1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
// Copyright © 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016,
// 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024
// Vladimír Vondruš <mosra@centrum.cz> and contributors
// Copyright © 2022 Stanislaw Halik <sthalik@misaki.pl>
// Copyright © 2020-2024 Dan R.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#pragma once
#include "Tags.h"
#include "../Base/Move.h"
#include <type_traits>
namespace Death { namespace Containers {
//###==##====#=====--==~--~=~- --- -- - - - -
namespace Implementation
{
template<class, class, class> struct PairConverter;
}
/**
@brief Pair of values
An alternative to @ref std::pair that is trivially copyable for trivial types, provides move semantics consistent
across standard library implementations and guarantees usability in @cpp constexpr @ce contexts even in C++11.
On the other hand, to simplify both the implementation and usage semantics, the type doesn't support
references --- wrap them in a @ref Reference in order to store them in a @ref Pair. Such type composition allows
you to both rebind the reference and update the referenced value and the intent is clear.
Similarly to other containers and equivalently to @ref std::make_pair(), there's also @ref pair().
*/
template<class F, class S> class Pair
{
static_assert(!std::is_lvalue_reference<F>::value && !std::is_lvalue_reference<S>::value, "Use a Reference<T> to store a T& in a Pair");
public:
typedef F FirstType; /**< @brief First type */
typedef S SecondType; /**< @brief Second type */
/**
* @brief Construct a value-initialized pair
*
* Trivial types are zero-initialized, default constructor called
* otherwise. This is the same as the default constructor.
*/
constexpr explicit Pair(ValueInitT) noexcept(std::is_nothrow_constructible<F>::value && std::is_nothrow_constructible<S>::value) :
_first(), _second() {}
/**
* @brief Construct a pair without initializing its contents
*
* Enabled only for trivial types and types that implement the
* @ref NoInit constructor. The contents are *not* initialized. Useful
* if you will be overwriting both members later anyway or if you need
* to initialize in a way that's not expressible via any other
* @ref Pair constructor.
*
* For trivial types is equivalent to constructing the elements as
* @cpp T element @ce (as opposed to @cpp T element{} @ce).
*/
#ifdef DOXYGEN_GENERATING_OUTPUT
explicit Pair(NoInitT) noexcept(std::is_nothrow_constructible<F, NoInitT>::value && std::is_nothrow_constructible<S, NoInitT>::value);
#else
template<class F_ = F, typename std::enable_if<
/* std::is_trivially_constructible fails for (template) types where
default constructor isn't usable in libstdc++ before version 8,
OTOH std::is_trivial is deprecated in C++26 so can't use that
one either. Furthermore, libstdc++ before 6.1 doesn't have
_GLIBCXX_RELEASE, so there comparison will ealuate to 0 < 8 and
pass as well. Repro case in
PairTest::constructNoInitNoDefaultConstructor(). */
#if defined(DEATH_TARGET_LIBSTDCXX) && _GLIBCXX_RELEASE < 8
std::is_standard_layout<F_>::value && std::is_trivial<F_>::value && std::is_standard_layout<S>::value && std::is_trivial<S>::value
#else
std::is_standard_layout<F_>::value && std::is_trivially_constructible<F_>::value && std::is_standard_layout<S>::value && std::is_trivially_constructible<S>::value
#endif
, int>::type = 0> explicit Pair(NoInitT) noexcept {}
template<class F_ = F, typename std::enable_if<
#if defined(DEATH_TARGET_LIBSTDCXX) && _GLIBCXX_RELEASE < 8
std::is_standard_layout<F_>::value && std::is_trivial<F_>::value && std::is_constructible<S, NoInitT>::value
#else
std::is_standard_layout<F_>::value && std::is_trivially_constructible<F_>::value && std::is_constructible<S, NoInitT>::value
#endif
, int>::type = 0> explicit Pair(NoInitT) noexcept(std::is_nothrow_constructible<S, NoInitT>::value) : _second{NoInit} {}
template<class F_ = F, typename std::enable_if<
#if defined(DEATH_TARGET_LIBSTDCXX) && _GLIBCXX_RELEASE < 8
std::is_constructible<F_, NoInitT>::value && std::is_standard_layout<S>::value && std::is_trivial<S>::value
#else
std::is_constructible<F_, NoInitT>::value && std::is_standard_layout<S>::value && std::is_trivially_constructible<S>::value
#endif
, int>::type = 0> explicit Pair(NoInitT) noexcept(std::is_nothrow_constructible<F, NoInitT>::value) : _first{NoInit} {}
template<class F_ = F, typename std::enable_if<std::is_constructible<F_, NoInitT>::value && std::is_constructible<S, NoInitT>::value, int>::type = 0> explicit Pair(NoInitT) noexcept(std::is_nothrow_constructible<F, NoInitT>::value && std::is_nothrow_constructible<S, NoInitT>::value) : _first{NoInit}, _second{NoInit} {}
#endif
/**
* @brief Default constructor
*
* Alias to @ref Pair(ValueInitT).
*/
constexpr /*implicit*/ Pair() noexcept(std::is_nothrow_constructible<F>::value && std::is_nothrow_constructible<S>::value) :
#if defined(DEATH_MSVC2015_COMPATIBILITY)
// Otherwise it complains that _first and _second isn't initialized in a constexpr context. Does it not see the delegation?! OTOH
// MSVC doesn't seem to be affected by the emplaceConstructorExplicitInCopyInitialization() bug in GCC and Clang, so I can use {} here I think.
_first{}, _second{}
#else
Pair{ValueInit}
#endif
{}
/** @brief Constructor */
constexpr /*implicit*/ Pair(const F& first, const S& second) noexcept(std::is_nothrow_copy_constructible<F>::value && std::is_nothrow_copy_constructible<S>::value) :
// Can't use {} on GCC 4.8, see constructHelpers.h for details and PairTest::copyMoveConstructPlainStruct() for a test.
#if defined(DEATH_TARGET_GCC) && !defined(DEATH_TARGET_CLANG) && __GNUC__ < 5
_first(first), _second(second)
#else
_first{first}, _second{second}
#endif
{}
/** @overload */
constexpr /*implicit*/ Pair(const F& first, S&& second) noexcept(std::is_nothrow_copy_constructible<F>::value && std::is_nothrow_move_constructible<S>::value) :
// Can't use {} on GCC 4.8, see constructHelpers.h for details and PairTest::copyMoveConstructPlainStruct() for a test.
#if defined(DEATH_TARGET_GCC) && !defined(DEATH_TARGET_CLANG) && __GNUC__ < 5
_first(first), _second(Death::move(second))
#else
_first{first}, _second{Death::move(second)}
#endif
{}
/** @overload */
constexpr /*implicit*/ Pair(F&& first, const S& second) noexcept(std::is_nothrow_move_constructible<F>::value && std::is_nothrow_copy_constructible<S>::value) :
// Can't use {} on GCC 4.8, see constructHelpers.h for details and PairTest::copyMoveConstructPlainStruct() for a test.
#if defined(DEATH_TARGET_GCC) && !defined(DEATH_TARGET_CLANG) && __GNUC__ < 5
_first(Death::move(first)), _second(second)
#else
_first{Death::move(first)}, _second{second}
#endif
{}
/** @overload */
constexpr /*implicit*/ Pair(F&& first, S&& second) noexcept(std::is_nothrow_move_constructible<F>::value && std::is_nothrow_move_constructible<S>::value) :
// Can't use {} on GCC 4.8, see constructHelpers.h for details and PairTest::copyMoveConstructPlainStruct() for a test.
#if defined(DEATH_TARGET_GCC) && !defined(DEATH_TARGET_CLANG) && __GNUC__ < 5
_first(Death::move(first)), _second(Death::move(second))
#else
_first{Death::move(first)}, _second{Death::move(second)}
#endif
{}
/** @brief Copy-construct a pair from another of different type */
template<class OtherF, class OtherS
#ifndef DOXYGEN_GENERATING_OUTPUT
, typename std::enable_if<std::is_constructible<F, const OtherF&>::value&& std::is_constructible<S, const OtherS&>::value, int>::type = 0
#endif
> constexpr explicit Pair(const Pair<OtherF, OtherS>& other) noexcept(std::is_nothrow_constructible<F, const OtherF&>::value && std::is_nothrow_constructible<S, const OtherS&>::value) :
// Explicit T() to avoid warnings for int-to-float conversion etc., as that's a desirable use case here (and the constructor
// is explicit because of that). Using () instead of {} alone doesn't help as Clang still warns for float-to-double conversion.
// Can't use {} on GCC 4.8, see constructHelpers.h for details and PairTest::copyMoveConstructPlainStruct() for a test.
#if defined(DEATH_TARGET_GCC) && !defined(DEATH_TARGET_CLANG) && __GNUC__ < 5
_first(F(other._first)), _second(S(other._second))
#else
_first{F(other._first)}, _second{S(other._second)}
#endif
{}
/** @brief Move-construct a pair from another of different type */
template<class OtherF, class OtherS
#ifndef DOXYGEN_GENERATING_OUTPUT
, typename std::enable_if<std::is_constructible<F, OtherF&&>::value&& std::is_constructible<S, OtherS&&>::value, int>::type = 0
#endif
> constexpr explicit Pair(Pair<OtherF, OtherS>&& other) noexcept(std::is_nothrow_constructible<F, OtherF&&>::value && std::is_nothrow_constructible<S, OtherS&&>::value) :
// Explicit T() to avoid conversion warnings, similar to above; GCC 4.8 special case also similarly to above although
// copyMoveConstructPlainStruct() cannot really test it (see there for details).
#if defined(DEATH_TARGET_GCC) && !defined(DEATH_TARGET_CLANG) && __GNUC__ < 5
_first(F(Death::move(other._first))), _second(S(Death::move(other._second)))
#else
_first{F(Death::move(other._first))}, _second{S(Death::move(other._second))}
#endif
{}
/** @brief Copy-construct a pair from external representation */
template<class T, class = decltype(Implementation::PairConverter<F, S, T>::from(std::declval<const T&>()))> /*implicit*/ Pair(const T& other) noexcept(std::is_nothrow_copy_constructible<F>::value && std::is_nothrow_copy_constructible<S>::value) : Pair{Implementation::PairConverter<F, S, T>::from(other)} {}
/** @brief Move-construct a pair from external representation */
template<class T, class = decltype(Implementation::PairConverter<F, S, T>::from(std::declval<T&&>()))> /*implicit*/ Pair(T&& other) noexcept(std::is_nothrow_move_constructible<F>::value && std::is_nothrow_move_constructible<S>::value) : Pair{Implementation::PairConverter<F, S, T>::from(Death::move(other))} {}
/** @brief Copy-convert the pair to external representation */
template<class T, class = decltype(Implementation::PairConverter<F, S, T>::to(std::declval<const Pair<F, S>&>()))> /*implicit*/ operator T() const& {
return Implementation::PairConverter<F, S, T>::to(*this);
}
/** @brief Move-convert the pair to external representation */
template<class T, class = decltype(Implementation::PairConverter<F, S, T>::to(std::declval<Pair<F, S>&&>()))> /*implicit*/ operator T() && {
return Implementation::PairConverter<F, S, T>::to(Death::move(*this));
}
/** @brief Equality comparison */
constexpr bool operator==(const Pair<F, S>& other) const {
return _first == other._first && _second == other._second;
}
/** @brief Non-equality comparison */
constexpr bool operator!=(const Pair<F, S>& other) const {
return !operator==(other);
}
/** @brief First element */
DEATH_CONSTEXPR14 F& first() & { return _first; }
/** @overload */
/* Not F&& because that'd cause nasty dangling reference issues in common code */
DEATH_CONSTEXPR14 F first() && { return Death::move(_first); }
/** @overload */
constexpr const F& first() const & { return _first; }
/** @brief Second element */
DEATH_CONSTEXPR14 S& second() & { return _second; }
/** @overload */
/* Not S&& because that'd cause nasty dangling reference issues in common code */
DEATH_CONSTEXPR14 S second() && { return Death::move(_second); }
/** @overload */
constexpr const S& second() const & { return _second; }
// No const&& overloads right now. There's one theoretical use case, where an API could return a `const Pair<T>`,
// and then if there would be a `first() const&&` overload returning a `T` (and not `T&&`), it could get picked
// over the `const T&`, solving the same problem as the `first() &&` above. I don't see a practical reason to
// return a const value, so this isn't handled at the moment.
private:
/* For the conversion constructor */
template<class, class> friend class Pair;
#if DEATH_CXX_STANDARD > 201402
// There doesn't seem to be a way to call those directly, and I can't find any practical use of std::tuple_size,
// tuple_element etc. on C++11 and C++14, so this is defined only for newer standards.
template<std::size_t index, typename std::enable_if<index == 0, int>::type = 0> constexpr friend const F& get(const Pair<F, S>& value) {
return value._first;
}
template<std::size_t index, typename std::enable_if<index == 0, int>::type = 0> DEATH_CONSTEXPR14 friend F& get(Pair<F, S>& value) {
return value._first;
}
template<std::size_t index, typename std::enable_if<index == 0, int>::type = 0> DEATH_CONSTEXPR14 friend F&& get(Pair<F, S>&& value) {
return Death::move(value._first);
}
template<std::size_t index, typename std::enable_if<index == 1, int>::type = 0> constexpr friend const S& get(const Pair<F, S>& value) {
return value._second;
}
template<std::size_t index, typename std::enable_if<index == 1, int>::type = 0> DEATH_CONSTEXPR14 friend S& get(Pair<F, S>& value) {
return value._second;
}
template<std::size_t index, typename std::enable_if<index == 1, int>::type = 0> DEATH_CONSTEXPR14 friend S&& get(Pair<F, S>&& value) {
return Death::move(value._second);
}
#endif
F _first;
S _second;
};
/** @relatesalso Pair
@brief Make a pair
Convernience alternative to @ref Pair::Pair(const F&, const S&) and overloads.
*/
template<class F, class S> constexpr Pair<typename std::decay<F>::type, typename std::decay<S>::type> pair(F&& first, S&& second) {
return Pair<typename std::decay<F>::type, typename std::decay<S>::type>{Death::forward<F>(first), Death::forward<S>(second)};
}
namespace Implementation
{
template<class> struct DeducedPairConverter;
}
/** @relatesalso Pair
@brief Make a pair from external representation
*/
template<class T> inline auto pair(T&& other) -> decltype(Implementation::DeducedPairConverter<typename std::decay<T>::type>::from(Death::forward<T>(other))) {
return Implementation::DeducedPairConverter<typename std::decay<T>::type>::from(Death::forward<T>(other));
}
}}
// C++17 structured bindings
#if DEATH_CXX_STANDARD > 201402 && !defined(DOXYGEN_GENERATING_OUTPUT)
#if defined(DEATH_TARGET_LIBCXX)
// Defined in <__config>, which is already pulled in from <ciso646> or <version>
// that CommonBase.h has to include in order to detect the STL being used.
_LIBCPP_BEGIN_NAMESPACE_STD
#elif defined(DEATH_TARGET_LIBSTDCXX)
// Defined in <bits/c++config.h>. Pulled in from <ciso646> or <version> by CommonBase.h, but only
// since GCC 6.1. On versions before <cstddef> from above pulls that in. Versions before GCC 4.6(?)
// had _GLIBCXX_BEGIN_NAMESPACE(std) instead, we don't care about those.
#include <bits/c++config.h>
namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION
#elif defined(DEATH_TARGET_DINKUMWARE)
// Defined in <yvals_core.h>, again pulled in from <ciso646> or <version> by CommonBase.h
_STD_BEGIN
#endif
#if defined(DEATH_TARGET_LIBCXX) || defined(DEATH_TARGET_LIBSTDCXX) || defined(DEATH_TARGET_DINKUMWARE)
template<size_t, class> struct tuple_element;
template<class> struct tuple_size;
#else
# include <utility>
#endif
#if defined(DEATH_TARGET_LIBCXX)
_LIBCPP_END_NAMESPACE_STD
#elif defined(DEATH_TARGET_LIBSTDCXX)
_GLIBCXX_END_NAMESPACE_VERSION }
#elif defined(DEATH_TARGET_MSVC)
_STD_END
#endif
namespace std
{
template<class F, class S> struct tuple_size<Death::Containers::Pair<F, S>> : integral_constant<size_t, 2> {};
template<class F, class S> struct tuple_element<0, Death::Containers::Pair<F, S>> { typedef F type; };
template<class F, class S> struct tuple_element<1, Death::Containers::Pair<F, S>> { typedef S type; };
}
#endif
|