File: Pair.h

package info (click to toggle)
jazz2-native 3.5.0-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 16,912 kB
  • sloc: cpp: 172,557; xml: 113; python: 36; makefile: 5; sh: 2
file content (338 lines) | stat: -rw-r--r-- 16,968 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// Copyright © 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016,
//             2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024
//           Vladimír Vondruš <mosra@centrum.cz> and contributors
// Copyright © 2022 Stanislaw Halik <sthalik@misaki.pl>
// Copyright © 2020-2024 Dan R.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

#pragma once

#include "Tags.h"
#include "../Base/Move.h"

#include <type_traits>

namespace Death { namespace Containers {
//###==##====#=====--==~--~=~- --- -- -  -  -   -

	namespace Implementation
	{
		template<class, class, class> struct PairConverter;
	}

	/**
		@brief Pair of values

		An alternative to @ref std::pair that is trivially copyable for trivial types, provides move semantics consistent
		across standard library implementations and guarantees usability in @cpp constexpr @ce contexts even in C++11.
		On the other hand, to simplify both the implementation and usage semantics, the type doesn't support
		references --- wrap them in a @ref Reference in order to store them in a @ref Pair. Such type composition allows
		you to both rebind the reference and update the referenced value and the intent is clear.

		Similarly to other containers and equivalently to @ref std::make_pair(), there's also @ref pair().
	*/
	template<class F, class S> class Pair
	{
		static_assert(!std::is_lvalue_reference<F>::value && !std::is_lvalue_reference<S>::value, "Use a Reference<T> to store a T& in a Pair");

	public:
		typedef F FirstType;	/**< @brief First type */
		typedef S SecondType;	/**< @brief Second type */

		/**
		 * @brief Construct a value-initialized pair
		 *
		 * Trivial types are zero-initialized, default constructor called
		 * otherwise. This is the same as the default constructor.
		 */
		constexpr explicit Pair(ValueInitT) noexcept(std::is_nothrow_constructible<F>::value && std::is_nothrow_constructible<S>::value) :
			_first(), _second() {}

		/**
		 * @brief Construct a pair without initializing its contents
		 *
		 * Enabled only for trivial types and types that implement the
		 * @ref NoInit constructor. The contents are *not* initialized. Useful
		 * if you will be overwriting both members later anyway or if you need
		 * to initialize in a way that's not expressible via any other
		 * @ref Pair constructor.
		 *
		 * For trivial types is equivalent to constructing the elements as
		 * @cpp T element @ce (as opposed to @cpp T element{} @ce).
		 */
#ifdef DOXYGEN_GENERATING_OUTPUT
		explicit Pair(NoInitT) noexcept(std::is_nothrow_constructible<F, NoInitT>::value && std::is_nothrow_constructible<S, NoInitT>::value);
#else
		template<class F_ = F, typename std::enable_if<
			/* std::is_trivially_constructible fails for (template) types where
			   default constructor isn't usable in libstdc++ before version 8,
			   OTOH std::is_trivial is deprecated in C++26 so can't use that
			   one either. Furthermore, libstdc++ before 6.1 doesn't have
			   _GLIBCXX_RELEASE, so there comparison will ealuate to 0 < 8 and
			   pass as well. Repro case in
			   PairTest::constructNoInitNoDefaultConstructor(). */
#if defined(DEATH_TARGET_LIBSTDCXX) && _GLIBCXX_RELEASE < 8
			std::is_standard_layout<F_>::value && std::is_trivial<F_>::value && std::is_standard_layout<S>::value && std::is_trivial<S>::value
#else
			std::is_standard_layout<F_>::value && std::is_trivially_constructible<F_>::value && std::is_standard_layout<S>::value && std::is_trivially_constructible<S>::value
#endif
		, int>::type = 0> explicit Pair(NoInitT) noexcept {}
		template<class F_ = F, typename std::enable_if<
#if defined(DEATH_TARGET_LIBSTDCXX) && _GLIBCXX_RELEASE < 8
			std::is_standard_layout<F_>::value && std::is_trivial<F_>::value && std::is_constructible<S, NoInitT>::value
#else
			std::is_standard_layout<F_>::value && std::is_trivially_constructible<F_>::value && std::is_constructible<S, NoInitT>::value
#endif
		, int>::type = 0> explicit Pair(NoInitT) noexcept(std::is_nothrow_constructible<S, NoInitT>::value) : _second{NoInit} {}
		template<class F_ = F, typename std::enable_if<
#if defined(DEATH_TARGET_LIBSTDCXX) && _GLIBCXX_RELEASE < 8
			std::is_constructible<F_, NoInitT>::value && std::is_standard_layout<S>::value && std::is_trivial<S>::value
#else
			std::is_constructible<F_, NoInitT>::value && std::is_standard_layout<S>::value && std::is_trivially_constructible<S>::value
#endif
		, int>::type = 0> explicit Pair(NoInitT) noexcept(std::is_nothrow_constructible<F, NoInitT>::value) : _first{NoInit} {}
		template<class F_ = F, typename std::enable_if<std::is_constructible<F_, NoInitT>::value && std::is_constructible<S, NoInitT>::value, int>::type = 0> explicit Pair(NoInitT) noexcept(std::is_nothrow_constructible<F, NoInitT>::value && std::is_nothrow_constructible<S, NoInitT>::value) : _first{NoInit}, _second{NoInit} {}
#endif

		/**
		 * @brief Default constructor
		 *
		 * Alias to @ref Pair(ValueInitT).
		 */
		constexpr /*implicit*/ Pair() noexcept(std::is_nothrow_constructible<F>::value && std::is_nothrow_constructible<S>::value) :
#if defined(DEATH_MSVC2015_COMPATIBILITY)
			// Otherwise it complains that _first and _second isn't initialized in a constexpr context. Does it not see the delegation?! OTOH
			// MSVC doesn't seem to be affected by the emplaceConstructorExplicitInCopyInitialization() bug in GCC and Clang, so I can use {} here I think.
			_first{}, _second{}
#else
			Pair{ValueInit}
#endif
		{}

		/** @brief Constructor */
		constexpr /*implicit*/ Pair(const F& first, const S& second) noexcept(std::is_nothrow_copy_constructible<F>::value && std::is_nothrow_copy_constructible<S>::value) :
			// Can't use {} on GCC 4.8, see constructHelpers.h for details and  PairTest::copyMoveConstructPlainStruct() for a test.
#if defined(DEATH_TARGET_GCC) && !defined(DEATH_TARGET_CLANG) && __GNUC__ < 5
			_first(first), _second(second)
#else
			_first{first}, _second{second}
#endif
		{}

		/** @overload */
		constexpr /*implicit*/ Pair(const F& first, S&& second) noexcept(std::is_nothrow_copy_constructible<F>::value && std::is_nothrow_move_constructible<S>::value) :
			// Can't use {} on GCC 4.8, see constructHelpers.h for details and PairTest::copyMoveConstructPlainStruct() for a test.
#if defined(DEATH_TARGET_GCC) && !defined(DEATH_TARGET_CLANG) && __GNUC__ < 5
			_first(first), _second(Death::move(second))
#else
			_first{first}, _second{Death::move(second)}
#endif
		{}

		/** @overload */
		constexpr /*implicit*/ Pair(F&& first, const S& second) noexcept(std::is_nothrow_move_constructible<F>::value && std::is_nothrow_copy_constructible<S>::value) :
			// Can't use {} on GCC 4.8, see constructHelpers.h for details and PairTest::copyMoveConstructPlainStruct() for a test.
#if defined(DEATH_TARGET_GCC) && !defined(DEATH_TARGET_CLANG) && __GNUC__ < 5
			_first(Death::move(first)), _second(second)
#else
			_first{Death::move(first)}, _second{second}
#endif
		{}

		/** @overload */
		constexpr /*implicit*/ Pair(F&& first, S&& second) noexcept(std::is_nothrow_move_constructible<F>::value && std::is_nothrow_move_constructible<S>::value) :
			// Can't use {} on GCC 4.8, see constructHelpers.h for details and PairTest::copyMoveConstructPlainStruct() for a test.
#if defined(DEATH_TARGET_GCC) && !defined(DEATH_TARGET_CLANG) && __GNUC__ < 5
			_first(Death::move(first)), _second(Death::move(second))
#else
			_first{Death::move(first)}, _second{Death::move(second)}
#endif
		{}

		/** @brief Copy-construct a pair from another of different type */
		template<class OtherF, class OtherS
#ifndef DOXYGEN_GENERATING_OUTPUT
			, typename std::enable_if<std::is_constructible<F, const OtherF&>::value&& std::is_constructible<S, const OtherS&>::value, int>::type = 0
#endif
		> constexpr explicit Pair(const Pair<OtherF, OtherS>& other) noexcept(std::is_nothrow_constructible<F, const OtherF&>::value && std::is_nothrow_constructible<S, const OtherS&>::value) :
			// Explicit T() to avoid warnings for int-to-float conversion etc., as that's a desirable use case here (and the constructor
			// is explicit because of that). Using () instead of {} alone doesn't help as Clang still warns for float-to-double conversion.
			// Can't use {} on GCC 4.8, see constructHelpers.h for details and PairTest::copyMoveConstructPlainStruct() for a test.
#if defined(DEATH_TARGET_GCC) && !defined(DEATH_TARGET_CLANG) && __GNUC__ < 5
			_first(F(other._first)), _second(S(other._second))
#else
			_first{F(other._first)}, _second{S(other._second)}
#endif
		{}

		/** @brief Move-construct a pair from another of different type */
		template<class OtherF, class OtherS
#ifndef DOXYGEN_GENERATING_OUTPUT
			, typename std::enable_if<std::is_constructible<F, OtherF&&>::value&& std::is_constructible<S, OtherS&&>::value, int>::type = 0
#endif
		> constexpr explicit Pair(Pair<OtherF, OtherS>&& other) noexcept(std::is_nothrow_constructible<F, OtherF&&>::value && std::is_nothrow_constructible<S, OtherS&&>::value) :
			// Explicit T() to avoid conversion warnings, similar to above; GCC 4.8 special case also similarly to above although
			// copyMoveConstructPlainStruct() cannot really test it (see there for details).
#if defined(DEATH_TARGET_GCC) && !defined(DEATH_TARGET_CLANG) && __GNUC__ < 5
			_first(F(Death::move(other._first))), _second(S(Death::move(other._second)))
#else
			_first{F(Death::move(other._first))}, _second{S(Death::move(other._second))}
#endif
		{}

		/** @brief Copy-construct a pair from external representation */
		template<class T, class = decltype(Implementation::PairConverter<F, S, T>::from(std::declval<const T&>()))> /*implicit*/ Pair(const T& other) noexcept(std::is_nothrow_copy_constructible<F>::value && std::is_nothrow_copy_constructible<S>::value) : Pair{Implementation::PairConverter<F, S, T>::from(other)} {}

		/** @brief Move-construct a pair from external representation */
		template<class T, class = decltype(Implementation::PairConverter<F, S, T>::from(std::declval<T&&>()))> /*implicit*/ Pair(T&& other) noexcept(std::is_nothrow_move_constructible<F>::value && std::is_nothrow_move_constructible<S>::value) : Pair{Implementation::PairConverter<F, S, T>::from(Death::move(other))} {}

		/** @brief Copy-convert the pair to external representation */
		template<class T, class = decltype(Implementation::PairConverter<F, S, T>::to(std::declval<const Pair<F, S>&>()))> /*implicit*/ operator T() const& {
			return Implementation::PairConverter<F, S, T>::to(*this);
		}

		/** @brief Move-convert the pair to external representation */
		template<class T, class = decltype(Implementation::PairConverter<F, S, T>::to(std::declval<Pair<F, S>&&>()))> /*implicit*/ operator T() && {
			return Implementation::PairConverter<F, S, T>::to(Death::move(*this));
		}

		/** @brief Equality comparison */
		constexpr bool operator==(const Pair<F, S>& other) const {
			return _first == other._first && _second == other._second;
		}

		/** @brief Non-equality comparison */
		constexpr bool operator!=(const Pair<F, S>& other) const {
			return !operator==(other);
		}

		/** @brief First element */
		DEATH_CONSTEXPR14 F& first() & { return _first; }
		/** @overload */
		/* Not F&& because that'd cause nasty dangling reference issues in common code */
		DEATH_CONSTEXPR14 F first() && { return Death::move(_first); }
		/** @overload */
		constexpr const F& first() const & { return _first; }

		/** @brief Second element */
		DEATH_CONSTEXPR14 S& second() & { return _second; }
		/** @overload */
		/* Not S&& because that'd cause nasty dangling reference issues in common code */
		DEATH_CONSTEXPR14 S second() && { return Death::move(_second); }
		/** @overload */
		constexpr const S& second() const & { return _second; }

		// No const&& overloads right now. There's one theoretical use case, where an API could return a `const Pair<T>`,
		// and then if there would be a `first() const&&` overload returning a `T` (and not `T&&`), it could get picked
		// over the `const T&`, solving the same problem as the `first() &&` above. I don't see a practical reason to
		// return a const value, so this isn't handled at the moment.

	private:
		/* For the conversion constructor */
		template<class, class> friend class Pair;

#if DEATH_CXX_STANDARD > 201402
		// There doesn't seem to be a way to call those directly, and I can't find any practical use of std::tuple_size,
		// tuple_element etc. on C++11 and C++14, so this is defined only for newer standards.
		template<std::size_t index, typename std::enable_if<index == 0, int>::type = 0> constexpr friend const F& get(const Pair<F, S>& value) {
			return value._first;
		}
		template<std::size_t index, typename std::enable_if<index == 0, int>::type = 0> DEATH_CONSTEXPR14 friend F& get(Pair<F, S>& value) {
			return value._first;
		}
		template<std::size_t index, typename std::enable_if<index == 0, int>::type = 0> DEATH_CONSTEXPR14 friend F&& get(Pair<F, S>&& value) {
			return Death::move(value._first);
		}
		template<std::size_t index, typename std::enable_if<index == 1, int>::type = 0> constexpr friend const S& get(const Pair<F, S>& value) {
			return value._second;
		}
		template<std::size_t index, typename std::enable_if<index == 1, int>::type = 0> DEATH_CONSTEXPR14 friend S& get(Pair<F, S>& value) {
			return value._second;
		}
		template<std::size_t index, typename std::enable_if<index == 1, int>::type = 0> DEATH_CONSTEXPR14 friend S&& get(Pair<F, S>&& value) {
			return Death::move(value._second);
		}
#endif

		F _first;
		S _second;
	};

	/** @relatesalso Pair
		@brief Make a pair

		Convernience alternative to @ref Pair::Pair(const F&, const S&) and overloads.
	*/
	template<class F, class S> constexpr Pair<typename std::decay<F>::type, typename std::decay<S>::type> pair(F&& first, S&& second) {
		return Pair<typename std::decay<F>::type, typename std::decay<S>::type>{Death::forward<F>(first), Death::forward<S>(second)};
	}

	namespace Implementation
	{
		template<class> struct DeducedPairConverter;
	}

	/** @relatesalso Pair
		@brief Make a pair from external representation
	*/
	template<class T> inline auto pair(T&& other) -> decltype(Implementation::DeducedPairConverter<typename std::decay<T>::type>::from(Death::forward<T>(other))) {
		return Implementation::DeducedPairConverter<typename std::decay<T>::type>::from(Death::forward<T>(other));
	}
}}

// C++17 structured bindings
#if DEATH_CXX_STANDARD > 201402 && !defined(DOXYGEN_GENERATING_OUTPUT)
#if defined(DEATH_TARGET_LIBCXX)
// Defined in <__config>, which is already pulled in from <ciso646> or <version>
// that CommonBase.h has to include in order to detect the STL being used.
_LIBCPP_BEGIN_NAMESPACE_STD
#elif defined(DEATH_TARGET_LIBSTDCXX)
// Defined in <bits/c++config.h>. Pulled in from <ciso646> or <version> by CommonBase.h, but only
// since GCC 6.1. On versions before <cstddef> from above pulls that in. Versions before GCC 4.6(?)
// had _GLIBCXX_BEGIN_NAMESPACE(std) instead, we don't care about those.
#include <bits/c++config.h>
namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION
#elif defined(DEATH_TARGET_DINKUMWARE)
// Defined in <yvals_core.h>, again pulled in from <ciso646> or <version> by CommonBase.h
_STD_BEGIN
#endif

#if defined(DEATH_TARGET_LIBCXX) || defined(DEATH_TARGET_LIBSTDCXX) || defined(DEATH_TARGET_DINKUMWARE)
	template<size_t, class> struct tuple_element;
	template<class> struct tuple_size;
#else
#	include <utility>
#endif

#if defined(DEATH_TARGET_LIBCXX)
_LIBCPP_END_NAMESPACE_STD
#elif defined(DEATH_TARGET_LIBSTDCXX)
_GLIBCXX_END_NAMESPACE_VERSION }
#elif defined(DEATH_TARGET_MSVC)
_STD_END
#endif

namespace std
{
	template<class F, class S> struct tuple_size<Death::Containers::Pair<F, S>> : integral_constant<size_t, 2> {};
	template<class F, class S> struct tuple_element<0, Death::Containers::Pair<F, S>> { typedef F type; };
	template<class F, class S> struct tuple_element<1, Death::Containers::Pair<F, S>> { typedef S type; };
}
#endif