladimír Vondruš <mosra@centrum.cz> and contributors
// Copyright © 2020-2024 Dan R.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#pragma once
#include "ArrayView.h"
#include "Tags.h"
#include <initializer_list>
#include <new>
#include <type_traits>
namespace Death { namespace Containers {
//###==##====#=====--==~--~=~- --- -- - - - -
namespace Implementation
{
template<class T, class First, class ...Next> inline void construct(T& value, First&& first, Next&& ...next) {
new(&value) T{Death::forward<First>(first), Death::forward<Next>(next)...};
}
template<class T> inline void construct(T& value) {
new(&value) T();
}
#if defined(DEATH_TARGET_GCC) && __GNUC__ < 5
template<class T> inline void construct(T& value, T&& b) {
new(&value) T(Death::move(b));
}
#endif
template<class T, class D> struct CallDeleter {
void operator()(D deleter, T* data, std::size_t size) const {
deleter(data, size);
}
};
template<class T> struct CallDeleter<T, void(*)(T*, std::size_t)> {
void operator()(void(*deleter)(T*, std::size_t), T* data, std::size_t size) const {
if (deleter) deleter(data, size);
else delete[] data;
}
};
template<class T, typename std::enable_if<
/* std::is_trivially_constructible fails for (template) types where
default constructor isn't usable in libstdc++ before version 8, OTOH
std::is_trivial is deprecated in C++26 so can't use that one either.
Furthermore, libstdc++ before 6.1 doesn't have _GLIBCXX_RELEASE, so
there comparison will ealuate to 0 < 8 and pass as well. Repro case
in ArrayTest::constructNoInitNoDefaultConstructor(). */
#if defined(DEATH_TARGET_LIBSTDCXX) && _GLIBCXX_RELEASE < 8
std::is_trivial<T>::value
#else
std::is_trivially_constructible<T>::value
#endif
, int>::type = 0> T* noInitAllocate(std::size_t size) {
return new T[size];
}
template<class T, typename std::enable_if<!
#if defined(DEATH_TARGET_LIBSTDCXX) && _GLIBCXX_RELEASE < 8
std::is_trivial<T>::value
#else
std::is_trivially_constructible<T>::value
#endif
, int>::type = 0> T* noInitAllocate(std::size_t size) {
return reinterpret_cast<T*>(new char[size * sizeof(T)]);
}
template<class T, typename std::enable_if<
#if defined(DEATH_TARGET_LIBSTDCXX) && _GLIBCXX_RELEASE < 8
std::is_trivial<T>::value
#else
std::is_trivially_constructible<T>::value
#endif
, int>::type = 0> auto noInitDeleter() -> void(*)(T*, std::size_t) {
return nullptr; // Using the default deleter for T
}
template<class T, typename std::enable_if<!
#if defined(DEATH_TARGET_LIBSTDCXX) && _GLIBCXX_RELEASE < 8
std::is_trivial<T>::value
#else
std::is_trivially_constructible<T>::value
#endif
, int>::type = 0> auto noInitDeleter() -> void(*)(T*, std::size_t) {
return [](T* data, std::size_t size) {
if (data) for (T* it = data, *end = data + size; it != end; ++it)
it->~T();
delete[] reinterpret_cast<char*>(data);
};
}
}
/**
@brief Array
@tparam T Element type
@tparam D Deleter type. Defaults to pointer to a @cpp void(T*, std::size_t) @ce function, where first is array pointer and second array size.
A RAII owning wrapper around a plain C array. A lighter alternative to @ref std::vector that's deliberately
move-only to avoid accidental copies of large memory blocks. For a variant with compile-time size information
see @ref StaticArray. A non-owning version of this container is an @ref ArrayView.
The array has a non-changeable size by default and growing functionality is
opt-in, see @ref Containers-Array-growable below for more information.
@section Containers-Array-usage Usage
The @ref Array class provides an access and slicing API similar to
@ref ArrayView, see @ref Containers-ArrayView-usage "its usage docs" for
details. All @ref Array slicing APIs return an @ref ArrayView, additionally
@ref Array instances are also implicitly convertible to it. The only difference
is due to the owning aspect --- mutable access to the data is provided only via
non @cpp const @ce overloads.
@subsection Containers-Array-usage-initialization Array initialization
The array is by default *value-initialized*, which means that trivial types
are zero-initialized and the default constructor is called on other types. It
is possible to initialize the array in a different way using so-called *tags*:
- @ref Array(ValueInitT, std::size_t) is equivalent to the default case,
zero-initializing trivial types and calling the default constructor
elsewhere. Useful when you want to make the choice appear explicit. In
other words, @cpp new T[size]{} @ce.
- @ref Array(DirectInitT, std::size_t, Args&&... args) constructs all
elements of the array using provided arguments. In other words,
@cpp new T[size]{T{args...}, T{args...}, …} @ce.
- @ref Array(InPlaceInitT, ArrayView<const T>) / @ref Array(InPlaceInitT, std::initializer_list<T>)
or the @ref array(ArrayView<const T>) / @ref array(std::initializer_list<T>)
shorthand allocates unitialized memory and then copy-constructs all
elements from the list. In other words, @cpp new T[size]{args...} @ce. The
class deliberately *doesn't* provide an implicit @ref std::initializer_list
constructor due to @ref Containers-Array-initializer-list "reasons described below".
- @ref Array(NoInitT, std::size_t) does not initialize anything. Useful for
trivial types when you'll be overwriting the contents anyway, for
non-trivial types this is the dangerous option and you need to call the
constructor on all elements manually using placement new,
@ref std::uninitialized_copy() or similar --- see the constructor docs for
an example. In other words, @cpp new char[size*sizeof(T)] @ce for
non-trivial types to circumvent default construction and @cpp new T[size] @ce
for trivial types.
<b></b>
@m_class{m-note m-success}
@par Aligned allocations
Please note that @ref Array allocations are by default only aligned to
@cpp 2*sizeof(void*) @ce. If you need overaligned memory for working with
SIMD types, use @ref Memory::AllocateAligned() instead.
@subsection Containers-Array-usage-wrapping Wrapping externally allocated arrays
By default the class makes all allocations using @cpp operator new[] @ce and
deallocates using @cpp operator delete[] @ce for given @p T, with some
additional trickery done internally to make the @ref Array(NoInitT, std::size_t)
and @ref Array(DirectInitT, std::size_t, Args&&... args) constructors work.
It's however also possible to wrap an externally allocated array using
@ref Array(T*, std::size_t, D) together with specifying which function to use
for deallocation. By default the deleter is set to @cpp nullptr @ce, which is
equivalent to deleting the contents using @cpp operator delete[] @ce.
By default, plain function pointers are used to avoid having the type affected
by the deleter function. If the deleter needs to manage some state, a custom
deleter type can be used. The deleter is called *unconditionally* on destruction,
which has some implications especially in case of stateful deleters. See
the documentation of @ref Array(T*, std::size_t, D) for details.
@section Containers-Array-growable Growable arrays
The @ref Array class provides no reallocation or growing capabilities on its
own, and this functionality is opt-in via free functions from
@ref Containers/GrowableArray.h instead. This is done in order to keep
the concept of an owning container decoupled from the extra baggage coming from
custom allocators, type constructibility and such.
As long as the type stored in the array is nothrow-move-constructible, any
@ref Array instance can be converted to a growing container by calling the
family of @ref arrayAppend(), @ref arrayInsert(), @ref arrayReserve(),
@ref arrayResize(), @ref arrayRemove() ... functions. A growable array behaves
the same as a regular array to its consumers --- its @ref size() returns the
count of *real* elements, while available capacity can be queried through
@ref arrayCapacity().
A growable array can be turned back into a regular one using
@ref arrayShrink() if desired. That'll free all extra memory, moving the
elements to an array of exactly the size needed.
@m_class{m-block m-success}
@par Tip
Thanks to [ADL](https://en.wikipedia.org/wiki/Argument-dependent_name_lookup)
the @ref arrayAppend() etc. functions can be called unqualified, without
having to explicitly prefix them with @cpp Containers:: @ce.
@subsection Containers-Array-growable-allocators Growable allocators
Similarly to standard containers, growable arrays allow you to use a custom
allocator that matches the documented semantics of @ref ArrayAllocator. It's
also possible to switch between different allocators during the lifetime of an
@ref Array instance --- internally it's the same process as when a non-growable
array is converted to a growable version (or back, with @ref arrayShrink()).
The @ref ArrayAllocator is by default aliased to @ref ArrayNewAllocator, which
uses the standard C++ @cpp new[] @ce / @cpp delete[] @ce constructs and is
fully move-aware, requiring the types to be only nothrow-move-constructible at
the very least. If a type is trivially copyable, the @ref ArrayMallocAllocator
will get picked instead, make use of @ref std::realloc() to avoid unnecessary
memory copies when growing the array. The typeless nature of
@ref ArrayMallocAllocator internals allows for free type-casting of the array
instance with @ref arrayAllocatorCast(), an operation not easily doable using
typed allocators.
@subsection Containers-Array-growable-sanitizer AddressSanitizer container annotations
Because the alloacted growable arrays have an area between @ref size() and
@ref arrayCapacity() that shouldn't be accessed, when building with
[Address Sanitizer](https://github.com/google/sanitizers/wiki/AddressSanitizer)
enabled, this area is marked as "container overflow".
In some cases sanitizer annotations are undesirable, for example when only a
part of the application is built with AddressSanitizer enabled, causing false
positives due to the annotations being done only partially, or when a
particular platform is known to have broken behavior. The annotations can be
disabled by defining `DEATH_CONTAINERS_NO_SANITIZER_ANNOTATIONS` on the
compiler command line.
@section Containers-Array-views Conversion to array views
Arrays are implicitly convertible to @ref ArrayView as described in the
following table. The conversion is only allowed if @cpp T* @ce is implicitly
convertible to @cpp U* @ce (or both are the same type) and both have the same
size.
Owning array type | ↭ | Non-owning view type
------------------------------- | - | ---------------------
@ref Array "Array<T>" | → | @ref ArrayView "ArrayView<U>"
@ref Array "Array<T>" | → | @ref ArrayView "ArrayView<const U>"
@ref Array "const Array<T>" | → | @ref ArrayView "ArrayView<const U>"
@anchor Containers-Array-initializer-list
<b></b>
@m_class{m-block m-warning}
@par Conversion from std::initializer_list
The class deliberately *doesn't* provide a @ref std::initializer_list
constructor to prevent the same usability issues as with @ref std::vector.
Instead you're expected to use either the
@ref Array(InPlaceInitT, std::initializer_list<T>) constructor or the
@ref array(std::initializer_list<T>) shorthand, which are both more
explicit and thus should prevent accidental use.
*/
#ifdef DOXYGEN_GENERATING_OUTPUT
template<class T, class D = void(*)(T*, std::size_t)>
#else
template<class T, class D>
#endif
class Array
{
public:
/** @brief Element type */
typedef T Type;
/**
* @brief Deleter type
*
* Defaults to pointer to a @cpp void(T*, std::size_t) @ce function,
* where first is array pointer and second array size.
*/
typedef D Deleter;
/**
* @brief Default constructor
*
* Creates a zero-sized array. Move an @ref Array with a nonzero size
* onto the instance to make it useful.
*/
#ifdef DOXYGEN_GENERATING_OUTPUT
/*implicit*/ Array(std::nullptr_t = nullptr) noexcept;
#else
/* To avoid ambiguity either when calling Array{0} or in certain cases of passing 0 to overloads that take either an Array or std::size_t */
template<class U, typename std::enable_if<std::is_same<std::nullptr_t, U>::value, int>::type = 0> /*implicit*/ Array(U) noexcept : _data{nullptr}, _size{0}, _deleter{} {}
/*implicit*/ Array() noexcept : _data(nullptr), _size(0), _deleter{} {}
#endif
/**
* @brief Construct a value-initialized array
*
* Creates an array of given size, the contents are value-initialized
* (i.e. trivial types are zero-initialized, default constructor called
* otherwise). This is the same as @ref Array(std::size_t). If the size
* is zero, no allocation is done.
*/
explicit Array(ValueInitT, std::size_t size) : _data{size ? new T[size]() : nullptr}, _size{size}, _deleter{nullptr} {}
/**
* @brief Construct an array without initializing its contents
*
* Creates an array of given size, the contents are *not* initialized.
* If the size is zero, no allocation is done. Useful if you will be
* overwriting all elements later anyway or if you need to call custom
* constructors in a way that's not expressible via any other
* @ref Array constructor.
*
* For trivial types is equivalent to @cpp new T[size] @ce (as opposed
* to @cpp new T[size]{} @ce), with @ref deleter() being the default
* (@cpp nullptr @ce). For non-trivial types, the data are allocated as
* a @cpp char @ce array and destruction is done using a custom deleter
* that explicitly calls the destructor on *all elements* and then
* deallocates the data as a @cpp char @ce array again --- which means
* that for non-trivial types you're expected to construct all elements
* using placement new (or for example @ref std::uninitialized_copy())
* in order to avoid calling destructors on uninitialized memory.
*/
explicit Array(NoInitT, std::size_t size) : _data{size ? Implementation::noInitAllocate<T>(size) : nullptr}, _size{size}, _deleter{Implementation::noInitDeleter<T>()} {}
/**
* @brief Construct a direct-initialized array
*
* Allocates the array using the @ref Array(NoInitT, std::size_t)
* constructor and then initializes each element with placement new
* using forwarded @p args.
*/
template<class ...Args> explicit Array(DirectInitT, std::size_t size, Args&&... args);
/**
* @brief Construct a list-initialized array
*
* Allocates the array using the @ref Array(NoInitT, std::size_t)
* constructor and then copy-initializes each element with placement
* new using values from @p list. To save typing you can also use the
* @ref array(ArrayView<const T>) /
* @ref array(std::initializer_list<T>) shorthands.
*/
/*implicit*/ Array(InPlaceInitT, ArrayView<const T> list);
/** @overload */
/*implicit*/ Array(InPlaceInitT, std::initializer_list<T> list);
/**
* @brief Construct a value-initialized array
*
* Alias to @ref Array(ValueInitT, std::size_t).
*/
explicit Array(std::size_t size) : Array{ValueInit, size} {}
/**
* @brief Wrap an existing array with an explicit deleter
*
* The @p deleter will be *unconditionally* called on destruction with
* @p data and @p size as an argument. In particular, it will be also
* called if @p data is @cpp nullptr @ce or @p size is @cpp 0 @ce.
*
* In case of a moved-out instance, the deleter gets reset to a
* default-constructed value alongside the array pointer and size. For
* plain deleter function pointers it effectively means
* @cpp delete[] nullptr @ce gets called when destructing a moved-out
* instance (which is a no-op), for stateful deleters you have to
* ensure the deleter similarly does nothing in its default state.
*/
explicit Array(T* data, std::size_t size, D deleter = {}) noexcept : _data{data}, _size{size}, _deleter(deleter) {}
/**
* @brief Wrap an existing array view with an explicit deleter
*
* Convenience overload of @ref Array(T*, std::size_t, D) for cases
* where the pointer and size is already wrapped in an @ref ArrayView,
* such as when creating non-owned @ref Array instances.
*/
explicit Array(ArrayView<T> view, D deleter) noexcept : Array{view.data(), view.size(), deleter} {}
/** @brief Copying is not allowed */
Array(const Array<T, D>&) = delete;
/**
* @brief Move constructor
*
* Resets data pointer, size and deleter of @p other to be equivalent
* to a default-constructed instance.
*/
Array(Array<T, D>&& other) noexcept;
/**
* @brief Destructor
*
* Calls @ref deleter() on the owned @ref data().
*/
~Array() { Implementation::CallDeleter<T, D>{}(_deleter, _data, _size); }
/** @brief Copying is not allowed */
Array<T, D>& operator=(const Array<T, D>&) = delete;
/**
* @brief Move assignment
*
* Swaps data pointer, size and deleter of the two instances.
*/
Array<T, D>& operator=(Array<T, D>&& other) noexcept;
/** @brief Convert to external view representation */
template<class U, class = decltype(Implementation::ArrayViewConverter<T, U>::to(std::declval<ArrayView<T>>()))> /*implicit*/ operator U() {
return Implementation::ArrayViewConverter<T, U>::to(*this);
}
/** @overload */
template<class U, class = decltype(Implementation::ArrayViewConverter<const T, U>::to(std::declval<ArrayView<const T>>()))> constexpr /*implicit*/ operator U() const {
return Implementation::ArrayViewConverter<const T, U>::to(*this);
}
#if !defined(DEATH_MSVC2019_COMPATIBILITY)
/* Disabled on MSVC without `/permissive-` to avoid ambiguous operator+() when doing pointer arithmetic. */
/** @brief Whether the array is non-empty */
explicit operator bool() const {
return _data;
}
#endif
/** @brief Conversion to array type */
/*implicit*/ operator T*() & { return _data; }
/** @overload */
/*implicit*/ operator const T*() const & { return _data; }
/** @brief Array data */
T* data() { return _data; }
const T* data() const { return _data; } /**< @overload */
/**
* @brief Array deleter
*
* If set to @cpp nullptr @ce, the contents are deleted using standard
* @cpp operator delete[] @ce.
*/
D deleter() const { return _deleter; }
/**
* @brief Array size
*/
std::size_t size() const { return _size; }
/**
* @brief Whether the array is empty
*/
bool empty() const { return !_size; }
/**
* @brief Pointer to first element
*/
T* begin() { return _data; }
const T* begin() const { return _data; } /**< @overload */
const T* cbegin() const { return _data; } /**< @overload */
/**
* @brief Pointer to (one item after) last element
*/
T* end() { return _data+_size; }
const T* end() const { return _data+_size; } /**< @overload */
const T* cend() const { return _data+_size; } /**< @overload */
/**
* @brief First element
*
* Expects there is at least one element.
*/
T& front();
const T& front() const; /**< @overload */
/**
* @brief Last element
*
* Expects there is at least one element.
*/
T& back();
const T& back() const; /**< @overload */
/**
* @brief Element access
*
* Expects that @p i is less than @ref size().
*/
#ifdef DOXYGEN_GENERATING_OUTPUT
T& operator[](std::size_t i);
/** @overload */
const T& operator[](std::size_t i) const;
#else
/* Has to be done this way because otherwise it causes ambiguity with a builtin operator[] for pointers if an int or ssize_t is used due to the implicit pointer conversion */
template<class U, typename std::enable_if<std::is_convertible<U, std::size_t>::value, int>::type = 0> T& operator[](U i);
/** @overload */
template<class U, typename std::enable_if<std::is_convertible<U, std::size_t>::value, int>::type = 0> const T& operator[](U i) const;
#endif
/**
* @brief View on a slice
*
* Equivalent to @ref ArrayView::slice(T*, T*) const and overloads.
*/
ArrayView<T> slice(T* begin, T* end) {
return ArrayView<T>(*this).slice(begin, end);
}
/** @overload */
ArrayView<const T> slice(const T* begin, const T* end) const {
return ArrayView<const T>(*this).slice(begin, end);
}
/** @overload */
ArrayView<T> slice(std::size_t begin, std::size_t end) {
return ArrayView<T>(*this).slice(begin, end);
}
/** @overload */
ArrayView<const T> slice(std::size_t begin, std::size_t end) const {
return ArrayView<const T>(*this).slice(begin, end);
}
/**
* @brief View on a slice of given size
*
* Equivalent to @ref ArrayView::sliceSize(T*, std::size_t) const and
* overloads.
*/
#ifdef DOXYGEN_GENERATING_OUTPUT
ArrayView<T> sliceSize(T* begin, std::size_t size);
#else
template<class U, typename std::enable_if<std::is_convertible<U, T*>::value && !std::is_convertible<U, std::size_t>::value, int>::type = 0> ArrayView<T> sliceSize(U begin, std::size_t size) {
return ArrayView<T>{*this}.sliceSize(begin, size);
}
#endif
/** @overload */
#ifdef DOXYGEN_GENERATING_OUTPUT
ArrayView<const T> sliceSize(const T* begin, std::size_t size) const;
#else
template<class U, typename std::enable_if<std::is_convertible<U, const T*>::value && !std::is_convertible<U, std::size_t>::value, int>::type = 0> ArrayView<const T> sliceSize(const U begin, std::size_t size) const {
return ArrayView<const T>{*this}.sliceSize(begin, size);
}
#endif
/** @overload */
ArrayView<T> sliceSize(std::size_t begin, std::size_t size) {
return ArrayView<T>{*this}.sliceSize(begin, size);
}
/** @overload */
ArrayView<const T> sliceSize(std::size_t begin, std::size_t size) const {
return ArrayView<const T>{*this}.sliceSize(begin, size);
}
/**
* @brief Fixed-size view on a slice
*
* Equivalent to @ref ArrayView::slice(T*) const and overloads.
*/
#ifdef DOXYGEN_GENERATING_OUTPUT
template<std::size_t size_> StaticArrayView<size_, T> slice(T* begin);
#else
template<std::size_t size_, class U, typename std::enable_if<std::is_convertible<U, T*>::value && !std::is_convertible<U, std::size_t>::value, int>::type = 0> StaticArrayView<size_, T> slice(U begin) {
return ArrayView<T>(*this).template slice<size_>(begin);
}
#endif
/** @overload */
#ifdef DOXYGEN_GENERATING_OUTPUT
template<std::size_t size_> StaticArrayView<size_, const T> slice(const T* begin) const;
#else
template<std::size_t size_, class U, typename std::enable_if<std::is_convertible<U, const T*>::value && !std::is_convertible<U, std::size_t>::value, int>::type = 0> StaticArrayView<size_, const T> slice(U begin) const {
return ArrayView<const T>(*this).template slice<size_>(begin);
}
#endif
/** @overload */
template<std::size_t size_> StaticArrayView<size_, T> slice(std::size_t begin) {
return ArrayView<T>(*this).template slice<size_>(begin);
}
/** @overload */
template<std::size_t size_> StaticArrayView<size_, const T> slice(std::size_t begin) const {
return ArrayView<const T>(*this).template slice<size_>(begin);
}
/**
* @brief Fixed-size view on a slice
*
* Equivalent to @ref ArrayView::slice() const.
*/
template<std::size_t begin_, std::size_t end_> StaticArrayView<end_ - begin_, T> slice() {
return ArrayView<T>(*this).template slice<begin_, end_>();
}
/** @overload */
template<std::size_t begin_, std::size_t end_> StaticArrayView<end_ - begin_, const T> slice() const {
return ArrayView<const T>(*this).template slice<begin_, end_>();
}
/**
* @brief View on a prefix until a pointer
*
* Equivalent to @ref ArrayView::prefix(T*) const.
*/
#ifdef DOXYGEN_GENERATING_OUTPUT
ArrayView<T> prefix(T* end);
#else
template<class U, typename std::enable_if<std::is_convertible<U, T*>::value && !std::is_convertible<U, std::size_t>::value, int>::type = 0>
ArrayView<T> prefix(U end) {
return ArrayView<T>(*this).prefix(end);
}
#endif
/** @overload */
#ifdef DOXYGEN_GENERATING_OUTPUT
ArrayView<const T> prefix(const T* end) const;
#else
template<class U, typename std::enable_if<std::is_convertible<U, const T*>::value && !std::is_convertible<U, std::size_t>::value, int>::type = 0>
ArrayView<const T> prefix(U end) const {
return ArrayView<const T>(*this).prefix(end);
}
#endif
/**
* @brief View on a suffix after a pointer
*
* Equivalent to @ref ArrayView::suffix(T*) const.
*/
ArrayView<T> suffix(T* begin) {
return ArrayView<T>(*this).suffix(begin);
}
/** @overload */
ArrayView<const T> suffix(const T* begin) const {
return ArrayView<const T>(*this).suffix(begin);
}
/**
* @brief View on the first @p size items
*
* Equivalent to @ref ArrayView::prefix(std::size_t) const.
*/
ArrayView<T> prefix(std::size_t end) {
return ArrayView<T>(*this).prefix(end);
}
/** @overload */
ArrayView<const T> prefix(std::size_t end) const {
return ArrayView<const T>(*this).prefix(end);
}
/**
* @brief Fixed-size view on the first @p size_ items
*
* Equivalent to @ref ArrayView::prefix() const.
*/
template<std::size_t viewSize_> StaticArrayView<viewSize_, T> prefix() {
return ArrayView<T>(*this).template prefix<viewSize_>();
}
/** @overload */
template<std::size_t viewSize_> StaticArrayView<viewSize_, const T> prefix() const {
return ArrayView<const T>(*this).template prefix<viewSize_>();
}
/**
* @brief Fixed-size view on the last @p size_ items
*
* Equivalent to @ref ArrayView::suffix() const.
*/
template<std::size_t size_> StaticArrayView<size_, T> suffix() {
return ArrayView<T>(*this).template suffix<size_>();
}
/** @overload */
template<std::size_t size_> StaticArrayView<size_, const T> suffix() const {
return ArrayView<const T>(*this).template suffix<size_>();
}
/**
* @brief View except the first @p size_ items
*
* Equivalent to @ref ArrayView::exceptPrefix(std::size_t) const.
*/
ArrayView<T> exceptPrefix(std::size_t size_) {
return ArrayView<T>(*this).exceptPrefix(size_);
}
/** @overload */
ArrayView<const T> exceptPrefix(std::size_t size_) const {
return ArrayView<const T>(*this).exceptPrefix(size_);
}
/**
* @brief View except the last @p size items
*
* Equivalent to @ref ArrayView::exceptSuffix().
*/
ArrayView<T> exceptSuffix(std::size_t size) {
return ArrayView<T>(*this).exceptSuffix(size);
}
/** @overload */
ArrayView<const T> exceptSuffix(std::size_t size) const {
return ArrayView<const T>(*this).exceptSuffix(size);
}
/**
* @brief Release data storage
*
* Returns the data pointer and resets data pointer, size and deleter
* to be equivalent to a default-constructed instance. Deleting the
* returned array is user responsibility --- note the array might have
* a custom @ref deleter() and so @cpp delete[] @ce might not be always
* appropriate.
*/
T* release();
private:
T* _data;
std::size_t _size;
D _deleter;
};
/** @relatesalso Array
@brief Construct a list-initialized array
Convenience shortcut to the @ref Array::Array(InPlaceInitT, ArrayView<const T>)
constructor. Not present as an implicit constructor in order to avoid the same
usability issues as with @ref std::vector.
*/
template<class T> inline Array<T> array(ArrayView<const T> list) {
return Array<T>{InPlaceInit, list};
}
/** @relatesalso Array
@brief Construct a list-initialized array
Convenience shortcut to the @ref Array::Array(InPlaceInitT, std::initializer_list<T>)
constructor. Not present as an implicit constructor in order to avoid the same
usability issues as with @ref std::vector.
*/
template<class T> inline Array<T> array(std::initializer_list<T> list) {
return Array<T>{InPlaceInit, list};
}
/** @relatesalso ArrayView
@brief Make a view on an @ref Array
Convenience alternative to converting to an @ref ArrayView explicitly.
*/
template<class T, class D> inline ArrayView<T> arrayView(Array<T, D>& array) {
return ArrayView<T>{array};
}
/** @relatesalso ArrayView
@brief Make a view on a const @ref Array
Convenience alternative to converting to an @ref ArrayView explicitly.
*/
template<class T, class D> inline ArrayView<const T> arrayView(const Array<T, D>& array) {
return ArrayView<const T>{array};
}
/** @relatesalso Array
@brief Reinterpret-cast an array
*/
template<class U, class T, class D> inline ArrayView<U> arrayCast(Array<T, D>& array) {
return arrayCast<U>(arrayView(array));
}
/** @overload */
template<class U, class T, class D> inline ArrayView<const U> arrayCast(const Array<T, D>& array) {
return arrayCast<const U>(arrayView(array));
}
/** @brief Array size */
template<class T> std::size_t arraySize(const Array<T>& view) {
return view.size();
}
template<class T, class D> inline Array<T, D>::Array(Array<T, D>&& other) noexcept : _data{other._data}, _size{other._size}, _deleter{other._deleter} {
other._data = nullptr;
other._size = 0;
other._deleter = D{};
}
template<class T, class D> template<class ...Args> Array<T, D>::Array(DirectInitT, std::size_t size, Args&&... args) : Array{NoInit, size} {
for (std::size_t i = 0; i != size; ++i)
Implementation::construct(_data[i], Death::forward<Args>(args)...);
}
template<class T, class D> Array<T, D>::Array(InPlaceInitT, const ArrayView<const T> list) : Array{NoInit, list.size()} {
std::size_t i = 0;
for (const T& item : list)
/* Can't use {}, see the GCC 4.8-specific overload for details */
#if defined(DEATH_TARGET_GCC) && !defined(DEATH_TARGET_CLANG) && __GNUC__ < 5
Implementation::construct(_data[i++], item);
#else
new(_data + i++) T{item};
#endif
}
template<class T, class D> Array<T, D>::Array(InPlaceInitT, std::initializer_list<T> list) : Array{InPlaceInit, arrayView(list)} { }
template<class T, class D> inline Array<T, D>& Array<T, D>::operator=(Array<T, D>&& other) noexcept {
using Death::swap;
swap(_data, other._data);
swap(_size, other._size);
swap(_deleter, other._deleter);
return *this;
}
#ifndef DOXYGEN_GENERATING_OUTPUT
template<class T, class D> template<class U, typename std::enable_if<std::is_convertible<U, std::size_t>::value, int>::type> const T& Array<T, D>::operator[](const U i) const {
DEATH_DEBUG_ASSERT(std::size_t(i) < _size, ("Index {} out of range for {} elements", std::size_t(i), _size), _data[0]);
return _data[i];
}
#endif
template<class T, class D> const T& Array<T, D>::front() const {
DEATH_DEBUG_ASSERT(_size != 0, "Array is empty", _data[0]);
return _data[0];
}
template<class T, class D> const T& Array<T, D>::back() const {
DEATH_DEBUG_ASSERT(_size != 0, "Array is empty", _data[_size - 1]);
return _data[_size - 1];
}
#ifndef DOXYGEN_GENERATING_OUTPUT
template<class T, class D> template<class U, typename std::enable_if<std::is_convertible<U, std::size_t>::value, int>::type> T& Array<T, D>::operator[](const U i) {
return const_cast<T&>(static_cast<const Array<T, D>&>(*this)[i]);
}
#endif
template<class T, class D> T& Array<T, D>::front() {
return const_cast<T&>(static_cast<const Array<T, D>&>(*this).front());
}
template<class T, class D> T& Array<T, D>::back() {
return const_cast<T&>(static_cast<const Array<T, D>&>(*this).back());
}
template<class T, class D> inline T* Array<T, D>::release() {
T* const data = _data;
_data = nullptr;
_size = 0;
_deleter = D{};
return data;
}
namespace Implementation
{
template<class U, class T, class D> struct ArrayViewConverter<U, Array<T, D>> {
template<class V = U, typename std::enable_if<std::is_convertible<T*, V*>::value, int>::type = 0> constexpr static ArrayView<U> from(Array<T, D>& other) {
static_assert(sizeof(T) == sizeof(U), "Types are not compatible");
return {&other[0], other.size()};
}
template<class V = U, typename std::enable_if<std::is_convertible<T*, V*>::value, int>::type = 0> constexpr static ArrayView<U> from(Array<T, D>&& other) {
static_assert(sizeof(T) == sizeof(U), "Types are not compatible");
return {&other[0], other.size()};
}
};
template<class U, class T, class D> struct ArrayViewConverter<const U, Array<T, D>> {
template<class V = U, typename std::enable_if<std::is_convertible<T*, V*>::value, int>::type = 0> constexpr static ArrayView<const U> from(const Array<T, D>& other) {
static_assert(sizeof(T) == sizeof(U), "Types are not compatible");
return {&other[0], other.size()};
}
};
template<class U, class T, class D> struct ArrayViewConverter<const U, Array<const T, D>> {
template<class V = U, typename std::enable_if<std::is_convertible<T*, V*>::value, int>::type = 0> constexpr static ArrayView<const U> from(const Array<const T, D>& other) {
static_assert(sizeof(T) == sizeof(U), "Types are not compatible");
return {&other[0], other.size()};
}
};
template<class T, class D> struct ErasedArrayViewConverter<Array<T, D>> : ArrayViewConverter<T, Array<T, D>> {};
template<class T, class D> struct ErasedArrayViewConverter<const Array<T, D>> : ArrayViewConverter<const T, Array<T, D>> {};
}
}}
|