File: StringUtils.cpp

package info (click to toggle)
jazz2-native 3.5.0-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 16,912 kB
  • sloc: cpp: 172,557; xml: 113; python: 36; makefile: 5; sh: 2
file content (1712 lines) | stat: -rw-r--r-- 120,462 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
#include "StringUtils.h"
#include "GrowableArray.h"
#include "Pair.h"
#include "../Asserts.h"
#include "../Cpu.h"

#include <algorithm>
#include <utility>

#if defined(DEATH_ENABLE_AVX2) || defined(DEATH_ENABLE_BMI1)
#	include "../IntrinsicsAvx.h" /* TZCNT is in AVX headers :( */
#elif defined(DEATH_ENABLE_SSE41)
#	include "../IntrinsicsSse4.h"
#elif defined(DEATH_ENABLE_SSE2)
#	include "../IntrinsicsSse2.h"
#endif
#if defined(DEATH_ENABLE_SIMD128)
#	include <wasm_simd128.h>
#endif

namespace Death { namespace Utf8 {
//###==##====#=====--==~--~=~- --- -- -  -  -   -

	// Forward declarations for the Death::Utf8 namespace
	Containers::Pair<char32_t, std::size_t> NextChar(Containers::ArrayView<const char> text, std::size_t cursor);

}}

namespace Death { namespace Containers { namespace StringUtils {
//###==##====#=====--==~--~=~- --- -- -  -  -   -

	namespace Implementation
	{
		namespace
		{
			// Basically a variant of the stringFindCharacterImplementation(), using the same high-level logic with branching only on every four vectors.
			// See its documentation for more information.
#if defined(DEATH_ENABLE_SSE2) && defined(DEATH_ENABLE_BMI1)
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE(SSE2, BMI1) typename std::decay<decltype(commonPrefix)>::type commonPrefixImplementation(DEATH_CPU_DECLARE(Cpu::Sse2 | Cpu::Bmi1)) {
				return [](const char* const a, const char* const b, const std::size_t sizeA, const std::size_t sizeB) DEATH_ENABLE(SSE2, BMI1) {
					const std::size_t size = std::min(sizeA, sizeB);

					// If we have less than 16 bytes, do it the stupid way
					{
						const char* i = a, * j = b;
						switch (size) {
							case 15: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case 14: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case 13: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case 12: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case 11: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case 10: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case  9: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case  8: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case  7: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case  6: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case  5: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case  4: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case  3: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case  2: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case  1: if (*i++ != *j++) return i - 1; DEATH_FALLTHROUGH
							case  0: return a + size;
						}
					}

					// Unconditionally compare the first vector a slower, unaligned way
					{
						const __m128i chunkA = _mm_loadu_si128(reinterpret_cast<const __m128i*>(a));
						const __m128i chunkB = _mm_loadu_si128(reinterpret_cast<const __m128i*>(b));
						const int mask = _mm_movemask_epi8(_mm_cmpeq_epi8(chunkA, chunkB));
						if (mask != 0xffff)
							return a + _tzcnt_u32(~mask);
					}

					// Go to the next aligned position of *one* of the inputs. If the pointer was already aligned,
					// we'll go to the next aligned vector; if not, there will be an overlap and we'll check some bytes twice.
					// The other input is then processed unaligned, or if we're lucky it's aligned the same way (such
					// as when the strings are at the start of a default-aligned allocation, which on 64 bits is 16 bytes).
					// Alternatively we could try to load both in an aligned way and then compare shifted values,
					// but on recent architecture the extra overhead from the patching would probably be larger
					// than just reading unaligned.
					const char* i = reinterpret_cast<const char*>(reinterpret_cast<std::uintptr_t>(a + 16) & ~0xf);
					const char* j = b + (i - a);
					DEATH_DEBUG_ASSERT(i > a && j > b && reinterpret_cast<std::uintptr_t>(i) % 16 == 0);

					// Go four vectors at a time with the aligned pointer
					const char* const endA = a + size;
					const char* const endB = b + size;
					for (; i + 4 * 16 <= endA; i += 4 * 16, j += 4 * 16) {
						const __m128i iA = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 0);
						const __m128i iB = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 1);
						const __m128i iC = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 2);
						const __m128i iD = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 3);
						// The second input is loaded unaligned always
						const __m128i jA = _mm_loadu_si128(reinterpret_cast<const __m128i*>(j) + 0);
						const __m128i jB = _mm_loadu_si128(reinterpret_cast<const __m128i*>(j) + 1);
						const __m128i jC = _mm_loadu_si128(reinterpret_cast<const __m128i*>(j) + 2);
						const __m128i jD = _mm_loadu_si128(reinterpret_cast<const __m128i*>(j) + 3);

						const __m128i eqA = _mm_cmpeq_epi8(iA, jA);
						const __m128i eqB = _mm_cmpeq_epi8(iB, jB);
						const __m128i eqC = _mm_cmpeq_epi8(iC, jC);
						const __m128i eqD = _mm_cmpeq_epi8(iD, jD);

						const __m128i and1 = _mm_and_si128(eqA, eqB);
						const __m128i and2 = _mm_and_si128(eqC, eqD);
						const __m128i and3 = _mm_and_si128(and1, and2);
						if (_mm_movemask_epi8(and3) != 0xffff) {
							const int maskA = _mm_movemask_epi8(eqA);
							if (maskA != 0xffff)
								return i + 0 * 16 + _tzcnt_u32(~maskA);
							const int maskB = _mm_movemask_epi8(eqB);
							if (maskB != 0xffff)
								return i + 1 * 16 + _tzcnt_u32(~maskB);
							const int maskC = _mm_movemask_epi8(eqC);
							if (maskC != 0xffff)
								return i + 2 * 16 + _tzcnt_u32(~maskC);
							const int maskD = _mm_movemask_epi8(eqD);
							if (maskD != 0xffff)
								return i + 3 * 16 + _tzcnt_u32(~maskD);
							// Unreachable
						}
					}

					// Handle remaining less than four aligned vectors
					for (; i + 16 <= endA; i += 16, j += 16) {
						const __m128i chunkA = _mm_load_si128(reinterpret_cast<const __m128i*>(i));
						// The second input is loaded unaligned always
						const __m128i chunkB = _mm_loadu_si128(reinterpret_cast<const __m128i*>(j));
						const int mask = _mm_movemask_epi8(_mm_cmpeq_epi8(chunkA, chunkB));
						if (mask != 0xffff)
							return i + _tzcnt_u32(~mask);
					}

					// Handle remaining less than a vector with an unaligned load, again overlapping back with the previous already-compared elements
					if (i < endA) {
						DEATH_DEBUG_ASSERT(i + 16 > endA && endB - j == endA - i);
						i = endA - 16;
						j = endB - 16;
						const __m128i chunkA = _mm_loadu_si128(reinterpret_cast<const __m128i*>(i));
						const __m128i chunkB = _mm_loadu_si128(reinterpret_cast<const __m128i*>(j));
						const int mask = _mm_movemask_epi8(_mm_cmpeq_epi8(chunkA, chunkB));
						if (mask != 0xffff)
							return i + _tzcnt_u32(~mask);
					}

					return endA;
				};
			}
#endif

#if defined(DEATH_ENABLE_AVX2) && defined(DEATH_ENABLE_BMI1)
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE(AVX2, BMI1) typename std::decay<decltype(commonPrefix)>::type commonPrefixImplementation(DEATH_CPU_DECLARE(Cpu::Avx2 | Cpu::Bmi1)) {
				return [](const char* const a, const char* const b, const std::size_t sizeA, const std::size_t sizeB) DEATH_ENABLE(AVX2, BMI1) {
					const std::size_t size = std::min(sizeA, sizeB);

					// If we have less than 32 bytes, fall back to the SSE variant
					if (size < 32)
						return commonPrefixImplementation(DEATH_CPU_SELECT(Cpu::Sse2 | Cpu::Bmi1))(a, b, sizeA, sizeB);

					// Unconditionally compare the first vector a slower, unaligned way
					{
						// _mm256_lddqu_si256 is just an alias to _mm256_loadu_si256, no reason to use it: https://stackoverflow.com/a/47426790
						const __m256i chunkA = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(a));
						const __m256i chunkB = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(b));
						const std::uint32_t mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(chunkA, chunkB));
						if (mask != 0xffffffffu)
							return a + _tzcnt_u32(~mask);
					}

					// Go to the next aligned position of *one* of the inputs. If the pointer was already aligned,
					// we'll go to the next aligned vector; if not, there will be an overlap and we'll check some bytes twice.
					// Second input is treated as unaligned always, see the SSE2 variant for explanation.
					const char* i = reinterpret_cast<const char*>(reinterpret_cast<std::uintptr_t>(a + 32) & ~0x1f);
					const char* j = b + (i - a);
					DEATH_DEBUG_ASSERT(i > a && j > b && reinterpret_cast<std::uintptr_t>(i) % 32 == 0);

					// Go four vectors at a time with the aligned pointer
					const char* const endA = a + size;
					const char* const endB = b + size;
					for (; i + 4 * 32 <= endA; i += 4 * 32, j += 4 * 32) {
						const __m256i iA = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 0);
						const __m256i iB = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 1);
						const __m256i iC = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 2);
						const __m256i iD = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 3);
						// The second input is loaded unaligned always
						const __m256i jA = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(j) + 0);
						const __m256i jB = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(j) + 1);
						const __m256i jC = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(j) + 2);
						const __m256i jD = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(j) + 3);

						const __m256i eqA = _mm256_cmpeq_epi8(iA, jA);
						const __m256i eqB = _mm256_cmpeq_epi8(iB, jB);
						const __m256i eqC = _mm256_cmpeq_epi8(iC, jC);
						const __m256i eqD = _mm256_cmpeq_epi8(iD, jD);

						const __m256i and1 = _mm256_and_si256(eqA, eqB);
						const __m256i and2 = _mm256_and_si256(eqC, eqD);
						const __m256i and3 = _mm256_and_si256(and1, and2);
						if (std::uint32_t(_mm256_movemask_epi8(and3)) != 0xffffffffu) {
							const std::uint32_t maskA = _mm256_movemask_epi8(eqA);
							if (maskA != 0xffffffffu)
								return i + 0 * 32 + _tzcnt_u32(~maskA);
							const std::uint32_t maskB = _mm256_movemask_epi8(eqB);
							if (maskB != 0xffffffffu)
								return i + 1 * 32 + _tzcnt_u32(~maskB);
							const std::uint32_t maskC = _mm256_movemask_epi8(eqC);
							if (maskC != 0xffffffffu)
								return i + 2 * 32 + _tzcnt_u32(~maskC);
							const std::uint32_t maskD = _mm256_movemask_epi8(eqD);
							if (maskD != 0xffffffffu)
								return i + 3 * 32 + _tzcnt_u32(~maskD);
							// Unreachable
						}
					}

					// Handle remaining less than four aligned vectors
					for (; i + 32 <= endA; i += 32, j += 32) {
						const __m256i chunkA = _mm256_load_si256(reinterpret_cast<const __m256i*>(i));
						// The second input is loaded unaligned always
						const __m256i chunkB = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(j));
						const std::uint32_t mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(chunkA, chunkB));
						if (mask != 0xffffffffu)
							return i + _tzcnt_u32(~mask);
					}

					// Handle remaining less than a vector with an unaligned load, again overlapping back with the previous already-compared elements
					if (i < endA) {
						DEATH_DEBUG_ASSERT(i + 32 > endA && endB - j == endA - i);
						i = endA - 32;
						j = endB - 32;
						const __m256i chunkA = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(i));
						const __m256i chunkB = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(j));
						const std::uint32_t mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(chunkA, chunkB));
						if (mask != 0xffffffffu)
							return i + _tzcnt_u32(~mask);
					}

					return endA;
				};
			}
#endif

			DEATH_CPU_MAYBE_UNUSED typename std::decay<decltype(commonPrefix)>::type commonPrefixImplementation(DEATH_CPU_DECLARE(Cpu::Scalar)) {
				return [](const char* const a, const char* const b, const std::size_t sizeA, const std::size_t sizeB) {
					const std::size_t size = std::min(sizeA, sizeB);
					const char* const endA = a + size;
					for (const char* i = a, *j = b; i != endA; ++i, ++j)
						if (*i != *j) return i;
					return endA;
				};
			}
		}

#if defined(DEATH_TARGET_X86)
		DEATH_CPU_DISPATCHER(commonPrefixImplementation, Cpu::Bmi1)
#else
		DEATH_CPU_DISPATCHER(commonPrefixImplementation)
#endif
		DEATH_CPU_DISPATCHED(commonPrefixImplementation, const char* DEATH_CPU_DISPATCHED_DECLARATION(commonPrefix)(const char* a, const char* b, std::size_t sizeA, std::size_t sizeB))({
			return commonPrefixImplementation(DEATH_CPU_SELECT(Cpu::Default))(a, b, sizeA, sizeB);
		})

		namespace
		{
			DEATH_CPU_MAYBE_UNUSED typename std::decay<decltype(lowercaseInPlace)>::type lowercaseInPlaceImplementation(Cpu::ScalarT) {
				return [](char* data, const std::size_t size) {
					// A proper Unicode-aware *and* locale-aware solution would involve far more than iterating over bytes

					// Branchless idea from https://stackoverflow.com/a/3884737, what it does is adding (1 << 5) for 'A'
					// and all 26 letters after, and (0 << 5) for anything after (and before as well, which is what
					// the unsigned cast does). The (1 << 5) bit (0x20) is what differs between lowercase and uppercase
					// characters. See Test/StringBenchmark.cpp for other alternative implementations leading up to this
					// point. In particular, the std::uint8_t() is crucial, unsigned() is 6x to 8x slower.
					const char* const end = data + size;
					for (char* c = data; c != end; ++c) {
						*c += (std::uint8_t(*c - 'A') < 26) << 5;
					}
				};
			}

			DEATH_CPU_MAYBE_UNUSED typename std::decay<decltype(uppercaseInPlace)>::type uppercaseInPlaceImplementation(Cpu::ScalarT) {
				return [](char* data, const std::size_t size) {
					// Same as above, except that (1 << 5) is subtracted for 'a' and all 26 letters after.
					const char* const end = data + size;
					for (char* c = data; c != end; ++c) {
						*c -= (std::uint8_t(*c - 'a') < 26) << 5;
					}
				};
			}

			DEATH_CPU_MAYBE_UNUSED typename std::decay<decltype(equalsIgnoreCase)>::type equalsIgnoreCaseImplementation(Cpu::ScalarT) {
				return [](const char* data1, const char* data2, const std::size_t size) {
					const auto notEqualsOneVector = [&](std::uint64_t w1, std::uint64_t w2) {
						const std::uint64_t highMask = std::uint64_t(0x80) * std::uint64_t(0x0101010101010101);
						const std::uint64_t loweringMask = std::uint64_t(0x20) * std::uint64_t(0x0101010101010101);
						const std::uint64_t vecA = std::uint64_t(0x80 - 'A') * std::uint64_t(0x0101010101010101);
						const std::uint64_t vecZ = std::uint64_t(0x80 - 'Z' - 1) * std::uint64_t(0x0101010101010101);

						const std::uint64_t diff = w1 ^ w2;
						if ((diff & 0xdfdfdfdfdfdfdfdf) != 0) {	// ~0x20 = 0xdf
							return true;
						}
						//const std::uint64_t anyNonAscii = (w1 | w2) & highMask;
						//if (anyNonAscii != 0) {
						//	return false;
						//}

						w1 |= loweringMask;

						// data[i] >= 'A' && !(data[i] >= 'Z' - 1)
						const std::uint64_t A = w1 + vecA;
						const std::uint64_t Z = w1 + vecZ;
						const std::uint64_t maskLower = (A ^ Z) & highMask;
						return (maskLower == highMask);
					};

					std::size_t i = 0;
					for (; i + sizeof(std::uint64_t) <= size; i += sizeof(std::uint64_t)) {
						std::uint64_t w1, w2;
						std::memcpy(&w1, data1 + i, sizeof(w1));
						std::memcpy(&w2, data2 + i, sizeof(w2));
						if (notEqualsOneVector(w1, w2)) {
							return false;
						}
					}

					// Handle remaining less than 8 bytes
					if (i < size) {
						std::uint64_t w1 = 0, w2 = 0;
						std::memcpy(&w1, data1 + i, size - i);
						std::memcpy(&w2, data2 + i, size - i);
						if (notEqualsOneVector(w1, w2)) {
							return false;
						}
					}

					return true;
				};
			}

#if defined(DEATH_ENABLE_SSE2)
			// The core vector algorithm was reverse-engineered from what GCC (and apparently also Clang) does for the scalar
			// case with SSE2 optimizations enabled. It's the same count of instructions as the "obvious" case of doing two
			// comparisons per character, ORing that, and then applying a bitmask, but considerably faster.
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE_SSE2 typename std::decay<decltype(lowercaseInPlace)>::type lowercaseInPlaceImplementation(Cpu::Sse2T) {
				return [](char* const data, const std::size_t size) DEATH_ENABLE_SSE2 {
					char* const end = data + size;

					// If we have less than 16 bytes, do it the stupid way, equivalent to the scalar variant and just unrolled.
					{
						char* j = data;
						switch (size) {
							case 15: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 14: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 13: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 12: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 11: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 10: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  9: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  8: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  7: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  6: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  5: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  4: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  3: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  2: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  1: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  0: return;
						}
					}

					// Core algorithm
					const __m128i aAndAbove = _mm_set1_epi8(char(256u - std::uint8_t('A')));
					const __m128i lowest25 = _mm_set1_epi8(25);
					const __m128i lowercaseBit = _mm_set1_epi8(0x20);
					const auto lowercaseOneVector = [&](const __m128i chars) DEATH_ENABLE_SSE2 {
						// Moves 'A' and everything above to 0 and up (it overflows and wraps around)
						const __m128i uppercaseInLowest25 = _mm_add_epi8(chars, aAndAbove);
						// Subtracts 25 with saturation, which makes the original 'A' to 'Z' (now 0 to 25) zero and everything else non-zero
						const __m128i lowest25IsZero = _mm_subs_epu8(uppercaseInLowest25, lowest25);
						// Mask indicating where uppercase letters where, i.e. which values are now zero
						const __m128i maskUppercase = _mm_cmpeq_epi8(lowest25IsZero, _mm_setzero_si128());
						// For the masked chars a lowercase bit is set, and the bit is then added to the original chars,
						// making the uppercase chars lowercase
						return _mm_add_epi8(chars, _mm_and_si128(maskUppercase, lowercaseBit));
					};

					// Unconditionally convert the first vector in a slower, unaligned way. Any extra branching to avoid the unaligned
					// load & store if already aligned would be most probably more expensive than the actual operation.
					{
						const __m128i chars = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
						_mm_storeu_si128(reinterpret_cast<__m128i*>(data), lowercaseOneVector(chars));
					}

					// Go to the next aligned position. If the pointer was already aligned, we'll go to the next aligned vector;
					// if not, there will be an overlap and we'll convert some bytes twice. Which is fine,
					// lowercasing already-lowercased data is a no-op.
					char* i = reinterpret_cast<char*>(reinterpret_cast<std::uintptr_t>(data + 16) & ~0xf);

					// Convert all aligned vectors using aligned load/store
					for (; i + 16 <= end; i += 16) {
						const __m128i chars = _mm_load_si128(reinterpret_cast<const __m128i*>(i));
						_mm_store_si128(reinterpret_cast<__m128i*>(i), lowercaseOneVector(chars));
					}

					// Handle remaining less than a vector with an unaligned load & store, again overlapping back
					// with the previous already-converted elements
					if (i < end) {
						i = end - 16;
						const __m128i chars = _mm_loadu_si128(reinterpret_cast<const __m128i*>(i));
						_mm_storeu_si128(reinterpret_cast<__m128i*>(i), lowercaseOneVector(chars));
					}
				};
			}

			// Compared to the lowercase implementation it (obviously) uses the scalar uppercasing code in the less-than-16 case.
			// In the vector case zeroes out the a-z range instead of A-Z, and subtracts the lowercase bit instead of adding.
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE_SSE2 typename std::decay<decltype(uppercaseInPlace)>::type uppercaseInPlaceImplementation(Cpu::Sse2T) {
				return [](char* const data, const std::size_t size) DEATH_ENABLE_SSE2 {
					char* const end = data + size;

					// If we have less than 16 bytes, do it the stupid way, equivalent to the scalar variant and just unrolled.
					{
						char* j = data;
						switch (size) {
							case 15: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 14: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 13: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 12: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 11: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 10: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  9: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  8: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  7: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  6: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  5: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  4: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  3: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  2: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  1: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  0: return;
						}
					}

					// Core algorithm
					const __m128i aAndAbove = _mm_set1_epi8(char(256u - std::uint8_t('a')));
					const __m128i lowest25 = _mm_set1_epi8(25);
					const __m128i lowercaseBit = _mm_set1_epi8(0x20);
					const auto uppercaseOneVector = [&](const __m128i chars) DEATH_ENABLE_SSE2 {
						// Moves 'a' and everything above to 0 and up (it overflows and wraps around)
						const __m128i lowercaseInLowest25 = _mm_add_epi8(chars, aAndAbove);
						// Subtracts 25 with saturation, which makes the original 'a' to 'z' (now 0 to 25) zero and everything else non-zero
						const __m128i lowest25IsZero = _mm_subs_epu8(lowercaseInLowest25, lowest25);
						// Mask indicating where uppercase letters where, i.e. which values arenow zero
						const __m128i maskUppercase = _mm_cmpeq_epi8(lowest25IsZero, _mm_setzero_si128());
						// For the masked chars a lowercase bit is set, and the bit is then subtracted from the original chars,
						// making the lowercase chars uppercase
						return _mm_sub_epi8(chars, _mm_and_si128(maskUppercase, lowercaseBit));
					};

					// Unconditionally convert the first vector in a slower, unaligned way. Any extra branching to avoid the unaligned
					// load & store if already aligned would be most probably more expensive than the actual operation.
					{
						const __m128i chars = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
						_mm_storeu_si128(reinterpret_cast<__m128i*>(data), uppercaseOneVector(chars));
					}

					// Go to the next aligned position. If the pointer was already aligned, we'll go to the next aligned
					// vector; if not, there will be an overlap and we'll convert some bytes twice. Which is fine,
					// uppercasing already-uppercased data is a no-op.
					char* i = reinterpret_cast<char*>(reinterpret_cast<std::uintptr_t>(data + 16) & ~0xf);

					// Convert all aligned vectors using aligned load/store
					for (; i + 16 <= end; i += 16) {
						const __m128i chars = _mm_load_si128(reinterpret_cast<const __m128i*>(i));
						_mm_store_si128(reinterpret_cast<__m128i*>(i), uppercaseOneVector(chars));
					}

					// Handle remaining less than a vector with an unaligned load & store, again overlapping back
					// with the previous already-converted elements
					if (i < end) {
						i = end - 16;
						const __m128i chars = _mm_loadu_si128(reinterpret_cast<const __m128i*>(i));
						_mm_storeu_si128(reinterpret_cast<__m128i*>(i), uppercaseOneVector(chars));
					}
				};
			}

			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE_SSE2 typename std::decay<decltype(equalsIgnoreCase)>::type equalsIgnoreCaseImplementation(Cpu::Sse2T) {
				return [](const char* data1, const char* data2, const std::size_t size) DEATH_ENABLE_SSE2 {
					if (size < 16)
						return equalsIgnoreCaseImplementation(Cpu::Scalar)(data1, data2, size);

					const __m128i loweringMask = _mm_set1_epi8(0x20);
					const __m128i vecA = _mm_set1_epi8('a');
					const __m128i vecZMinusA = _mm_set1_epi8('z' - 'a');

					const auto notEqualsOneVector = [&](const __m128i& chars1, const __m128i& chars2) DEATH_ENABLE_SSE2 {
						// notEquals = ~(chars1 == chars2);
						const __m128i notEquals = _mm_andnot_si128(_mm_cmpeq_epi8(chars1, chars2), _mm_set1_epi32(-1));
						if (_mm_movemask_epi8(_mm_cmpeq_epi8(notEquals, _mm_setzero_si128())) != 0xFFFF) {
							// Not exact match
							// chars1Lower = chars1 | loweringMask;
							const __m128i chars1Lower = _mm_or_si128(chars1, loweringMask);
							// chars2Lower = chars2 | loweringMask;
							const __m128i chars2Lower = _mm_or_si128(chars2, loweringMask);
							// greaterThan = ((chars1Lower - vecA) & notEquals) > vecZMinusA;
							const __m128i greaterThan = _mm_cmpgt_epi8(_mm_and_si128(_mm_subs_epi8(chars1Lower, vecA), notEquals), vecZMinusA);
							// if (greatedThan || (chars1Lower != chars2Lower))
							if (_mm_movemask_epi8(greaterThan) != 0x0000 || _mm_movemask_epi8(_mm_cmpeq_epi8(chars1Lower, chars2Lower)) != 0xFFFF) {
								return true;
							}
						}

						return false;
					};

					std::size_t i = 0;
					std::size_t lengthToExamine = size - 16;

					do {
						const __m128i chars1 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data1 + i));
						const __m128i chars2 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data2 + i));
						if (notEqualsOneVector(chars1, chars2)) {
							return false;
						}
						i += 16;
					} while (i <= lengthToExamine);

					if (i != size) {
						i = size - 16;
						const __m128i chars1 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data1 + i));
						const __m128i chars2 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data2 + i));
						if (notEqualsOneVector(chars1, chars2)) {
							return false;
						}
					}

					return true;
				};
			}
#endif

#if defined(DEATH_ENABLE_AVX2)
			// Trivial extension of the SSE2 code to AVX2. The only significant difference is a workaround for MinGW, see the comment below.
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE_AVX2 typename std::decay<decltype(lowercaseInPlace)>::type lowercaseInPlaceImplementation(Cpu::Avx2T) {
				return [](char* const data, const std::size_t size) DEATH_ENABLE_AVX2 {
					char* const end = data + size;

					// If we have less than 32 bytes, fall back to the SSE variant
					if (size < 32)
						return lowercaseInPlaceImplementation(Cpu::Sse2)(data, size);

					// Core algorithm
					const __m256i aAndAbove = _mm256_set1_epi8(char(256u - std::uint8_t('A')));
					const __m256i lowest25 = _mm256_set1_epi8(25);
					const __m256i lowercaseBit = _mm256_set1_epi8(0x20);
					// Compared to the SSE2 case, this performs the operation in-place on a __m256i reference instead
					// of taking and returning it by value. This is in order to work around a MinGW / Windows GCC bug,
					// where it doesn't align __m256i instances passed to or returned from functions to 32 bytes,
					// but still uses aligned load/store for them. Reported back in 2011, still not fixed even in late 2023:
					//	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=49001
					//	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412
					const auto lowercaseOneVectorInPlace = [&](__m256i& chars) DEATH_ENABLE_AVX2 {
						// Moves 'A' and everything above to 0 and up (it overflows and wraps around)
						const __m256i uppercaseInLowest25 = _mm256_add_epi8(chars, aAndAbove);
						// Subtracts 25 with saturation, which makes the original 'A' to 'Z' (now 0 to 25) zero and everything else non-zero
						const __m256i lowest25IsZero = _mm256_subs_epu8(uppercaseInLowest25, lowest25);
						// Mask indicating where uppercase letters where, i.e. which values are now zero
						const __m256i maskUppercase = _mm256_cmpeq_epi8(lowest25IsZero, _mm256_setzero_si256());
						// For the masked chars a lowercase bit is set, and the bit is then added to the original chars,
						// making the uppercase chars lowercase
						chars = _mm256_add_epi8(chars, _mm256_and_si256(maskUppercase, lowercaseBit));
					};

					// Unconditionally convert the first vector in a slower, unaligned way. Any extra branching to avoid the unaligned
					// load & store if already aligned would be most probably more expensive than the actual operation.
					{
						__m256i chars = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(data));
						lowercaseOneVectorInPlace(chars);
						_mm256_storeu_si256(reinterpret_cast<__m256i*>(data), chars);
					}

					// Go to the next aligned position. If the pointer was already aligned, we'll go to the next aligned
					// vector; if not, there will be an overlap and we'll convert some bytes twice. Which is fine,
					// lowercasing already-lowercased data is a no-op.
					char* i = reinterpret_cast<char*>(reinterpret_cast<std::uintptr_t>(data + 32) & ~0x1f);

					// Convert all aligned vectors using aligned load/store
					for (; i + 32 <= end; i += 32) {
						__m256i chars = _mm256_load_si256(reinterpret_cast<const __m256i*>(i));
						lowercaseOneVectorInPlace(chars);
						_mm256_store_si256(reinterpret_cast<__m256i*>(i), chars);
					}

					// Handle remaining less than a vector with an unaligned load & store, again overlapping back
					// with the previous already-converted elements
					if (i < end) {
						i = end - 32;
						__m256i chars = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(i));
						lowercaseOneVectorInPlace(chars);
						_mm256_storeu_si256(reinterpret_cast<__m256i*>(i), chars);
					}
				};
			}

			// Again just trivial extension to AVX2, and the MinGW workaround
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE_AVX2 typename std::decay<decltype(uppercaseInPlace)>::type uppercaseInPlaceImplementation(Cpu::Avx2T) {
				return [](char* const data, const std::size_t size) DEATH_ENABLE_AVX2 {
					char* const end = data + size;

					// If we have less than 32 bytes, fall back to the SSE variant
					if (size < 32)
						return uppercaseInPlaceImplementation(Cpu::Sse2)(data, size);

					// Core algorithm
					const __m256i aAndAbove = _mm256_set1_epi8(char(256u - std::uint8_t('a')));
					const __m256i lowest25 = _mm256_set1_epi8(25);
					const __m256i lowercaseBit = _mm256_set1_epi8(0x20);
					// See the comment next to lowercaseOneVectorInPlace() above for why this is done in-place
					const auto uppercaseOneVectorInPlace = [&](__m256i& chars) DEATH_ENABLE_AVX2 {
						// Moves 'a' and everything above to 0 and up (it overflows and wraps around)
						const __m256i lowercaseInLowest25 = _mm256_add_epi8(chars, aAndAbove);
						// Subtracts 25 with saturation, which makes the original 'a' to 'z' (now 0 to 25) zero and everything else non-zero
						const __m256i lowest25IsZero = _mm256_subs_epu8(lowercaseInLowest25, lowest25);
						// Mask indicating where uppercase letters where, i.e. which values are now zero
						const __m256i maskUppercase = _mm256_cmpeq_epi8(lowest25IsZero, _mm256_setzero_si256());
						// For the masked chars a lowercase bit is set, and the bit is then subtracted from the original chars,
						// making the lowercase chars uppercase
						chars = _mm256_sub_epi8(chars, _mm256_and_si256(maskUppercase, lowercaseBit));
					};

					// Unconditionally convert the first vector in a slower, unaligned way. Any extra branching to avoid the unaligned
					// load & store if already aligned would be most probably more expensive than the actual operation.
					{
						__m256i chars = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(data));
						uppercaseOneVectorInPlace(chars);
						_mm256_storeu_si256(reinterpret_cast<__m256i*>(data), chars);
					}

					// Go to the next aligned position. If the pointer was already aligned, we'll go to the next aligned
					// vector; if not, there will be an overlap and we'll convert some bytes twice. Which is fine,
					// uppercasing already-uppercased data is a no-op.
					char* i = reinterpret_cast<char*>(reinterpret_cast<std::uintptr_t>(data + 32) & ~0x1f);

					// Convert all aligned vectors using aligned load/store
					for (; i + 32 <= end; i += 32) {
						__m256i chars = _mm256_load_si256(reinterpret_cast<const __m256i*>(i));
						uppercaseOneVectorInPlace(chars);
						_mm256_store_si256(reinterpret_cast<__m256i*>(i), chars);
					}

					// Handle remaining less than a vector with an unaligned load & store, again overlapping back
					// with the previous already-converted elements
					if (i < end) {
						i = end - 32;
						__m256i chars = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(i));
						uppercaseOneVectorInPlace(chars);
						_mm256_storeu_si256(reinterpret_cast<__m256i*>(i), chars);
					}
				};
			}

			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE_AVX2 typename std::decay<decltype(equalsIgnoreCase)>::type equalsIgnoreCaseImplementation(Cpu::Avx2T) {
				return [](const char* data1, const char* data2, const std::size_t size) DEATH_ENABLE_AVX2 {
					if (size < 32)
						return equalsIgnoreCaseImplementation(Cpu::Sse2)(data1, data2, size);
					
					const __m256i loweringMask = _mm256_set1_epi8(0x20);
					const __m256i vecA = _mm256_set1_epi8('a');
					const __m256i vecZMinusA = _mm256_set1_epi8('z' - 'a');

					const auto notEqualsOneVector = [&](const __m256i& chars1, const __m256i& chars2) DEATH_ENABLE_AVX2 {
						// notEquals = ~(chars1 == chars2);
						const __m256i notEquals = _mm256_andnot_si256(_mm256_cmpeq_epi8(chars1, chars2), _mm256_set1_epi32(-1));
						if (_mm256_testz_si256(notEquals, notEquals) == 0) {
							// Not exact match
							// chars1Lower = chars1 | loweringMask;
							const __m256i chars1Lower = _mm256_or_si256(chars1, loweringMask);
							// chars2Lower = chars2 | loweringMask;
							const __m256i chars2Lower = _mm256_or_si256(chars2, loweringMask);
							// greaterThan = ((chars1Lower - vecA) & notEquals) > vecZMinusA;
							const __m256i greaterThan = _mm256_cmpgt_epi8(_mm256_and_si256(_mm256_subs_epi8(chars1Lower, vecA), notEquals), vecZMinusA);
							// if (greatedThan || (chars1Lower != chars2Lower))
							if (_mm256_testz_si256(greaterThan, greaterThan) == 0 || _mm256_movemask_epi8(_mm256_cmpeq_epi8(chars1Lower, chars2Lower)) != 0xFFFFFFFFu) {
								return true;
							}
						}

						return false;
					};

					std::size_t i = 0;
					std::size_t lengthToExamine = size - 32;

					do {
						const __m256i chars1 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(data1 + i));
						const __m256i chars2 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(data2 + i));
						if (notEqualsOneVector(chars1, chars2)) {
							return false;
						}
						i += 32;
					} while (i <= lengthToExamine);

					if (i != size) {
						i = size - 32;
						const __m256i chars1 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(data1 + i));
						const __m256i chars2 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(data2 + i));
						if (notEqualsOneVector(chars1, chars2)) {
							return false;
						}
					}

					return true;
				};
			}
#endif

#if defined(DEATH_ENABLE_SIMD128)
			// Trivial port of the SSE2 code to WASM SIMD. As WASM SIMD doesn't differentiate between aligned and unaligned
			// load, the load/store code is the same for both aligned and unaligned case, making everything slightly shorter.
			// The high-level operation stays the same as with SSE2 tho, even if just for memory access patterns I think
			// it still makes sense to do as much as possible aligned.
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE_SIMD128 typename std::decay<decltype(lowercaseInPlace)>::type lowercaseInPlaceImplementation(Cpu::Simd128T) {
				return [](char* data, const std::size_t size) DEATH_ENABLE_SIMD128 {
					char* const end = data + size;

					// If we have less than 16 bytes, do it the stupid way, equivalent to the scalar variant and just unrolled.
					{
						char* j = data;
						switch (size) {
							case 15: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 14: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 13: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 12: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 11: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 10: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  9: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  8: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  7: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  6: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  5: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  4: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  3: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  2: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  1: *j += (std::uint8_t(*j - 'A') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  0: return;
						}
					}

					// Core algorithm
					const v128_t aAndAbove = wasm_i8x16_const_splat(char(256u - std::uint8_t('A')));
					const v128_t lowest25 = wasm_i8x16_const_splat(25);
					const v128_t lowercaseBit = wasm_i8x16_const_splat(0x20);
					const v128_t zero = wasm_i8x16_const_splat(0);
					const auto lowercaseOneVectorInPlace = [&](v128_t* const data) DEATH_ENABLE_SIMD128 {
						const v128_t chars = wasm_v128_load(data);
						// Moves 'A' and everything above to 0 and up (it overflows and wraps around)
						const v128_t uppercaseInLowest25 = wasm_i8x16_add(chars, aAndAbove);
						// Subtracts 25 with saturation, which makes the original 'A' to 'Z' (now 0 to 25) zero and everything else non-zero
						const v128_t lowest25IsZero = wasm_u8x16_sub_sat(uppercaseInLowest25, lowest25);
						// Mask indicating where uppercase letters where, i.e. which values are now zero
						const v128_t maskUppercase = wasm_i8x16_eq(lowest25IsZero, zero);
						// For the masked chars a lowercase bit is set, and the bit is then added to the original chars, making the uppercase chars lowercase
						wasm_v128_store(data, wasm_i8x16_add(chars, wasm_v128_and(maskUppercase, lowercaseBit)));
					};

					// Unconditionally convert the first unaligned vector
					lowercaseOneVectorInPlace(reinterpret_cast<v128_t*>(data));

					// Go to the next aligned position. If the pointer was already aligned, we'll go to the next aligned
					// vector; if not, there will be an overlap and we'll convert some bytes twice. Which is fine,
					// lowercasing already-lowercased data is a no-op.
					char* i = reinterpret_cast<char*>(reinterpret_cast<std::uintptr_t>(data + 16) & ~0xf);

					// Convert all aligned vectors
					for (; i + 16 <= end; i += 16)
						lowercaseOneVectorInPlace(reinterpret_cast<v128_t*>(i));

					// Handle remaining less than a vector, again overlapping back with the previous
					// already-converted elements, in an unaligned way
					if (i < end) {
						i = end - 16;
						lowercaseOneVectorInPlace(reinterpret_cast<v128_t*>(i));
					}
				};
			}

			// Again just a trivial port of the SSE2 code to WASM SIMD, with the same "aligned load/store is the same as unaligned"
			// simplification as the lowercase variant above
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE_SIMD128 typename std::decay<decltype(uppercaseInPlace)>::type uppercaseInPlaceImplementation(Cpu::Simd128T) {
				return [](char* data, const std::size_t size) DEATH_ENABLE_SIMD128 {
					char* const end = data + size;

					// If we have less than 16 bytes, do it the stupid way, equivalent to the scalar variant and just unrolled.
					{
						char* j = data;
						switch (size) {
							case 15: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 14: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 13: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 12: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 11: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case 10: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  9: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  8: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  7: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  6: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  5: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  4: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  3: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  2: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  1: *j -= (std::uint8_t(*j - 'a') < 26) << 5; ++j; DEATH_FALLTHROUGH
							case  0: return;
						}
					}

					// Core algorithm
					const v128_t aAndAbove = wasm_i8x16_const_splat(char(256u - std::uint8_t('a')));
					const v128_t lowest25 = wasm_i8x16_const_splat(25);
					const v128_t lowercaseBit = wasm_i8x16_const_splat(0x20);
					const v128_t zero = wasm_i8x16_const_splat(0);
					const auto uppercaseOneVectorInPlace = [&](v128_t* const data) DEATH_ENABLE_SIMD128 {
						const v128_t chars = wasm_v128_load(data);
						// Moves 'a' and everything above to 0 and up (it overflows and wraps around)
						const v128_t lowercaseInLowest25 = wasm_i8x16_add(chars, aAndAbove);
						// Subtracts 25 with saturation, which makes the original 'a' to 'z' (now 0 to 25) zero and everything else non-zero
						const v128_t lowest25IsZero = wasm_u8x16_sub_sat(lowercaseInLowest25, lowest25);
						// Mask indicating where uppercase letters where, i.e. which values are now zero
						const v128_t maskUppercase = wasm_i8x16_eq(lowest25IsZero, zero);
						// For the masked chars a lowercase bit is set, and the bit is then subtracted from the original
						// chars, making the lowercase chars uppercase
						wasm_v128_store(data, wasm_i8x16_sub(chars, wasm_v128_and(maskUppercase, lowercaseBit)));
					};

					// Unconditionally convert the first unaligned vector. WASM doesn't differentiate between aligned
					// and unaligned load, it's always unaligned, however even if just for memory access patterns I think
					// it still makes sense to do as much as possible aligned, so this matches what the SSE2 code does.
					uppercaseOneVectorInPlace(reinterpret_cast<v128_t*>(data));

					// Go to the next aligned position. If the pointer was already aligned, we'll go to the next aligned vector;
					// if not, there will be an overlap and we'll convert some bytes twice. Which is fine, uppercasing
					// already-uppercased data is a no-op.
					char* i = reinterpret_cast<char*>(reinterpret_cast<std::uintptr_t>(data + 16) & ~0xf);

					// Convert all aligned vectors
					for (; i + 16 <= end; i += 16)
						uppercaseOneVectorInPlace(reinterpret_cast<v128_t*>(i));

					// Handle remaining less than a vector with an unaligned load & store, again overlapping back
					// with the previous already-converted elements
					if (i < end) {
						i = end - 16;
						uppercaseOneVectorInPlace(reinterpret_cast<v128_t*>(i));
					}
				};
			}
			#endif
		}

		DEATH_CPU_DISPATCHER_BASE(lowercaseInPlaceImplementation)
		DEATH_CPU_DISPATCHED(lowercaseInPlaceImplementation, void DEATH_CPU_DISPATCHED_DECLARATION(lowercaseInPlace)(char* data, std::size_t size))({
			return lowercaseInPlaceImplementation(Cpu::DefaultBase)(data, size);
		})
		DEATH_CPU_DISPATCHER_BASE(uppercaseInPlaceImplementation)
		DEATH_CPU_DISPATCHED(uppercaseInPlaceImplementation, void DEATH_CPU_DISPATCHED_DECLARATION(uppercaseInPlace)(char* data, std::size_t size))({
			return uppercaseInPlaceImplementation(Cpu::DefaultBase)(data, size);
		})
		DEATH_CPU_DISPATCHER_BASE(equalsIgnoreCaseImplementation)
		DEATH_CPU_DISPATCHED(equalsIgnoreCaseImplementation, bool DEATH_CPU_DISPATCHED_DECLARATION(equalsIgnoreCase)(const char* data1, const char* data2, std::size_t size))({
			return equalsIgnoreCaseImplementation(Cpu::DefaultBase)(data1, data2, size);
		})
	}

	String lowercase(StringView string) {
		// Theoretically doing the copy in the same loop as case change could be faster for *really long* strings due
		// to cache reuse, but until that proves to be a bottleneck I'll go with the simpler solution.
		// Not implementing through lowercase(String) as the call stack is deep enough already and we don't
		// need the extra checks there.
		String out{string};
		lowercaseInPlace(out);
		return out;
	}

	String lowercase(String string) {
		// In the rare scenario where we'd get a non-owned string (such as String::nullTerminatedView() passed right
		// into the function), make it owned first. Usually it'll get copied however, which already makes it owned.
		if (!string.isSmall() && string.deleter()) string = String{string};

		lowercaseInPlace(string);
		return string;
	}

	String uppercase(StringView string) {
		// Theoretically doing the copy in the same loop as case change could be faster for *really long* strings due
		// to cache reuse, but until that proves to be a bottleneck I'll go with the simpler solution.
		// Not implementing through uppercase(String) as the call stack is deep enough already and we don't
		// need the extra checks there.
		String out{string};
		uppercaseInPlace(out);
		return out;
	}

	String uppercase(String string) {
		// In the rare scenario where we'd get a non-owned string (such as String::nullTerminatedView() passed right
		// into the function), make it owned first. Usually it'll get copied however, which already makes it owned.
		if (!string.isSmall() && string.deleter()) string = String{string};

		uppercaseInPlace(string);
		return string;
	}

	String lowercaseUnicode(StringView string) {
		static const char32_t u2l[1411] = {
			0x00041, 0x00042, 0x00043, 0x00044, 0x00045, 0x00046, 0x00047, 0x00048, 0x00049, 0x0004a, 0x0004b, 0x0004c, 0x0004d, 0x0004e, 0x0004f, 0x00050,
			0x00051, 0x00052, 0x00053, 0x00054, 0x00055, 0x00056, 0x00057, 0x00058, 0x00059, 0x0005a, 0x000b5, 0x000c0, 0x000c1, 0x000c2, 0x000c3, 0x000c4,
			0x000c5, 0x000c6, 0x000c7, 0x000c8, 0x000c9, 0x000ca, 0x000cb, 0x000cc, 0x000cd, 0x000ce, 0x000cf, 0x000d0, 0x000d1, 0x000d2, 0x000d3, 0x000d4,
			0x0010e, 0x00110, 0x00112, 0x00114, 0x00116, 0x00118, 0x0011a, 0x0011c, 0x0011e, 0x00120, 0x00122, 0x00124, 0x00126, 0x00128, 0x0012a, 0x0012c,
			0x0012e, 0x00132, 0x00134, 0x00136, 0x00139, 0x0013b, 0x0013d, 0x0013f, 0x00141, 0x00143, 0x00145, 0x00147, 0x0014a, 0x0014c, 0x0014e, 0x00150,
			0x00152, 0x00154, 0x00156, 0x00158, 0x0015a, 0x0015c, 0x0015e, 0x00160, 0x00162, 0x00164, 0x00166, 0x00168, 0x0016a, 0x0016c, 0x0016e, 0x00170,
			0x00172, 0x00174, 0x00176, 0x00178, 0x00179, 0x0017b, 0x0017d, 0x0017f, 0x00181, 0x00182, 0x00184, 0x00186, 0x00187, 0x00189, 0x0018a, 0x0018b,
			0x0018e, 0x0018f, 0x00190, 0x00191, 0x00193, 0x00194, 0x00196, 0x00197, 0x00198, 0x0019c, 0x0019d, 0x0019f, 0x001a0, 0x001a2, 0x001a4, 0x001a6,
			0x001a7, 0x001a9, 0x001ac, 0x001ae, 0x001af, 0x001b1, 0x001b2, 0x001b3, 0x001b5, 0x001b7, 0x001b8, 0x001bc, 0x001c4, 0x001c5, 0x001c7, 0x001c8,
			0x001ca, 0x001cb, 0x001cd, 0x001cf, 0x001d1, 0x001d3, 0x001d5, 0x001d7, 0x001d9, 0x001db, 0x001de, 0x001e0, 0x001e2, 0x001e4, 0x001e6, 0x001e8,
			0x001ea, 0x001ec, 0x001ee, 0x001f1, 0x001f2, 0x001f4, 0x001f6, 0x001f7, 0x001f8, 0x001fa, 0x001fc, 0x001fe, 0x00200, 0x00202, 0x00204, 0x00206,
			0x00208, 0x0020a, 0x0020c, 0x0020e, 0x00210, 0x00212, 0x00214, 0x00216, 0x00218, 0x0021a, 0x0021c, 0x0021e, 0x00220, 0x00222, 0x00224, 0x00226,
			0x00228, 0x0022a, 0x0022c, 0x0022e, 0x00230, 0x00232, 0x0023a, 0x0023b, 0x0023d, 0x0023e, 0x00241, 0x00243, 0x00244, 0x00245, 0x00246, 0x00248,
			0x0024a, 0x0024c, 0x0024e, 0x00345, 0x00370, 0x00372, 0x00376, 0x0037f, 0x00386, 0x00388, 0x00389, 0x0038a, 0x0038c, 0x0038e, 0x0038f, 0x00391,
			0x00392, 0x00393, 0x00394, 0x00395, 0x00396, 0x00397, 0x00398, 0x00399, 0x0039a, 0x0039b, 0x0039c, 0x0039d, 0x0039e, 0x0039f, 0x003a0, 0x003a1,
			0x003a3, 0x003a4, 0x003a5, 0x003a6, 0x003a7, 0x003a8, 0x003a9, 0x003aa, 0x003ab, 0x003c2, 0x003cf, 0x003d0, 0x003d1, 0x003d5, 0x003d6, 0x003d8,
			0x003da, 0x003dc, 0x003de, 0x003e0, 0x003e2, 0x003e4, 0x003e6, 0x003e8, 0x003ea, 0x003ec, 0x003ee, 0x003f0, 0x003f1, 0x003f4, 0x003f5, 0x003f7,
			0x003f9, 0x003fa, 0x003fd, 0x003fe, 0x003ff, 0x00400, 0x00401, 0x00402, 0x00403, 0x00404, 0x00405, 0x00406, 0x00407, 0x00408, 0x00409, 0x0040a,
			0x0040b, 0x0040c, 0x0040d, 0x0040e, 0x0040f, 0x00410, 0x00411, 0x00412, 0x00413, 0x00414, 0x00415, 0x00416, 0x00417, 0x00418, 0x00419, 0x0041a,
			0x0041b, 0x0041c, 0x0041d, 0x0041e, 0x0041f, 0x00420, 0x00421, 0x00422, 0x00423, 0x00424, 0x00425, 0x00426, 0x00427, 0x00428, 0x00429, 0x0042a,
			0x0042b, 0x0042c, 0x0042d, 0x0042e, 0x0042f, 0x00460, 0x00462, 0x00464, 0x00466, 0x00468, 0x0046a, 0x0046c, 0x0046e, 0x00470, 0x00472, 0x00474,
			0x00476, 0x00478, 0x0047a, 0x0047c, 0x0047e, 0x00480, 0x0048a, 0x0048c, 0x0048e, 0x00490, 0x00492, 0x00494, 0x00496, 0x00498, 0x0049a, 0x0049c,
			0x0049e, 0x004a0, 0x004a2, 0x004a4, 0x004a6, 0x004a8, 0x004aa, 0x004ac, 0x004ae, 0x004b0, 0x004b2, 0x004b4, 0x004b6, 0x004b8, 0x004ba, 0x004bc,
			0x004be, 0x004c0, 0x004c1, 0x004c3, 0x004c5, 0x004c7, 0x004c9, 0x004cb, 0x004cd, 0x004d0, 0x004d2, 0x004d4, 0x004d6, 0x004d8, 0x004da, 0x004dc,
			0x004de, 0x004e0, 0x004e2, 0x004e4, 0x004e6, 0x004e8, 0x004ea, 0x004ec, 0x004ee, 0x004f0, 0x004f2, 0x004f4, 0x004f6, 0x004f8, 0x004fa, 0x004fc,
			0x004fe, 0x00500, 0x00502, 0x00504, 0x00506, 0x00508, 0x0050a, 0x0050c, 0x0050e, 0x00510, 0x00512, 0x00514, 0x00516, 0x00518, 0x0051a, 0x0051c,
			0x0051e, 0x00520, 0x00522, 0x00524, 0x00526, 0x00528, 0x0052a, 0x0052c, 0x0052e, 0x00531, 0x00532, 0x00533, 0x00534, 0x00535, 0x00536, 0x00537,
			0x00538, 0x00539, 0x0053a, 0x0053b, 0x0053c, 0x0053d, 0x0053e, 0x0053f, 0x00540, 0x00541, 0x00542, 0x00543, 0x00544, 0x00545, 0x00546, 0x00547,
			0x00548, 0x00549, 0x0054a, 0x0054b, 0x0054c, 0x0054d, 0x0054e, 0x0054f, 0x00550, 0x00551, 0x00552, 0x00553, 0x00554, 0x00555, 0x00556, 0x010a0,
			0x010a1, 0x010a2, 0x010a3, 0x010a4, 0x010a5, 0x010a6, 0x010a7, 0x010a8, 0x010a9, 0x010aa, 0x010ab, 0x010ac, 0x010ad, 0x010ae, 0x010af, 0x010b0,
			0x010b1, 0x010b2, 0x010b3, 0x010b4, 0x010b5, 0x010b6, 0x010b7, 0x010b8, 0x010b9, 0x010ba, 0x010bb, 0x010bc, 0x010bd, 0x010be, 0x010bf, 0x010c0,
			0x010c1, 0x010c2, 0x010c3, 0x010c4, 0x010c5, 0x010c7, 0x010cd, 0x013f8, 0x013f9, 0x013fa, 0x013fb, 0x013fc, 0x013fd, 0x01c80, 0x01c81, 0x01c82,
			0x01c83, 0x01c84, 0x01c85, 0x01c86, 0x01c87, 0x01c88, 0x01c90, 0x01c91, 0x01c92, 0x01c93, 0x01c94, 0x01c95, 0x01c96, 0x01c97, 0x01c98, 0x01c99,
			0x01c9a, 0x01c9b, 0x01c9c, 0x01c9d, 0x01c9e, 0x01c9f, 0x01ca0, 0x01ca1, 0x01ca2, 0x01ca3, 0x01ca4, 0x01ca5, 0x01ca6, 0x01ca7, 0x01ca8, 0x01ca9,
			0x01caa, 0x01cab, 0x01cac, 0x01cad, 0x01cae, 0x01caf, 0x01cb0, 0x01cb1, 0x01cb2, 0x01cb3, 0x01cb4, 0x01cb5, 0x01cb6, 0x01cb7, 0x01cb8, 0x01cb9,
			0x01cba, 0x01cbd, 0x01cbe, 0x01cbf, 0x01e00, 0x01e02, 0x01e04, 0x01e06, 0x01e08, 0x01e0a, 0x01e0c, 0x01e0e, 0x01e10, 0x01e12, 0x01e14, 0x01e16,
			0x01e18, 0x01e1a, 0x01e1c, 0x01e1e, 0x01e20, 0x01e22, 0x01e24, 0x01e26, 0x01e28, 0x01e2a, 0x01e2c, 0x01e2e, 0x01e30, 0x01e32, 0x01e34, 0x01e36,
			0x01e38, 0x01e3a, 0x01e3c, 0x01e3e, 0x01e40, 0x01e42, 0x01e44, 0x01e46, 0x01e48, 0x01e4a, 0x01e4c, 0x01e4e, 0x01e50, 0x01e52, 0x01e54, 0x01e56,
			0x01e58, 0x01e5a, 0x01e5c, 0x01e5e, 0x01e60, 0x01e62, 0x01e64, 0x01e66, 0x01e68, 0x01e6a, 0x01e6c, 0x01e6e, 0x01e70, 0x01e72, 0x01e74, 0x01e76,
			0x01e78, 0x01e7a, 0x01e7c, 0x01e7e, 0x01e80, 0x01e82, 0x01e84, 0x01e86, 0x01e88, 0x01e8a, 0x01e8c, 0x01e8e, 0x01e90, 0x01e92, 0x01e94, 0x01e9b,
			0x01e9e, 0x01ea0, 0x01ea2, 0x01ea4, 0x01ea6, 0x01ea8, 0x01eaa, 0x01eac, 0x01eae, 0x01eb0, 0x01eb2, 0x01eb4, 0x01eb6, 0x01eb8, 0x01eba, 0x01ebc,
			0x01ebe, 0x01ec0, 0x01ec2, 0x01ec4, 0x01ec6, 0x01ec8, 0x01eca, 0x01ecc, 0x01ece, 0x01ed0, 0x01ed2, 0x01ed4, 0x01ed6, 0x01ed8, 0x01eda, 0x01edc,
			0x01ede, 0x01ee0, 0x01ee2, 0x01ee4, 0x01ee6, 0x01ee8, 0x01eea, 0x01eec, 0x01eee, 0x01ef0, 0x01ef2, 0x01ef4, 0x01ef6, 0x01ef8, 0x01efa, 0x01efc,
			0x01efe, 0x01f08, 0x01f09, 0x01f0a, 0x01f0b, 0x01f0c, 0x01f0d, 0x01f0e, 0x01f0f, 0x01f18, 0x01f19, 0x01f1a, 0x01f1b, 0x01f1c, 0x01f1d, 0x01f28,
			0x01f29, 0x01f2a, 0x01f2b, 0x01f2c, 0x01f2d, 0x01f2e, 0x01f2f, 0x01f38, 0x01f39, 0x01f3a, 0x01f3b, 0x01f3c, 0x01f3d, 0x01f3e, 0x01f3f, 0x01f48,
			0x01f6f, 0x01f88, 0x01f89, 0x01f8a, 0x01f8b, 0x01f8c, 0x01f8d, 0x01f8e, 0x01f8f, 0x01f98, 0x01f99, 0x01f9a, 0x01f9b, 0x01f9c, 0x01f9d, 0x01f9e,
			0x01f9f, 0x01fa8, 0x01fa9, 0x01faa, 0x01fab, 0x01fac, 0x01fad, 0x01fae, 0x01faf, 0x01fb8, 0x01fb9, 0x01fba, 0x01fbb, 0x01fbc, 0x01fbe, 0x01fc8,
			0x01fc9, 0x01fca, 0x01fcb, 0x01fcc, 0x01fd8, 0x01fd9, 0x01fda, 0x01fdb, 0x01fe8, 0x01fe9, 0x01fea, 0x01feb, 0x01fec, 0x01ff8, 0x01ff9, 0x01ffa,
			0x01ffb, 0x01ffc, 0x02126, 0x0212a, 0x0212b, 0x02132, 0x02160, 0x02161, 0x02162, 0x02163, 0x02164, 0x02165, 0x02166, 0x02167, 0x02168, 0x02169,
			0x0216a, 0x0216b, 0x0216c, 0x0216d, 0x0216e, 0x0216f, 0x02183, 0x024b6, 0x024b7, 0x024b8, 0x024b9, 0x024ba, 0x024bb, 0x024bc, 0x024bd, 0x024be,
			0x024bf, 0x024c0, 0x024c1, 0x024c2, 0x024c3, 0x024c4, 0x024c5, 0x024c6, 0x024c7, 0x024c8, 0x024c9, 0x024ca, 0x024cb, 0x024cc, 0x024cd, 0x024ce,
			0x024cf, 0x02c00, 0x02c01, 0x02c02, 0x02c03, 0x02c04, 0x02c05, 0x02c06, 0x02c07, 0x02c08, 0x02c09, 0x02c0a, 0x02c0b, 0x02c0c, 0x02c0d, 0x02c0e,
			0x02c0f, 0x02c10, 0x02c11, 0x02c12, 0x02c13, 0x02c14, 0x02c15, 0x02c16, 0x02c17, 0x02c18, 0x02c19, 0x02c1a, 0x02c1b, 0x02c1c, 0x02c1d, 0x02c1e,
			0x02c1f, 0x02c20, 0x02c21, 0x02c22, 0x02c23, 0x02c24, 0x02c25, 0x02c26, 0x02c27, 0x02c28, 0x02c29, 0x02c2a, 0x02c2b, 0x02c2c, 0x02c2d, 0x02c2e,
			0x02c60, 0x02c62, 0x02c63, 0x02c64, 0x02c67, 0x02c69, 0x02c6b, 0x02c6d, 0x02c6e, 0x02c6f, 0x02c70, 0x02c72, 0x02c75, 0x02c7e, 0x02c7f, 0x02c80,
			0x02c82, 0x02c84, 0x02c86, 0x02c88, 0x02c8a, 0x02c8c, 0x02c8e, 0x02c90, 0x02c92, 0x02c94, 0x02c96, 0x02c98, 0x02c9a, 0x02c9c, 0x02c9e, 0x02ca0,
			0x02ca2, 0x02ca4, 0x02ca6, 0x02ca8, 0x02caa, 0x02cac, 0x02cae, 0x02cb0, 0x02cb2, 0x02cb4, 0x02cb6, 0x02cb8, 0x02cba, 0x02cbc, 0x02cbe, 0x02cc0,
			0x02ce2, 0x02ceb, 0x02ced, 0x02cf2, 0x0a640, 0x0a642, 0x0a644, 0x0a646, 0x0a648, 0x0a64a, 0x0a64c, 0x0a64e, 0x0a650, 0x0a652, 0x0a654, 0x0a656,
			0x0a658, 0x0a65a, 0x0a65c, 0x0a65e, 0x0a660, 0x0a662, 0x0a664, 0x0a666, 0x0a668, 0x0a66a, 0x0a66c, 0x0a680, 0x0a682, 0x0a684, 0x0a686, 0x0a688,
			0x0a68a, 0x0a68c, 0x0a68e, 0x0a690, 0x0a692, 0x0a694, 0x0a696, 0x0a698, 0x0a69a, 0x0a722, 0x0a724, 0x0a726, 0x0a728, 0x0a72a, 0x0a72c, 0x0a72e,
			0x0a732, 0x0a734, 0x0a736, 0x0a738, 0x0a73a, 0x0a73c, 0x0a73e, 0x0a740, 0x0a742, 0x0a744, 0x0a746, 0x0a748, 0x0a74a, 0x0a74c, 0x0a74e, 0x0a750,
			0x0a752, 0x0a754, 0x0a756, 0x0a758, 0x0a75a, 0x0a75c, 0x0a75e, 0x0a760, 0x0a762, 0x0a764, 0x0a766, 0x0a768, 0x0a76a, 0x0a76c, 0x0a76e, 0x0a779,
			0x0a77b, 0x0a77d, 0x0a77e, 0x0a780, 0x0a782, 0x0a784, 0x0a786, 0x0a78b, 0x0a78d, 0x0a790, 0x0a792, 0x0a796, 0x0a798, 0x0a79a, 0x0a79c, 0x0a79e,
			0x0a7a0, 0x0a7a2, 0x0a7a4, 0x0a7a6, 0x0a7a8, 0x0a7aa, 0x0a7ab, 0x0a7ac, 0x0a7ad, 0x0a7ae, 0x0a7b0, 0x0a7b1, 0x0a7b2, 0x0a7b3, 0x0a7b4, 0x0a7b6,
			0x0a7b8, 0x0a7ba, 0x0a7bc, 0x0a7be, 0x0a7c2, 0x0a7c4, 0x0a7c5, 0x0a7c6, 0x0ab70, 0x0ab71, 0x0ab72, 0x0ab73, 0x0ab74, 0x0ab75, 0x0ab76, 0x0ab77,
			0x0ab78, 0x0ab79, 0x0ab7a, 0x0ab7b, 0x0ab7c, 0x0ab7d, 0x0ab7e, 0x0ab7f, 0x0ab80, 0x0ab81, 0x0ab82, 0x0ab83, 0x0ab84, 0x0ab85, 0x0ab86, 0x0ab87,
			0x0ab88, 0x0ab89, 0x0ab8a, 0x0ab8b, 0x0ab8c, 0x0ab8d, 0x0ab8e, 0x0ab8f, 0x0ab90, 0x0ab91, 0x0ab92, 0x0ab93, 0x0ab94, 0x0ab95, 0x0ab96, 0x0ab97,
			0x0ab98, 0x0ab99, 0x0ab9a, 0x0ab9b, 0x0ab9c, 0x0ab9d, 0x0ab9e, 0x0ab9f, 0x0aba0, 0x0aba1, 0x0aba2, 0x0aba3, 0x0aba4, 0x0aba5, 0x0aba6, 0x0aba7,
			0x0aba8, 0x0aba9, 0x0abaa, 0x0abab, 0x0abac, 0x0abad, 0x0abae, 0x0abaf, 0x0abb0, 0x0abb1, 0x0abb2, 0x0abb3, 0x0abb4, 0x0abb5, 0x0abb6, 0x0abb7,
			0x0abb8, 0x0abb9, 0x0abba, 0x0abbb, 0x0abbc, 0x0abbd, 0x0abbe, 0x0abbf, 0x0ff21, 0x0ff22, 0x0ff23, 0x0ff24, 0x0ff25, 0x0ff26, 0x0ff27, 0x0ff28,
			0x0ff29, 0x0ff2a, 0x0ff2b, 0x0ff2c, 0x0ff2d, 0x0ff2e, 0x0ff2f, 0x0ff30, 0x0ff31, 0x0ff32, 0x0ff33, 0x0ff34, 0x0ff35, 0x0ff36, 0x0ff37, 0x0ff38,
			0x0ff39, 0x0ff3a, 0x10400, 0x10401, 0x10402, 0x10403, 0x10404, 0x10405, 0x10406, 0x10407, 0x10408, 0x10409, 0x1040a, 0x1040b, 0x1040c, 0x1040d,
			0x1040e, 0x1040f, 0x10410, 0x10411, 0x10412, 0x10413, 0x10414, 0x10415, 0x10416, 0x10417, 0x10418, 0x10419, 0x1041a, 0x1041b, 0x1041c, 0x1041d,
			0x1041e, 0x1041f, 0x10420, 0x10421, 0x10422, 0x10423, 0x10424, 0x10425, 0x10426, 0x10427, 0x104b0, 0x104b1, 0x104b2, 0x104b3, 0x104b4, 0x104b5,
			0x104b6, 0x104b7, 0x104b8, 0x104b9, 0x104ba, 0x104bb, 0x104bc, 0x104bd, 0x104be, 0x104bf, 0x104c0, 0x104c1, 0x104c2, 0x104c3, 0x104c4, 0x104c5,
			0x104c6, 0x104c7, 0x104c8, 0x104c9, 0x104ca, 0x104cb, 0x104cc, 0x104cd, 0x104ce, 0x104cf, 0x104d0, 0x104d1, 0x104d2, 0x104d3, 0x10c80, 0x10c81,
			0x10c82, 0x10c83, 0x10c84, 0x10c85, 0x10c86, 0x10c87, 0x10c88, 0x10c89, 0x10c8a, 0x10c8b, 0x10c8c, 0x10c8d, 0x10c8e, 0x10c8f, 0x10c90, 0x10c91,
			0x10c92, 0x10c93, 0x10c94, 0x10c95, 0x10c96, 0x10c97, 0x10c98, 0x10c99, 0x10c9a, 0x10c9b, 0x10c9c, 0x10c9d, 0x10c9e, 0x10c9f, 0x10ca0, 0x10ca1,
			0x10ca2, 0x10ca3, 0x10ca4, 0x10ca5, 0x10ca6, 0x10ca7, 0x10ca8, 0x10ca9, 0x10caa, 0x10cab, 0x10cac, 0x10cad, 0x10cae, 0x10caf, 0x10cb0, 0x10cb1,
			0x10cb2, 0x118a0, 0x118a1, 0x118a2, 0x118a3, 0x118a4, 0x118a5, 0x118a6, 0x118a7, 0x118a8, 0x118a9, 0x118aa, 0x118ab, 0x118ac, 0x118ad, 0x118ae,
			0x118af, 0x118b0, 0x118b1, 0x118b2, 0x118b3, 0x118b4, 0x118b5, 0x118b6, 0x118b7, 0x118b8, 0x118b9, 0x118ba, 0x118bb, 0x118bc, 0x118bd, 0x118be,
			0x118bf, 0x16e40, 0x16e41, 0x16e42, 0x16e43, 0x16e44, 0x16e45, 0x16e46, 0x16e47, 0x16e48, 0x16e49, 0x16e4a, 0x16e4b, 0x16e4c, 0x16e4d, 0x16e4e,
			0x16e4f, 0x16e50, 0x16e51, 0x16e52, 0x16e53, 0x16e54, 0x16e55, 0x16e56, 0x16e57, 0x16e58, 0x16e59, 0x16e5a, 0x16e5b, 0x16e5c, 0x16e5d, 0x16e5e,
			0x16e5f, 0x1e900, 0x1e901, 0x1e902, 0x1e903, 0x1e904, 0x1e905, 0x1e906, 0x1e907, 0x1e908, 0x1e909, 0x1e90a, 0x1e90b, 0x1e90c, 0x1e90d, 0x1e90e,
			0x1e90f, 0x1e910, 0x1e911, 0x1e912, 0x1e913, 0x1e914, 0x1e915, 0x1e916, 0x1e917, 0x1e918, 0x1e919, 0x1e91a, 0x1e91b, 0x1e91c, 0x1e91d, 0x1e91e,
			0x1e91f, 0x1e920, 0x1e921
		};

		static const char32_t lc[1411] = {
			0x00061, 0x00062, 0x00063, 0x00064, 0x00065, 0x00066, 0x00067, 0x00068, 0x00069, 0x0006a, 0x0006b, 0x0006c, 0x0006d, 0x0006e, 0x0006f, 0x00070,
			0x00071, 0x00072, 0x00073, 0x00074, 0x00075, 0x00076, 0x00077, 0x00078, 0x00079, 0x0007a, 0x003bc, 0x000e0, 0x000e1, 0x000e2, 0x000e3, 0x000e4,
			0x000e5, 0x000e6, 0x000e7, 0x000e8, 0x000e9, 0x000ea, 0x000eb, 0x000ec, 0x000ed, 0x000ee, 0x000ef, 0x000f0, 0x000f1, 0x000f2, 0x000f3, 0x000f4,
			0x000f5, 0x000f6, 0x000f8, 0x000f9, 0x000fa, 0x000fb, 0x000fc, 0x000fd, 0x000fe, 0x00101, 0x00103, 0x00105, 0x00107, 0x00109, 0x0010b, 0x0010d,
			0x0010f, 0x00111, 0x00113, 0x00115, 0x00117, 0x00119, 0x0011b, 0x0011d, 0x0011f, 0x00121, 0x00123, 0x00125, 0x00127, 0x00129, 0x0012b, 0x0012d,
			0x0012f, 0x00133, 0x00135, 0x00137, 0x0013a, 0x0013c, 0x0013e, 0x00140, 0x00142, 0x00144, 0x00146, 0x00148, 0x0014b, 0x0014d, 0x0014f, 0x00151,
			0x00153, 0x00155, 0x00157, 0x00159, 0x0015b, 0x0015d, 0x0015f, 0x00161, 0x00163, 0x00165, 0x00167, 0x00169, 0x0016b, 0x0016d, 0x0016f, 0x00171,
			0x00173, 0x00175, 0x00177, 0x000ff, 0x0017a, 0x0017c, 0x0017e, 0x00073, 0x00253, 0x00183, 0x00185, 0x00254, 0x00188, 0x00256, 0x00257, 0x0018c,
			0x001dd, 0x00259, 0x0025b, 0x00192, 0x00260, 0x00263, 0x00269, 0x00268, 0x00199, 0x0026f, 0x00272, 0x00275, 0x001a1, 0x001a3, 0x001a5, 0x00280,
			0x001a8, 0x00283, 0x001ad, 0x00288, 0x001b0, 0x0028a, 0x0028b, 0x001b4, 0x001b6, 0x00292, 0x001b9, 0x001bd, 0x001c6, 0x001c6, 0x001c9, 0x001c9,
			0x001cc, 0x001cc, 0x001ce, 0x001d0, 0x001d2, 0x001d4, 0x001d6, 0x001d8, 0x001da, 0x001dc, 0x001df, 0x001e1, 0x001e3, 0x001e5, 0x001e7, 0x001e9,
			0x001eb, 0x001ed, 0x001ef, 0x001f3, 0x001f3, 0x001f5, 0x00195, 0x001bf, 0x001f9, 0x001fb, 0x001fd, 0x001ff, 0x00201, 0x00203, 0x00205, 0x00207,
			0x00209, 0x0020b, 0x0020d, 0x0020f, 0x00211, 0x00213, 0x00215, 0x00217, 0x00219, 0x0021b, 0x0021d, 0x0021f, 0x0019e, 0x00223, 0x00225, 0x00227,
			0x00229, 0x0022b, 0x0022d, 0x0022f, 0x00231, 0x00233, 0x02c65, 0x0023c, 0x0019a, 0x02c66, 0x00242, 0x00180, 0x00289, 0x0028c, 0x00247, 0x00249,
			0x0024b, 0x0024d, 0x0024f, 0x003b9, 0x00371, 0x00373, 0x00377, 0x003f3, 0x003ac, 0x003ad, 0x003ae, 0x003af, 0x003cc, 0x003cd, 0x003ce, 0x003b1,
			0x003b2, 0x003b3, 0x003b4, 0x003b5, 0x003b6, 0x003b7, 0x003b8, 0x003b9, 0x003ba, 0x003bb, 0x003bc, 0x003bd, 0x003be, 0x003bf, 0x003c0, 0x003c1,
			0x003c3, 0x003c4, 0x003c5, 0x003c6, 0x003c7, 0x003c8, 0x003c9, 0x003ca, 0x003cb, 0x003c3, 0x003d7, 0x003b2, 0x003b8, 0x003c6, 0x003c0, 0x003d9,
			0x003db, 0x003dd, 0x003df, 0x003e1, 0x003e3, 0x003e5, 0x003e7, 0x003e9, 0x003eb, 0x003ed, 0x003ef, 0x003ba, 0x003c1, 0x003b8, 0x003b5, 0x003f8,
			0x003f2, 0x003fb, 0x0037b, 0x0037c, 0x0037d, 0x00450, 0x00451, 0x00452, 0x00453, 0x00454, 0x00455, 0x00456, 0x00457, 0x00458, 0x00459, 0x0045a,
			0x0045b, 0x0045c, 0x0045d, 0x0045e, 0x0045f, 0x00430, 0x00431, 0x00432, 0x00433, 0x00434, 0x00435, 0x00436, 0x00437, 0x00438, 0x00439, 0x0043a,
			0x0043b, 0x0043c, 0x0043d, 0x0043e, 0x0043f, 0x00440, 0x00441, 0x00442, 0x00443, 0x00444, 0x00445, 0x00446, 0x00447, 0x00448, 0x00449, 0x0044a,
			0x0044b, 0x0044c, 0x0044d, 0x0044e, 0x0044f, 0x00461, 0x00463, 0x00465, 0x00467, 0x00469, 0x0046b, 0x0046d, 0x0046f, 0x00471, 0x00473, 0x00475,
			0x00477, 0x00479, 0x0047b, 0x0047d, 0x0047f, 0x00481, 0x0048b, 0x0048d, 0x0048f, 0x00491, 0x00493, 0x00495, 0x00497, 0x00499, 0x0049b, 0x0049d,
			0x0049f, 0x004a1, 0x004a3, 0x004a5, 0x004a7, 0x004a9, 0x004ab, 0x004ad, 0x004af, 0x004b1, 0x004b3, 0x004b5, 0x004b7, 0x004b9, 0x004bb, 0x004bd,
			0x004bf, 0x004cf, 0x004c2, 0x004c4, 0x004c6, 0x004c8, 0x004ca, 0x004cc, 0x004ce, 0x004d1, 0x004d3, 0x004d5, 0x004d7, 0x004d9, 0x004db, 0x004dd,
			0x004df, 0x004e1, 0x004e3, 0x004e5, 0x004e7, 0x004e9, 0x004eb, 0x004ed, 0x004ef, 0x004f1, 0x004f3, 0x004f5, 0x004f7, 0x004f9, 0x004fb, 0x004fd,
			0x004ff, 0x00501, 0x00503, 0x00505, 0x00507, 0x00509, 0x0050b, 0x0050d, 0x0050f, 0x00511, 0x00513, 0x00515, 0x00517, 0x00519, 0x0051b, 0x0051d,
			0x0051f, 0x00521, 0x00523, 0x00525, 0x00527, 0x00529, 0x0052b, 0x0052d, 0x0052f, 0x00561, 0x00562, 0x00563, 0x00564, 0x00565, 0x00566, 0x00567,
			0x00568, 0x00569, 0x0056a, 0x0056b, 0x0056c, 0x0056d, 0x0056e, 0x0056f, 0x00570, 0x00571, 0x00572, 0x00573, 0x00574, 0x00575, 0x00576, 0x00577,
			0x00578, 0x00579, 0x0057a, 0x0057b, 0x0057c, 0x0057d, 0x0057e, 0x0057f, 0x00580, 0x00581, 0x00582, 0x00583, 0x00584, 0x00585, 0x00586, 0x02d00,
			0x02d01, 0x02d02, 0x02d03, 0x02d04, 0x02d05, 0x02d06, 0x02d07, 0x02d08, 0x02d09, 0x02d0a, 0x02d0b, 0x02d0c, 0x02d0d, 0x02d0e, 0x02d0f, 0x02d10,
			0x02d11, 0x02d12, 0x02d13, 0x02d14, 0x02d15, 0x02d16, 0x02d17, 0x02d18, 0x02d19, 0x02d1a, 0x02d1b, 0x02d1c, 0x02d1d, 0x02d1e, 0x02d1f, 0x02d20,
			0x02d21, 0x02d22, 0x02d23, 0x02d24, 0x02d25, 0x02d27, 0x02d2d, 0x013f0, 0x013f1, 0x013f2, 0x013f3, 0x013f4, 0x013f5, 0x00432, 0x00434, 0x0043e,
			0x00441, 0x00442, 0x00442, 0x0044a, 0x00463, 0x0a64b, 0x010d0, 0x010d1, 0x010d2, 0x010d3, 0x010d4, 0x010d5, 0x010d6, 0x010d7, 0x010d8, 0x010d9,
			0x010da, 0x010db, 0x010dc, 0x010dd, 0x010de, 0x010df, 0x010e0, 0x010e1, 0x010e2, 0x010e3, 0x010e4, 0x010e5, 0x010e6, 0x010e7, 0x010e8, 0x010e9,
			0x010ea, 0x010eb, 0x010ec, 0x010ed, 0x010ee, 0x010ef, 0x010f0, 0x010f1, 0x010f2, 0x010f3, 0x010f4, 0x010f5, 0x010f6, 0x010f7, 0x010f8, 0x010f9,
			0x010fa, 0x010fd, 0x010fe, 0x010ff, 0x01e01, 0x01e03, 0x01e05, 0x01e07, 0x01e09, 0x01e0b, 0x01e0d, 0x01e0f, 0x01e11, 0x01e13, 0x01e15, 0x01e17,
			0x01e19, 0x01e1b, 0x01e1d, 0x01e1f, 0x01e21, 0x01e23, 0x01e25, 0x01e27, 0x01e29, 0x01e2b, 0x01e2d, 0x01e2f, 0x01e31, 0x01e33, 0x01e35, 0x01e37,
			0x01e39, 0x01e3b, 0x01e3d, 0x01e3f, 0x01e41, 0x01e43, 0x01e45, 0x01e47, 0x01e49, 0x01e4b, 0x01e4d, 0x01e4f, 0x01e51, 0x01e53, 0x01e55, 0x01e57,
			0x01e59, 0x01e5b, 0x01e5d, 0x01e5f, 0x01e61, 0x01e63, 0x01e65, 0x01e67, 0x01e69, 0x01e6b, 0x01e6d, 0x01e6f, 0x01e71, 0x01e73, 0x01e75, 0x01e77,
			0x01e79, 0x01e7b, 0x01e7d, 0x01e7f, 0x01e81, 0x01e83, 0x01e85, 0x01e87, 0x01e89, 0x01e8b, 0x01e8d, 0x01e8f, 0x01e91, 0x01e93, 0x01e95, 0x01e61,
			0x000df, 0x01ea1, 0x01ea3, 0x01ea5, 0x01ea7, 0x01ea9, 0x01eab, 0x01ead, 0x01eaf, 0x01eb1, 0x01eb3, 0x01eb5, 0x01eb7, 0x01eb9, 0x01ebb, 0x01ebd,
			0x01ebf, 0x01ec1, 0x01ec3, 0x01ec5, 0x01ec7, 0x01ec9, 0x01ecb, 0x01ecd, 0x01ecf, 0x01ed1, 0x01ed3, 0x01ed5, 0x01ed7, 0x01ed9, 0x01edb, 0x01edd,
			0x01edf, 0x01ee1, 0x01ee3, 0x01ee5, 0x01ee7, 0x01ee9, 0x01eeb, 0x01eed, 0x01eef, 0x01ef1, 0x01ef3, 0x01ef5, 0x01ef7, 0x01ef9, 0x01efb, 0x01efd,
			0x01eff, 0x01f00, 0x01f01, 0x01f02, 0x01f03, 0x01f04, 0x01f05, 0x01f06, 0x01f07, 0x01f10, 0x01f11, 0x01f12, 0x01f13, 0x01f14, 0x01f15, 0x01f20,
			0x01f21, 0x01f22, 0x01f23, 0x01f24, 0x01f25, 0x01f26, 0x01f27, 0x01f30, 0x01f31, 0x01f32, 0x01f33, 0x01f34, 0x01f35, 0x01f36, 0x01f37, 0x01f40,
			0x01f41, 0x01f42, 0x01f43, 0x01f44, 0x01f45, 0x01f51, 0x01f53, 0x01f55, 0x01f57, 0x01f60, 0x01f61, 0x01f62, 0x01f63, 0x01f64, 0x01f65, 0x01f66,
			0x01f67, 0x01f80, 0x01f81, 0x01f82, 0x01f83, 0x01f84, 0x01f85, 0x01f86, 0x01f87, 0x01f90, 0x01f91, 0x01f92, 0x01f93, 0x01f94, 0x01f95, 0x01f96,
			0x01f97, 0x01fa0, 0x01fa1, 0x01fa2, 0x01fa3, 0x01fa4, 0x01fa5, 0x01fa6, 0x01fa7, 0x01fb0, 0x01fb1, 0x01f70, 0x01f71, 0x01fb3, 0x003b9, 0x01f72,
			0x01f73, 0x01f74, 0x01f75, 0x01fc3, 0x01fd0, 0x01fd1, 0x01f76, 0x01f77, 0x01fe0, 0x01fe1, 0x01f7a, 0x01f7b, 0x01fe5, 0x01f78, 0x01f79, 0x01f7c,
			0x01f7d, 0x01ff3, 0x003c9, 0x0006b, 0x000e5, 0x0214e, 0x02170, 0x02171, 0x02172, 0x02173, 0x02174, 0x02175, 0x02176, 0x02177, 0x02178, 0x02179,
			0x0217a, 0x0217b, 0x0217c, 0x0217d, 0x0217e, 0x0217f, 0x02184, 0x024d0, 0x024d1, 0x024d2, 0x024d3, 0x024d4, 0x024d5, 0x024d6, 0x024d7, 0x024d8,
			0x024d9, 0x024da, 0x024db, 0x024dc, 0x024dd, 0x024de, 0x024df, 0x024e0, 0x024e1, 0x024e2, 0x024e3, 0x024e4, 0x024e5, 0x024e6, 0x024e7, 0x024e8,
			0x024e9, 0x02c30, 0x02c31, 0x02c32, 0x02c33, 0x02c34, 0x02c35, 0x02c36, 0x02c37, 0x02c38, 0x02c39, 0x02c3a, 0x02c3b, 0x02c3c, 0x02c3d, 0x02c3e,
			0x02c3f, 0x02c40, 0x02c41, 0x02c42, 0x02c43, 0x02c44, 0x02c45, 0x02c46, 0x02c47, 0x02c48, 0x02c49, 0x02c4a, 0x02c4b, 0x02c4c, 0x02c4d, 0x02c4e,
			0x02c4f, 0x02c50, 0x02c51, 0x02c52, 0x02c53, 0x02c54, 0x02c55, 0x02c56, 0x02c57, 0x02c58, 0x02c59, 0x02c5a, 0x02c5b, 0x02c5c, 0x02c5d, 0x02c5e,
			0x02c61, 0x0026b, 0x01d7d, 0x0027d, 0x02c68, 0x02c6a, 0x02c6c, 0x00251, 0x00271, 0x00250, 0x00252, 0x02c73, 0x02c76, 0x0023f, 0x00240, 0x02c81,
			0x02c83, 0x02c85, 0x02c87, 0x02c89, 0x02c8b, 0x02c8d, 0x02c8f, 0x02c91, 0x02c93, 0x02c95, 0x02c97, 0x02c99, 0x02c9b, 0x02c9d, 0x02c9f, 0x02ca1,
			0x02ca3, 0x02ca5, 0x02ca7, 0x02ca9, 0x02cab, 0x02cad, 0x02caf, 0x02cb1, 0x02cb3, 0x02cb5, 0x02cb7, 0x02cb9, 0x02cbb, 0x02cbd, 0x02cbf, 0x02cc1,
			0x02cc3, 0x02cc5, 0x02cc7, 0x02cc9, 0x02ccb, 0x02ccd, 0x02ccf, 0x02cd1, 0x02cd3, 0x02cd5, 0x02cd7, 0x02cd9, 0x02cdb, 0x02cdd, 0x02cdf, 0x02ce1,
			0x02ce3, 0x02cec, 0x02cee, 0x02cf3, 0x0a641, 0x0a643, 0x0a645, 0x0a647, 0x0a649, 0x0a64b, 0x0a64d, 0x0a64f, 0x0a651, 0x0a653, 0x0a655, 0x0a657,
			0x0a659, 0x0a65b, 0x0a65d, 0x0a65f, 0x0a661, 0x0a663, 0x0a665, 0x0a667, 0x0a669, 0x0a66b, 0x0a66d, 0x0a681, 0x0a683, 0x0a685, 0x0a687, 0x0a689,
			0x0a68b, 0x0a68d, 0x0a68f, 0x0a691, 0x0a693, 0x0a695, 0x0a697, 0x0a699, 0x0a69b, 0x0a723, 0x0a725, 0x0a727, 0x0a729, 0x0a72b, 0x0a72d, 0x0a72f,
			0x0a733, 0x0a735, 0x0a737, 0x0a739, 0x0a73b, 0x0a73d, 0x0a73f, 0x0a741, 0x0a743, 0x0a745, 0x0a747, 0x0a749, 0x0a74b, 0x0a74d, 0x0a74f, 0x0a751,
			0x0a753, 0x0a755, 0x0a757, 0x0a759, 0x0a75b, 0x0a75d, 0x0a75f, 0x0a761, 0x0a763, 0x0a765, 0x0a767, 0x0a769, 0x0a76b, 0x0a76d, 0x0a76f, 0x0a77a,
			0x0a77c, 0x01d79, 0x0a77f, 0x0a781, 0x0a783, 0x0a785, 0x0a787, 0x0a78c, 0x00265, 0x0a791, 0x0a793, 0x0a797, 0x0a799, 0x0a79b, 0x0a79d, 0x0a79f,
			0x0a7a1, 0x0a7a3, 0x0a7a5, 0x0a7a7, 0x0a7a9, 0x00266, 0x0025c, 0x00261, 0x0026c, 0x0026a, 0x0029e, 0x00287, 0x0029d, 0x0ab53, 0x0a7b5, 0x0a7b7,
			0x0a7b9, 0x0a7bb, 0x0a7bd, 0x0a7bf, 0x0a7c3, 0x0a794, 0x00282, 0x01d8e, 0x013a0, 0x013a1, 0x013a2, 0x013a3, 0x013a4, 0x013a5, 0x013a6, 0x013a7,
			0x013a8, 0x013a9, 0x013aa, 0x013ab, 0x013ac, 0x013ad, 0x013ae, 0x013af, 0x013b0, 0x013b1, 0x013b2, 0x013b3, 0x013b4, 0x013b5, 0x013b6, 0x013b7,
			0x013b8, 0x013b9, 0x013ba, 0x013bb, 0x013bc, 0x013bd, 0x013be, 0x013bf, 0x013c0, 0x013c1, 0x013c2, 0x013c3, 0x013c4, 0x013c5, 0x013c6, 0x013c7,
			0x013c8, 0x013c9, 0x013ca, 0x013cb, 0x013cc, 0x013cd, 0x013ce, 0x013cf, 0x013d0, 0x013d1, 0x013d2, 0x013d3, 0x013d4, 0x013d5, 0x013d6, 0x013d7,
			0x013d8, 0x013d9, 0x013da, 0x013db, 0x013dc, 0x013dd, 0x013de, 0x013df, 0x013e0, 0x013e1, 0x013e2, 0x013e3, 0x013e4, 0x013e5, 0x013e6, 0x013e7,
			0x013e8, 0x013e9, 0x013ea, 0x013eb, 0x013ec, 0x013ed, 0x013ee, 0x013ef, 0x0ff41, 0x0ff42, 0x0ff43, 0x0ff44, 0x0ff45, 0x0ff46, 0x0ff47, 0x0ff48,
			0x0ff49, 0x0ff4a, 0x0ff4b, 0x0ff4c, 0x0ff4d, 0x0ff4e, 0x0ff4f, 0x0ff50, 0x0ff51, 0x0ff52, 0x0ff53, 0x0ff54, 0x0ff55, 0x0ff56, 0x0ff57, 0x0ff58,
			0x0ff59, 0x0ff5a, 0x10428, 0x10429, 0x1042a, 0x1042b, 0x1042c, 0x1042d, 0x1042e, 0x1042f, 0x10430, 0x10431, 0x10432, 0x10433, 0x10434, 0x10435,
			0x10436, 0x10437, 0x10438, 0x10439, 0x1043a, 0x1043b, 0x1043c, 0x1043d, 0x1043e, 0x1043f, 0x10440, 0x10441, 0x10442, 0x10443, 0x10444, 0x10445,
			0x10446, 0x10447, 0x10448, 0x10449, 0x1044a, 0x1044b, 0x1044c, 0x1044d, 0x1044e, 0x1044f, 0x104d8, 0x104d9, 0x104da, 0x104db, 0x104dc, 0x104dd,
			0x104de, 0x104df, 0x104e0, 0x104e1, 0x104e2, 0x104e3, 0x104e4, 0x104e5, 0x104e6, 0x104e7, 0x104e8, 0x104e9, 0x104ea, 0x104eb, 0x104ec, 0x104ed,
			0x104ee, 0x104ef, 0x104f0, 0x104f1, 0x104f2, 0x104f3, 0x104f4, 0x104f5, 0x104f6, 0x104f7, 0x104f8, 0x104f9, 0x104fa, 0x104fb, 0x10cc0, 0x10cc1,
			0x10cc2, 0x10cc3, 0x10cc4, 0x10cc5, 0x10cc6, 0x10cc7, 0x10cc8, 0x10cc9, 0x10cca, 0x10ccb, 0x10ccc, 0x10ccd, 0x10cce, 0x10ccf, 0x10cd0, 0x10cd1,
			0x10cd2, 0x10cd3, 0x10cd4, 0x10cd5, 0x10cd6, 0x10cd7, 0x10cd8, 0x10cd9, 0x10cda, 0x10cdb, 0x10cdc, 0x10cdd, 0x10cde, 0x10cdf, 0x10ce0, 0x10ce1,
			0x10ce2, 0x10ce3, 0x10ce4, 0x10ce5, 0x10ce6, 0x10ce7, 0x10ce8, 0x10ce9, 0x10cea, 0x10ceb, 0x10cec, 0x10ced, 0x10cee, 0x10cef, 0x10cf0, 0x10cf1,
			0x10cf2, 0x118c0, 0x118c1, 0x118c2, 0x118c3, 0x118c4, 0x118c5, 0x118c6, 0x118c7, 0x118c8, 0x118c9, 0x118ca, 0x118cb, 0x118cc, 0x118cd, 0x118ce,
			0x118cf, 0x118d0, 0x118d1, 0x118d2, 0x118d3, 0x118d4, 0x118d5, 0x118d6, 0x118d7, 0x118d8, 0x118d9, 0x118da, 0x118db, 0x118dc, 0x118dd, 0x118de,
			0x118df, 0x16e60, 0x16e61, 0x16e62, 0x16e63, 0x16e64, 0x16e65, 0x16e66, 0x16e67, 0x16e68, 0x16e69, 0x16e6a, 0x16e6b, 0x16e6c, 0x16e6d, 0x16e6e,
			0x16e6f, 0x16e70, 0x16e71, 0x16e72, 0x16e73, 0x16e74, 0x16e75, 0x16e76, 0x16e77, 0x16e78, 0x16e79, 0x16e7a, 0x16e7b, 0x16e7c, 0x16e7d, 0x16e7e,
			0x16e7f, 0x1e922, 0x1e923, 0x1e924, 0x1e925, 0x1e926, 0x1e927, 0x1e928, 0x1e929, 0x1e92a, 0x1e92b, 0x1e92c, 0x1e92d, 0x1e92e, 0x1e92f, 0x1e930,
			0x1e931, 0x1e932, 0x1e933, 0x1e934, 0x1e935, 0x1e936, 0x1e937, 0x1e938, 0x1e939, 0x1e93a, 0x1e93b, 0x1e93c, 0x1e93d, 0x1e93e, 0x1e93f, 0x1e940,
			0x1e941, 0x1e942, 0x1e943
		};

		Array<char> output;
		std::size_t stringLength = string.size();
		std::size_t idx = 0;

		arrayReserve(output, stringLength + 1);

		do {
			auto [c, nextIdx] = Utf8::NextChar(string, idx);

			const char32_t* f = std::lower_bound(u2l, u2l + arraySize(u2l), c);
			if (f != u2l + arraySize(u2l) && *f == c) {
				c = lc[f - u2l];
			}

			if (c < 0x7f) {
				arrayAppend(output, (char)c);
			} else if (c < 0x7ff) {
				arrayAppend(output, 0xC0 | (c >> 6));
				arrayAppend(output, 0x80 | (c & 0x3f));
			} else if (c < 0xFFFF) {
				arrayAppend(output, 0xE0 | (c >> 12));
				arrayAppend(output, 0x80 | ((c >> 6) & 0x3f));
				arrayAppend(output, 0x80 | (c & 0x3f));
			} else {
				arrayAppend(output, 0xF0 | (c >> 18));
				arrayAppend(output, 0x80 | ((c >> 12) & 0x3f));
				arrayAppend(output, 0x80 | ((c >> 6) & 0x3f));
				arrayAppend(output, 0x80 | (c & 0x3f));
			}

			idx = nextIdx;
		} while (idx < stringLength);

		arrayAppend(output, '\0');
		const std::size_t size = output.size();
		// This assumes that the growable array uses std::malloc() (which has to be std::free()'d later) in order to be
		// able to std::realloc(). The deleter doesn't use the size argument so it should be fine to transfer it over
		// to a String with the size excluding the null terminator.
		void(*const deleter)(char*, std::size_t) = output.deleter();
		DEATH_DEBUG_ASSERT(deleter, "Invalid deleter used", {});
		return String{output.release(), size - 1, deleter};
	}

	String uppercaseUnicode(StringView string) {
		static const char32_t l2u[1384] = {
			0x00061, 0x00062, 0x00063, 0x00064, 0x00065, 0x00066, 0x00067, 0x00068, 0x00069, 0x0006a, 0x0006b, 0x0006c, 0x0006d, 0x0006e, 0x0006f, 0x00070,
			0x00071, 0x00072, 0x00073, 0x00074, 0x00075, 0x00076, 0x00077, 0x00078, 0x00079, 0x0007a, 0x000df, 0x000e0, 0x000e1, 0x000e2, 0x000e3, 0x000e4,
			0x000e5, 0x000e6, 0x000e7, 0x000e8, 0x000e9, 0x000ea, 0x000eb, 0x000ec, 0x000ed, 0x000ee, 0x000ef, 0x000f0, 0x000f1, 0x000f2, 0x000f3, 0x000f4,
			0x000f5, 0x000f6, 0x000f8, 0x000f9, 0x000fa, 0x000fb, 0x000fc, 0x000fd, 0x000fe, 0x000ff, 0x00101, 0x00103, 0x00105, 0x00107, 0x00109, 0x0010b,
			0x0010d, 0x0010f, 0x00111, 0x00113, 0x00115, 0x00117, 0x00119, 0x0011b, 0x0011d, 0x0011f, 0x00121, 0x00123, 0x00125, 0x00127, 0x00129, 0x0012b,
			0x0012d, 0x0012f, 0x00133, 0x00135, 0x00137, 0x0013a, 0x0013c, 0x0013e, 0x00140, 0x00142, 0x00144, 0x00146, 0x00148, 0x0014b, 0x0014d, 0x0014f,
			0x00151, 0x00153, 0x00155, 0x00157, 0x00159, 0x0015b, 0x0015d, 0x0015f, 0x00161, 0x00163, 0x00165, 0x00167, 0x00169, 0x0016b, 0x0016d, 0x0016f,
			0x00171, 0x00173, 0x00175, 0x00177, 0x0017a, 0x0017c, 0x0017e, 0x00180, 0x00183, 0x00185, 0x00188, 0x0018c, 0x00192, 0x00195, 0x00199, 0x0019a,
			0x0019e, 0x001a1, 0x001a3, 0x001a5, 0x001a8, 0x001ad, 0x001b0, 0x001b4, 0x001b6, 0x001b9, 0x001bd, 0x001bf, 0x001c6, 0x001c9, 0x001cc, 0x001ce,
			0x001d0, 0x001d2, 0x001d4, 0x001d6, 0x001d8, 0x001da, 0x001dc, 0x001dd, 0x001df, 0x001e1, 0x001e3, 0x001e5, 0x001e7, 0x001e9, 0x001eb, 0x001ed,
			0x001ef, 0x001f3, 0x001f5, 0x001f9, 0x001fb, 0x001fd, 0x001ff, 0x00201, 0x00203, 0x00205, 0x00207, 0x00209, 0x0020b, 0x0020d, 0x0020f, 0x00211,
			0x00213, 0x00215, 0x00217, 0x00219, 0x0021b, 0x0021d, 0x0021f, 0x00223, 0x00225, 0x00227, 0x00229, 0x0022b, 0x0022d, 0x0022f, 0x00231, 0x00233,
			0x0023c, 0x0023f, 0x00240, 0x00242, 0x00247, 0x00249, 0x0024b, 0x0024d, 0x0024f, 0x00250, 0x00251, 0x00252, 0x00253, 0x00254, 0x00256, 0x00257,
			0x00259, 0x0025b, 0x0025c, 0x00260, 0x00261, 0x00263, 0x00265, 0x00266, 0x00268, 0x00269, 0x0026a, 0x0026b, 0x0026c, 0x0026f, 0x00271, 0x00272,
			0x00275, 0x0027d, 0x00280, 0x00282, 0x00283, 0x00287, 0x00288, 0x00289, 0x0028a, 0x0028b, 0x0028c, 0x00292, 0x0029d, 0x0029e, 0x00371, 0x00373,
			0x00377, 0x0037b, 0x0037c, 0x0037d, 0x003ac, 0x003ad, 0x003ae, 0x003af, 0x003b1, 0x003b2, 0x003b3, 0x003b4, 0x003b5, 0x003b6, 0x003b7, 0x003b8,
			0x003b8, 0x003b9, 0x003b9, 0x003ba, 0x003bb, 0x003bc, 0x003bd, 0x003be, 0x003bf, 0x003c0, 0x003c1, 0x003c3, 0x003c4, 0x003c5, 0x003c6, 0x003c7,
			0x003c8, 0x003c9, 0x003ca, 0x003cb, 0x003cc, 0x003cd, 0x003ce, 0x003d7, 0x003d9, 0x003db, 0x003dd, 0x003df, 0x003e1, 0x003e3, 0x003e5, 0x003e7,
			0x003e9, 0x003eb, 0x003ed, 0x003ef, 0x003f2, 0x003f3, 0x003f8, 0x003fb, 0x00430, 0x00431, 0x00432, 0x00433, 0x00434, 0x00435, 0x00436, 0x00437,
			0x00438, 0x00439, 0x0043a, 0x0043b, 0x0043c, 0x0043d, 0x0043e, 0x0043f, 0x00440, 0x00441, 0x00442, 0x00442, 0x00443, 0x00444, 0x00445, 0x00446,
			0x00447, 0x00448, 0x00449, 0x0044a, 0x0044b, 0x0044c, 0x0044d, 0x0044e, 0x0044f, 0x00450, 0x00451, 0x00452, 0x00453, 0x00454, 0x00455, 0x00456,
			0x00457, 0x00458, 0x00459, 0x0045a, 0x0045b, 0x0045c, 0x0045d, 0x0045e, 0x0045f, 0x00461, 0x00463, 0x00465, 0x00467, 0x00469, 0x0046b, 0x0046d,
			0x0046f, 0x00471, 0x00473, 0x00475, 0x00477, 0x00479, 0x0047b, 0x0047d, 0x0047f, 0x00481, 0x0048b, 0x0048d, 0x0048f, 0x00491, 0x00493, 0x00495,
			0x00497, 0x00499, 0x0049b, 0x0049d, 0x0049f, 0x004a1, 0x004a3, 0x004a5, 0x004a7, 0x004a9, 0x004ab, 0x004ad, 0x004af, 0x004b1, 0x004b3, 0x004b5,
			0x004b7, 0x004b9, 0x004bb, 0x004bd, 0x004bf, 0x004c2, 0x004c4, 0x004c6, 0x004c8, 0x004ca, 0x004cc, 0x004ce, 0x004cf, 0x004d1, 0x004d3, 0x004d5,
			0x004d7, 0x004d9, 0x004db, 0x004dd, 0x004df, 0x004e1, 0x004e3, 0x004e5, 0x004e7, 0x004e9, 0x004eb, 0x004ed, 0x004ef, 0x004f1, 0x004f3, 0x004f5,
			0x004f7, 0x004f9, 0x004fb, 0x004fd, 0x004ff, 0x00501, 0x00503, 0x00505, 0x00507, 0x00509, 0x0050b, 0x0050d, 0x0050f, 0x00511, 0x00513, 0x00515,
			0x00517, 0x00519, 0x0051b, 0x0051d, 0x0051f, 0x00521, 0x00523, 0x00525, 0x00527, 0x00529, 0x0052b, 0x0052d, 0x0052f, 0x00561, 0x00562, 0x00563,
			0x00564, 0x00565, 0x00566, 0x00567, 0x00568, 0x00569, 0x0056a, 0x0056b, 0x0056c, 0x0056d, 0x0056e, 0x0056f, 0x00570, 0x00571, 0x00572, 0x00573,
			0x00574, 0x00575, 0x00576, 0x00577, 0x00578, 0x00579, 0x0057a, 0x0057b, 0x0057c, 0x0057d, 0x0057e, 0x0057f, 0x00580, 0x00581, 0x00582, 0x00583,
			0x00584, 0x00585, 0x00586, 0x010d0, 0x010d1, 0x010d2, 0x010d3, 0x010d4, 0x010d5, 0x010d6, 0x010d7, 0x010d8, 0x010d9, 0x010da, 0x010db, 0x010dc,
			0x010dd, 0x010de, 0x010df, 0x010e0, 0x010e1, 0x010e2, 0x010e3, 0x010e4, 0x010e5, 0x010e6, 0x010e7, 0x010e8, 0x010e9, 0x010ea, 0x010eb, 0x010ec,
			0x010ed, 0x010ee, 0x010ef, 0x010f0, 0x010f1, 0x010f2, 0x010f3, 0x010f4, 0x010f5, 0x010f6, 0x010f7, 0x010f8, 0x010f9, 0x010fa, 0x010fd, 0x010fe,
			0x010ff, 0x013a0, 0x013a1, 0x013a2, 0x013a3, 0x013a4, 0x013a5, 0x013a6, 0x013a7, 0x013a8, 0x013a9, 0x013aa, 0x013ab, 0x013ac, 0x013ad, 0x013ae,
			0x013af, 0x013b0, 0x013b1, 0x013b2, 0x013b3, 0x013b4, 0x013b5, 0x013b6, 0x013b7, 0x013b8, 0x013b9, 0x013ba, 0x013bb, 0x013bc, 0x013bd, 0x013be,
			0x013bf, 0x013c0, 0x013c1, 0x013c2, 0x013c3, 0x013c4, 0x013c5, 0x013c6, 0x013c7, 0x013c8, 0x013c9, 0x013ca, 0x013cb, 0x013cc, 0x013cd, 0x013ce,
			0x013cf, 0x013d0, 0x013d1, 0x013d2, 0x013d3, 0x013d4, 0x013d5, 0x013d6, 0x013d7, 0x013d8, 0x013d9, 0x013da, 0x013db, 0x013dc, 0x013dd, 0x013de,
			0x013df, 0x013e0, 0x013e1, 0x013e2, 0x013e3, 0x013e4, 0x013e5, 0x013e6, 0x013e7, 0x013e8, 0x013e9, 0x013ea, 0x013eb, 0x013ec, 0x013ed, 0x013ee,
			0x013ef, 0x013f0, 0x013f1, 0x013f2, 0x013f3, 0x013f4, 0x013f5, 0x01d79, 0x01d7d, 0x01d8e, 0x01e01, 0x01e03, 0x01e05, 0x01e07, 0x01e09, 0x01e0b,
			0x01e0d, 0x01e0f, 0x01e11, 0x01e13, 0x01e15, 0x01e17, 0x01e19, 0x01e1b, 0x01e1d, 0x01e1f, 0x01e21, 0x01e23, 0x01e25, 0x01e27, 0x01e29, 0x01e2b,
			0x01e2d, 0x01e2f, 0x01e31, 0x01e33, 0x01e35, 0x01e37, 0x01e39, 0x01e3b, 0x01e3d, 0x01e3f, 0x01e41, 0x01e43, 0x01e45, 0x01e47, 0x01e49, 0x01e4b,
			0x01e4d, 0x01e4f, 0x01e51, 0x01e53, 0x01e55, 0x01e57, 0x01e59, 0x01e5b, 0x01e5d, 0x01e5f, 0x01e61, 0x01e63, 0x01e65, 0x01e67, 0x01e69, 0x01e6b,
			0x01e6d, 0x01e6f, 0x01e71, 0x01e73, 0x01e75, 0x01e77, 0x01e79, 0x01e7b, 0x01e7d, 0x01e7f, 0x01e81, 0x01e83, 0x01e85, 0x01e87, 0x01e89, 0x01e8b,
			0x01e8d, 0x01e8f, 0x01e91, 0x01e93, 0x01e95, 0x01ea1, 0x01ea3, 0x01ea5, 0x01ea7, 0x01ea9, 0x01eab, 0x01ead, 0x01eaf, 0x01eb1, 0x01eb3, 0x01eb5,
			0x01eb7, 0x01eb9, 0x01ebb, 0x01ebd, 0x01ebf, 0x01ec1, 0x01ec3, 0x01ec5, 0x01ec7, 0x01ec9, 0x01ecb, 0x01ecd, 0x01ecf, 0x01ed1, 0x01ed3, 0x01ed5,
			0x01ed7, 0x01ed9, 0x01edb, 0x01edd, 0x01edf, 0x01ee1, 0x01ee3, 0x01ee5, 0x01ee7, 0x01ee9, 0x01eeb, 0x01eed, 0x01eef, 0x01ef1, 0x01ef3, 0x01ef5,
			0x01ef7, 0x01ef9, 0x01efb, 0x01efd, 0x01eff, 0x01f00, 0x01f01, 0x01f02, 0x01f03, 0x01f04, 0x01f05, 0x01f06, 0x01f07, 0x01f10, 0x01f11, 0x01f12,
			0x01f13, 0x01f14, 0x01f15, 0x01f20, 0x01f21, 0x01f22, 0x01f23, 0x01f24, 0x01f25, 0x01f26, 0x01f27, 0x01f30, 0x01f31, 0x01f32, 0x01f33, 0x01f34,
			0x01f35, 0x01f36, 0x01f37, 0x01f40, 0x01f41, 0x01f42, 0x01f43, 0x01f44, 0x01f45, 0x01f51, 0x01f53, 0x01f55, 0x01f57, 0x01f60, 0x01f61, 0x01f62,
			0x01f63, 0x01f64, 0x01f65, 0x01f66, 0x01f67, 0x01f70, 0x01f71, 0x01f72, 0x01f73, 0x01f74, 0x01f75, 0x01f76, 0x01f77, 0x01f78, 0x01f79, 0x01f7a,
			0x01f7b, 0x01f7c, 0x01f7d, 0x01f80, 0x01f81, 0x01f82, 0x01f83, 0x01f84, 0x01f85, 0x01f86, 0x01f87, 0x01f90, 0x01f91, 0x01f92, 0x01f93, 0x01f94,
			0x01f95, 0x01f96, 0x01f97, 0x01fa0, 0x01fa1, 0x01fa2, 0x01fa3, 0x01fa4, 0x01fa5, 0x01fa6, 0x01fa7, 0x01fb0, 0x01fb1, 0x01fb3, 0x01fc3, 0x01fd0,
			0x01fd1, 0x01fe0, 0x01fe1, 0x01fe5, 0x01ff3, 0x0214e, 0x02170, 0x02171, 0x02172, 0x02173, 0x02174, 0x02175, 0x02176, 0x02177, 0x02178, 0x02179,
			0x0217a, 0x0217b, 0x0217c, 0x0217d, 0x0217e, 0x0217f, 0x02184, 0x024d0, 0x024d1, 0x024d2, 0x024d3, 0x024d4, 0x024d5, 0x024d6, 0x024d7, 0x024d8,
			0x024d9, 0x024da, 0x024db, 0x024dc, 0x024dd, 0x024de, 0x024df, 0x024e0, 0x024e1, 0x024e2, 0x024e3, 0x024e4, 0x024e5, 0x024e6, 0x024e7, 0x024e8,
			0x024e9, 0x02c30, 0x02c31, 0x02c32, 0x02c33, 0x02c34, 0x02c35, 0x02c36, 0x02c37, 0x02c38, 0x02c39, 0x02c3a, 0x02c3b, 0x02c3c, 0x02c3d, 0x02c3e,
			0x02c3f, 0x02c40, 0x02c41, 0x02c42, 0x02c43, 0x02c44, 0x02c45, 0x02c46, 0x02c47, 0x02c48, 0x02c49, 0x02c4a, 0x02c4b, 0x02c4c, 0x02c4d, 0x02c4e,
			0x02c4f, 0x02c50, 0x02c51, 0x02c52, 0x02c53, 0x02c54, 0x02c55, 0x02c56, 0x02c57, 0x02c58, 0x02c59, 0x02c5a, 0x02c5b, 0x02c5c, 0x02c5d, 0x02c5e,
			0x02c61, 0x02c65, 0x02c66, 0x02c68, 0x02c6a, 0x02c6c, 0x02c73, 0x02c76, 0x02c81, 0x02c83, 0x02c85, 0x02c87, 0x02c89, 0x02c8b, 0x02c8d, 0x02c8f,
			0x02c91, 0x02c93, 0x02c95, 0x02c97, 0x02c99, 0x02c9b, 0x02c9d, 0x02c9f, 0x02ca1, 0x02ca3, 0x02ca5, 0x02ca7, 0x02ca9, 0x02cab, 0x02cad, 0x02caf,
			0x02cb1, 0x02cb3, 0x02cb5, 0x02cb7, 0x02cb9, 0x02cbb, 0x02cbd, 0x02cbf, 0x02cc1, 0x02cc3, 0x02cc5, 0x02cc7, 0x02cc9, 0x02ccb, 0x02ccd, 0x02ccf,
			0x02cd1, 0x02cd3, 0x02cd5, 0x02cd7, 0x02cd9, 0x02cdb, 0x02cdd, 0x02cdf, 0x02ce1, 0x02ce3, 0x02cec, 0x02cee, 0x02cf3, 0x02d00, 0x02d01, 0x02d02,
			0x02d03, 0x02d04, 0x02d05, 0x02d06, 0x02d07, 0x02d08, 0x02d09, 0x02d0a, 0x02d0b, 0x02d0c, 0x02d0d, 0x02d0e, 0x02d0f, 0x02d10, 0x02d11, 0x02d12,
			0x02d13, 0x02d14, 0x02d15, 0x02d16, 0x02d17, 0x02d18, 0x02d19, 0x02d1a, 0x02d1b, 0x02d1c, 0x02d1d, 0x02d1e, 0x02d1f, 0x02d20, 0x02d21, 0x02d22,
			0x02d23, 0x02d24, 0x02d25, 0x02d27, 0x02d2d, 0x0a641, 0x0a643, 0x0a645, 0x0a647, 0x0a649, 0x0a64b, 0x0a64d, 0x0a64f, 0x0a651, 0x0a653, 0x0a655,
			0x0a657, 0x0a659, 0x0a65b, 0x0a65d, 0x0a65f, 0x0a661, 0x0a663, 0x0a665, 0x0a667, 0x0a669, 0x0a66b, 0x0a66d, 0x0a681, 0x0a683, 0x0a685, 0x0a687,
			0x0a689, 0x0a68b, 0x0a68d, 0x0a68f, 0x0a691, 0x0a693, 0x0a695, 0x0a697, 0x0a699, 0x0a69b, 0x0a723, 0x0a725, 0x0a727, 0x0a729, 0x0a72b, 0x0a72d,
			0x0a72f, 0x0a733, 0x0a735, 0x0a737, 0x0a739, 0x0a73b, 0x0a73d, 0x0a73f, 0x0a741, 0x0a743, 0x0a745, 0x0a747, 0x0a749, 0x0a74b, 0x0a74d, 0x0a74f,
			0x0a751, 0x0a753, 0x0a755, 0x0a757, 0x0a759, 0x0a75b, 0x0a75d, 0x0a75f, 0x0a761, 0x0a763, 0x0a765, 0x0a767, 0x0a769, 0x0a76b, 0x0a76d, 0x0a76f,
			0x0a77a, 0x0a77c, 0x0a77f, 0x0a781, 0x0a783, 0x0a785, 0x0a787, 0x0a78c, 0x0a791, 0x0a793, 0x0a794, 0x0a797, 0x0a799, 0x0a79b, 0x0a79d, 0x0a79f,
			0x0a7a1, 0x0a7a3, 0x0a7a5, 0x0a7a7, 0x0a7a9, 0x0a7b5, 0x0a7b7, 0x0a7b9, 0x0a7bb, 0x0a7bd, 0x0a7bf, 0x0a7c3, 0x0ab53, 0x0ff41, 0x0ff42, 0x0ff43,
			0x0ff44, 0x0ff45, 0x0ff46, 0x0ff47, 0x0ff48, 0x0ff49, 0x0ff4a, 0x0ff4b, 0x0ff4c, 0x0ff4d, 0x0ff4e, 0x0ff4f, 0x0ff50, 0x0ff51, 0x0ff52, 0x0ff53,
			0x0ff54, 0x0ff55, 0x0ff56, 0x0ff57, 0x0ff58, 0x0ff59, 0x0ff5a, 0x10428, 0x10429, 0x1042a, 0x1042b, 0x1042c, 0x1042d, 0x1042e, 0x1042f, 0x10430,
			0x10431, 0x10432, 0x10433, 0x10434, 0x10435, 0x10436, 0x10437, 0x10438, 0x10439, 0x1043a, 0x1043b, 0x1043c, 0x1043d, 0x1043e, 0x1043f, 0x10440,
			0x10441, 0x10442, 0x10443, 0x10444, 0x10445, 0x10446, 0x10447, 0x10448, 0x10449, 0x1044a, 0x1044b, 0x1044c, 0x1044d, 0x1044e, 0x1044f, 0x104d8,
			0x104d9, 0x104da, 0x104db, 0x104dc, 0x104dd, 0x104de, 0x104df, 0x104e0, 0x104e1, 0x104e2, 0x104e3, 0x104e4, 0x104e5, 0x104e6, 0x104e7, 0x104e8,
			0x104e9, 0x104ea, 0x104eb, 0x104ec, 0x104ed, 0x104ee, 0x104ef, 0x104f0, 0x104f1, 0x104f2, 0x104f3, 0x104f4, 0x104f5, 0x104f6, 0x104f7, 0x104f8,
			0x104f9, 0x104fa, 0x104fb, 0x10cc0, 0x10cc1, 0x10cc2, 0x10cc3, 0x10cc4, 0x10cc5, 0x10cc6, 0x10cc7, 0x10cc8, 0x10cc9, 0x10cca, 0x10ccb, 0x10ccc,
			0x10ccd, 0x10cce, 0x10ccf, 0x10cd0, 0x10cd1, 0x10cd2, 0x10cd3, 0x10cd4, 0x10cd5, 0x10cd6, 0x10cd7, 0x10cd8, 0x10cd9, 0x10cda, 0x10cdb, 0x10cdc,
			0x10cdd, 0x10cde, 0x10cdf, 0x10ce0, 0x10ce1, 0x10ce2, 0x10ce3, 0x10ce4, 0x10ce5, 0x10ce6, 0x10ce7, 0x10ce8, 0x10ce9, 0x10cea, 0x10ceb, 0x10cec,
			0x10ced, 0x10cee, 0x10cef, 0x10cf0, 0x10cf1, 0x10cf2, 0x118c0, 0x118c1, 0x118c2, 0x118c3, 0x118c4, 0x118c5, 0x118c6, 0x118c7, 0x118c8, 0x118c9,
			0x118ca, 0x118cb, 0x118cc, 0x118cd, 0x118ce, 0x118cf, 0x118d0, 0x118d1, 0x118d2, 0x118d3, 0x118d4, 0x118d5, 0x118d6, 0x118d7, 0x118d8, 0x118d9,
			0x118da, 0x118db, 0x118dc, 0x118dd, 0x118de, 0x118df, 0x16e60, 0x16e61, 0x16e62, 0x16e63, 0x16e64, 0x16e65, 0x16e66, 0x16e67, 0x16e68, 0x16e69,
			0x16e6a, 0x16e6b, 0x16e6c, 0x16e6d, 0x16e6e, 0x16e6f, 0x16e70, 0x16e71, 0x16e72, 0x16e73, 0x16e74, 0x16e75, 0x16e76, 0x16e77, 0x16e78, 0x16e79,
			0x16e7a, 0x16e7b, 0x16e7c, 0x16e7d, 0x16e7e, 0x16e7f, 0x1e922, 0x1e923, 0x1e924, 0x1e925, 0x1e926, 0x1e927, 0x1e928, 0x1e929, 0x1e92a, 0x1e92b,
			0x1e92c, 0x1e92d, 0x1e92e, 0x1e92f, 0x1e930, 0x1e931, 0x1e932, 0x1e933, 0x1e934, 0x1e935, 0x1e936, 0x1e937, 0x1e938, 0x1e939, 0x1e93a, 0x1e93b,
			0x1e93c, 0x1e93d, 0x1e93e, 0x1e93f, 0x1e940, 0x1e941, 0x1e942, 0x1e943
		};

		static const char32_t uc[1384] = {
			0x00041, 0x00042, 0x00043, 0x00044, 0x00045, 0x00046, 0x00047, 0x00048, 0x00049, 0x0004a, 0x0004b, 0x0004c, 0x0004d, 0x0004e, 0x0004f, 0x00050,
			0x00051, 0x00052, 0x00053, 0x00054, 0x00055, 0x00056, 0x00057, 0x00058, 0x00059, 0x0005a, 0x01e9e, 0x000c0, 0x000c1, 0x000c2, 0x000c3, 0x000c4,
			0x000c5, 0x000c6, 0x000c7, 0x000c8, 0x000c9, 0x000ca, 0x000cb, 0x000cc, 0x000cd, 0x000ce, 0x000cf, 0x000d0, 0x000d1, 0x000d2, 0x000d3, 0x000d4,
			0x000d5, 0x000d6, 0x000d8, 0x000d9, 0x000da, 0x000db, 0x000dc, 0x000dd, 0x000de, 0x00178, 0x00100, 0x00102, 0x00104, 0x00106, 0x00108, 0x0010a,
			0x0010c, 0x0010e, 0x00110, 0x00112, 0x00114, 0x00116, 0x00118, 0x0011a, 0x0011c, 0x0011e, 0x00120, 0x00122, 0x00124, 0x00126, 0x00128, 0x0012a,
			0x0012c, 0x0012e, 0x00132, 0x00134, 0x00136, 0x00139, 0x0013b, 0x0013d, 0x0013f, 0x00141, 0x00143, 0x00145, 0x00147, 0x0014a, 0x0014c, 0x0014e,
			0x00150, 0x00152, 0x00154, 0x00156, 0x00158, 0x0015a, 0x0015c, 0x0015e, 0x00160, 0x00162, 0x00164, 0x00166, 0x00168, 0x0016a, 0x0016c, 0x0016e,
			0x00170, 0x00172, 0x00174, 0x00176, 0x00179, 0x0017b, 0x0017d, 0x00243, 0x00182, 0x00184, 0x00187, 0x0018b, 0x00191, 0x001f6, 0x00198, 0x0023d,
			0x00220, 0x001a0, 0x001a2, 0x001a4, 0x001a7, 0x001ac, 0x001af, 0x001b3, 0x001b5, 0x001b8, 0x001bc, 0x001f7, 0x001c4, 0x001c7, 0x001ca, 0x001cd,
			0x001cf, 0x001d1, 0x001d3, 0x001d5, 0x001d7, 0x001d9, 0x001db, 0x0018e, 0x001de, 0x001e0, 0x001e2, 0x001e4, 0x001e6, 0x001e8, 0x001ea, 0x001ec,
			0x001ee, 0x001f1, 0x001f4, 0x001f8, 0x001fa, 0x001fc, 0x001fe, 0x00200, 0x00202, 0x00204, 0x00206, 0x00208, 0x0020a, 0x0020c, 0x0020e, 0x00210,
			0x00212, 0x00214, 0x00216, 0x00218, 0x0021a, 0x0021c, 0x0021e, 0x00222, 0x00224, 0x00226, 0x00228, 0x0022a, 0x0022c, 0x0022e, 0x00230, 0x00232,
			0x0023b, 0x02c7e, 0x02c7f, 0x00241, 0x00246, 0x00248, 0x0024a, 0x0024c, 0x0024e, 0x02c6f, 0x02c6d, 0x02c70, 0x00181, 0x00186, 0x00189, 0x0018a,
			0x0018f, 0x00190, 0x0a7ab, 0x00193, 0x0a7ac, 0x00194, 0x0a78d, 0x0a7aa, 0x00197, 0x00196, 0x0a7ae, 0x02c62, 0x0a7ad, 0x0019c, 0x02c6e, 0x0019d,
			0x0019f, 0x02c64, 0x001a6, 0x0a7c5, 0x001a9, 0x0a7b1, 0x001ae, 0x00244, 0x001b1, 0x001b2, 0x00245, 0x001b7, 0x0a7b2, 0x0a7b0, 0x00370, 0x00372,
			0x00376, 0x003fd, 0x003fe, 0x003ff, 0x00386, 0x00388, 0x00389, 0x0038a, 0x00391, 0x00392, 0x00393, 0x00394, 0x00395, 0x00396, 0x00397, 0x00398,
			0x003f4, 0x00345, 0x01fbe, 0x0039a, 0x0039b, 0x0039c, 0x0039d, 0x0039e, 0x0039f, 0x003d6, 0x003f1, 0x003a3, 0x003a4, 0x003a5, 0x003a6, 0x003a7,
			0x003a8, 0x02126, 0x003aa, 0x003ab, 0x0038c, 0x0038e, 0x0038f, 0x003cf, 0x003d8, 0x003da, 0x003dc, 0x003de, 0x003e0, 0x003e2, 0x003e4, 0x003e6,
			0x003e8, 0x003ea, 0x003ec, 0x003ee, 0x003f9, 0x0037f, 0x003f7, 0x003fa, 0x00410, 0x00411, 0x01c80, 0x00413, 0x00414, 0x00415, 0x00416, 0x00417,
			0x00418, 0x00419, 0x0041a, 0x0041b, 0x0041c, 0x0041d, 0x0041e, 0x0041f, 0x00420, 0x00421, 0x00422, 0x01c85, 0x00423, 0x00424, 0x00425, 0x00426,
			0x00427, 0x00428, 0x00429, 0x01c86, 0x0042b, 0x0042c, 0x0042d, 0x0042e, 0x0042f, 0x00400, 0x00401, 0x00402, 0x00403, 0x00404, 0x00405, 0x00406,
			0x00407, 0x00408, 0x00409, 0x0040a, 0x0040b, 0x0040c, 0x0040d, 0x0040e, 0x0040f, 0x00460, 0x00462, 0x00464, 0x00466, 0x00468, 0x0046a, 0x0046c,
			0x0046e, 0x00470, 0x00472, 0x00474, 0x00476, 0x00478, 0x0047a, 0x0047c, 0x0047e, 0x00480, 0x0048a, 0x0048c, 0x0048e, 0x00490, 0x00492, 0x00494,
			0x00496, 0x00498, 0x0049a, 0x0049c, 0x0049e, 0x004a0, 0x004a2, 0x004a4, 0x004a6, 0x004a8, 0x004aa, 0x004ac, 0x004ae, 0x004b0, 0x004b2, 0x004b4,
			0x004b6, 0x004b8, 0x004ba, 0x004bc, 0x004be, 0x004c1, 0x004c3, 0x004c5, 0x004c7, 0x004c9, 0x004cb, 0x004cd, 0x004c0, 0x004d0, 0x004d2, 0x004d4,
			0x004d6, 0x004d8, 0x004da, 0x004dc, 0x004de, 0x004e0, 0x004e2, 0x004e4, 0x004e6, 0x004e8, 0x004ea, 0x004ec, 0x004ee, 0x004f0, 0x004f2, 0x004f4,
			0x004f6, 0x004f8, 0x004fa, 0x004fc, 0x004fe, 0x00500, 0x00502, 0x00504, 0x00506, 0x00508, 0x0050a, 0x0050c, 0x0050e, 0x00510, 0x00512, 0x00514,
			0x00516, 0x00518, 0x0051a, 0x0051c, 0x0051e, 0x00520, 0x00522, 0x00524, 0x00526, 0x00528, 0x0052a, 0x0052c, 0x0052e, 0x00531, 0x00532, 0x00533,
			0x00534, 0x00535, 0x00536, 0x00537, 0x00538, 0x00539, 0x0053a, 0x0053b, 0x0053c, 0x0053d, 0x0053e, 0x0053f, 0x00540, 0x00541, 0x00542, 0x00543,
			0x00544, 0x00545, 0x00546, 0x00547, 0x00548, 0x00549, 0x0054a, 0x0054b, 0x0054c, 0x0054d, 0x0054e, 0x0054f, 0x00550, 0x00551, 0x00552, 0x00553,
			0x00554, 0x00555, 0x00556, 0x01c90, 0x01c91, 0x01c92, 0x01c93, 0x01c94, 0x01c95, 0x01c96, 0x01c97, 0x01c98, 0x01c99, 0x01c9a, 0x01c9b, 0x01c9c,
			0x01c9d, 0x01c9e, 0x01c9f, 0x01ca0, 0x01ca1, 0x01ca2, 0x01ca3, 0x01ca4, 0x01ca5, 0x01ca6, 0x01ca7, 0x01ca8, 0x01ca9, 0x01caa, 0x01cab, 0x01cac,
			0x01cad, 0x01cae, 0x01caf, 0x01cb0, 0x01cb1, 0x01cb2, 0x01cb3, 0x01cb4, 0x01cb5, 0x01cb6, 0x01cb7, 0x01cb8, 0x01cb9, 0x01cba, 0x01cbd, 0x01cbe,
			0x01cbf, 0x0ab70, 0x0ab71, 0x0ab72, 0x0ab73, 0x0ab74, 0x0ab75, 0x0ab76, 0x0ab77, 0x0ab78, 0x0ab79, 0x0ab7a, 0x0ab7b, 0x0ab7c, 0x0ab7d, 0x0ab7e,
			0x0ab7f, 0x0ab80, 0x0ab81, 0x0ab82, 0x0ab83, 0x0ab84, 0x0ab85, 0x0ab86, 0x0ab87, 0x0ab88, 0x0ab89, 0x0ab8a, 0x0ab8b, 0x0ab8c, 0x0ab8d, 0x0ab8e,
			0x0ab8f, 0x0ab90, 0x0ab91, 0x0ab92, 0x0ab93, 0x0ab94, 0x0ab95, 0x0ab96, 0x0ab97, 0x0ab98, 0x0ab99, 0x0ab9a, 0x0ab9b, 0x0ab9c, 0x0ab9d, 0x0ab9e,
			0x0ab9f, 0x0aba0, 0x0aba1, 0x0aba2, 0x0aba3, 0x0aba4, 0x0aba5, 0x0aba6, 0x0aba7, 0x0aba8, 0x0aba9, 0x0abaa, 0x0abab, 0x0abac, 0x0abad, 0x0abae,
			0x0abaf, 0x0abb0, 0x0abb1, 0x0abb2, 0x0abb3, 0x0abb4, 0x0abb5, 0x0abb6, 0x0abb7, 0x0abb8, 0x0abb9, 0x0abba, 0x0abbb, 0x0abbc, 0x0abbd, 0x0abbe,
			0x0abbf, 0x013f8, 0x013f9, 0x013fa, 0x013fb, 0x013fc, 0x013fd, 0x0a77d, 0x02c63, 0x0a7c6, 0x01e00, 0x01e02, 0x01e04, 0x01e06, 0x01e08, 0x01e0a,
			0x01e0c, 0x01e0e, 0x01e10, 0x01e12, 0x01e14, 0x01e16, 0x01e18, 0x01e1a, 0x01e1c, 0x01e1e, 0x01e20, 0x01e22, 0x01e24, 0x01e26, 0x01e28, 0x01e2a,
			0x01e2c, 0x01e2e, 0x01e30, 0x01e32, 0x01e34, 0x01e36, 0x01e38, 0x01e3a, 0x01e3c, 0x01e3e, 0x01e40, 0x01e42, 0x01e44, 0x01e46, 0x01e48, 0x01e4a,
			0x01e4c, 0x01e4e, 0x01e50, 0x01e52, 0x01e54, 0x01e56, 0x01e58, 0x01e5a, 0x01e5c, 0x01e5e, 0x01e60, 0x01e62, 0x01e64, 0x01e66, 0x01e68, 0x01e6a,
			0x01e6c, 0x01e6e, 0x01e70, 0x01e72, 0x01e74, 0x01e76, 0x01e78, 0x01e7a, 0x01e7c, 0x01e7e, 0x01e80, 0x01e82, 0x01e84, 0x01e86, 0x01e88, 0x01e8a,
			0x01e8c, 0x01e8e, 0x01e90, 0x01e92, 0x01e94, 0x01ea0, 0x01ea2, 0x01ea4, 0x01ea6, 0x01ea8, 0x01eaa, 0x01eac, 0x01eae, 0x01eb0, 0x01eb2, 0x01eb4,
			0x01eb6, 0x01eb8, 0x01eba, 0x01ebc, 0x01ebe, 0x01ec0, 0x01ec2, 0x01ec4, 0x01ec6, 0x01ec8, 0x01eca, 0x01ecc, 0x01ece, 0x01ed0, 0x01ed2, 0x01ed4,
			0x01ed6, 0x01ed8, 0x01eda, 0x01edc, 0x01ede, 0x01ee0, 0x01ee2, 0x01ee4, 0x01ee6, 0x01ee8, 0x01eea, 0x01eec, 0x01eee, 0x01ef0, 0x01ef2, 0x01ef4,
			0x01ef6, 0x01ef8, 0x01efa, 0x01efc, 0x01efe, 0x01f08, 0x01f09, 0x01f0a, 0x01f0b, 0x01f0c, 0x01f0d, 0x01f0e, 0x01f0f, 0x01f18, 0x01f19, 0x01f1a,
			0x01f1b, 0x01f1c, 0x01f1d, 0x01f28, 0x01f29, 0x01f2a, 0x01f2b, 0x01f2c, 0x01f2d, 0x01f2e, 0x01f2f, 0x01f38, 0x01f39, 0x01f3a, 0x01f3b, 0x01f3c,
			0x01f3d, 0x01f3e, 0x01f3f, 0x01f48, 0x01f49, 0x01f4a, 0x01f4b, 0x01f4c, 0x01f4d, 0x01f59, 0x01f5b, 0x01f5d, 0x01f5f, 0x01f68, 0x01f69, 0x01f6a,
			0x01f6b, 0x01f6c, 0x01f6d, 0x01f6e, 0x01f6f, 0x01fba, 0x01fbb, 0x01fc8, 0x01fc9, 0x01fca, 0x01fcb, 0x01fda, 0x01fdb, 0x01ff8, 0x01ff9, 0x01fea,
			0x01feb, 0x01ffa, 0x01ffb, 0x01f88, 0x01f89, 0x01f8a, 0x01f8b, 0x01f8c, 0x01f8d, 0x01f8e, 0x01f8f, 0x01f98, 0x01f99, 0x01f9a, 0x01f9b, 0x01f9c,
			0x01f9d, 0x01f9e, 0x01f9f, 0x01fa8, 0x01fa9, 0x01faa, 0x01fab, 0x01fac, 0x01fad, 0x01fae, 0x01faf, 0x01fb8, 0x01fb9, 0x01fbc, 0x01fcc, 0x01fd8,
			0x01fd9, 0x01fe8, 0x01fe9, 0x01fec, 0x01ffc, 0x02132, 0x02160, 0x02161, 0x02162, 0x02163, 0x02164, 0x02165, 0x02166, 0x02167, 0x02168, 0x02169,
			0x0216a, 0x0216b, 0x0216c, 0x0216d, 0x0216e, 0x0216f, 0x02183, 0x024b6, 0x024b7, 0x024b8, 0x024b9, 0x024ba, 0x024bb, 0x024bc, 0x024bd, 0x024be,
			0x024bf, 0x024c0, 0x024c1, 0x024c2, 0x024c3, 0x024c4, 0x024c5, 0x024c6, 0x024c7, 0x024c8, 0x024c9, 0x024ca, 0x024cb, 0x024cc, 0x024cd, 0x024ce,
			0x024cf, 0x02c00, 0x02c01, 0x02c02, 0x02c03, 0x02c04, 0x02c05, 0x02c06, 0x02c07, 0x02c08, 0x02c09, 0x02c0a, 0x02c0b, 0x02c0c, 0x02c0d, 0x02c0e,
			0x02c0f, 0x02c10, 0x02c11, 0x02c12, 0x02c13, 0x02c14, 0x02c15, 0x02c16, 0x02c17, 0x02c18, 0x02c19, 0x02c1a, 0x02c1b, 0x02c1c, 0x02c1d, 0x02c1e,
			0x02c1f, 0x02c20, 0x02c21, 0x02c22, 0x02c23, 0x02c24, 0x02c25, 0x02c26, 0x02c27, 0x02c28, 0x02c29, 0x02c2a, 0x02c2b, 0x02c2c, 0x02c2d, 0x02c2e,
			0x02c60, 0x0023a, 0x0023e, 0x02c67, 0x02c69, 0x02c6b, 0x02c72, 0x02c75, 0x02c80, 0x02c82, 0x02c84, 0x02c86, 0x02c88, 0x02c8a, 0x02c8c, 0x02c8e,
			0x02c90, 0x02c92, 0x02c94, 0x02c96, 0x02c98, 0x02c9a, 0x02c9c, 0x02c9e, 0x02ca0, 0x02ca2, 0x02ca4, 0x02ca6, 0x02ca8, 0x02caa, 0x02cac, 0x02cae,
			0x02cb0, 0x02cb2, 0x02cb4, 0x02cb6, 0x02cb8, 0x02cba, 0x02cbc, 0x02cbe, 0x02cc0, 0x02cc2, 0x02cc4, 0x02cc6, 0x02cc8, 0x02cca, 0x02ccc, 0x02cce,
			0x02cd0, 0x02cd2, 0x02cd4, 0x02cd6, 0x02cd8, 0x02cda, 0x02cdc, 0x02cde, 0x02ce0, 0x02ce2, 0x02ceb, 0x02ced, 0x02cf2, 0x010a0, 0x010a1, 0x010a2,
			0x010a3, 0x010a4, 0x010a5, 0x010a6, 0x010a7, 0x010a8, 0x010a9, 0x010aa, 0x010ab, 0x010ac, 0x010ad, 0x010ae, 0x010af, 0x010b0, 0x010b1, 0x010b2,
			0x010b3, 0x010b4, 0x010b5, 0x010b6, 0x010b7, 0x010b8, 0x010b9, 0x010ba, 0x010bb, 0x010bc, 0x010bd, 0x010be, 0x010bf, 0x010c0, 0x010c1, 0x010c2,
			0x010c3, 0x010c4, 0x010c5, 0x010c7, 0x010cd, 0x0a640, 0x0a642, 0x0a644, 0x0a646, 0x0a648, 0x01c88, 0x0a64c, 0x0a64e, 0x0a650, 0x0a652, 0x0a654,
			0x0a656, 0x0a658, 0x0a65a, 0x0a65c, 0x0a65e, 0x0a660, 0x0a662, 0x0a664, 0x0a666, 0x0a668, 0x0a66a, 0x0a66c, 0x0a680, 0x0a682, 0x0a684, 0x0a686,
			0x0a688, 0x0a68a, 0x0a68c, 0x0a68e, 0x0a690, 0x0a692, 0x0a694, 0x0a696, 0x0a698, 0x0a69a, 0x0a722, 0x0a724, 0x0a726, 0x0a728, 0x0a72a, 0x0a72c,
			0x0a72e, 0x0a732, 0x0a734, 0x0a736, 0x0a738, 0x0a73a, 0x0a73c, 0x0a73e, 0x0a740, 0x0a742, 0x0a744, 0x0a746, 0x0a748, 0x0a74a, 0x0a74c, 0x0a74e,
			0x0a750, 0x0a752, 0x0a754, 0x0a756, 0x0a758, 0x0a75a, 0x0a75c, 0x0a75e, 0x0a760, 0x0a762, 0x0a764, 0x0a766, 0x0a768, 0x0a76a, 0x0a76c, 0x0a76e,
			0x0a779, 0x0a77b, 0x0a77e, 0x0a780, 0x0a782, 0x0a784, 0x0a786, 0x0a78b, 0x0a790, 0x0a792, 0x0a7c4, 0x0a796, 0x0a798, 0x0a79a, 0x0a79c, 0x0a79e,
			0x0a7a0, 0x0a7a2, 0x0a7a4, 0x0a7a6, 0x0a7a8, 0x0a7b4, 0x0a7b6, 0x0a7b8, 0x0a7ba, 0x0a7bc, 0x0a7be, 0x0a7c2, 0x0a7b3, 0x0ff21, 0x0ff22, 0x0ff23,
			0x0ff24, 0x0ff25, 0x0ff26, 0x0ff27, 0x0ff28, 0x0ff29, 0x0ff2a, 0x0ff2b, 0x0ff2c, 0x0ff2d, 0x0ff2e, 0x0ff2f, 0x0ff30, 0x0ff31, 0x0ff32, 0x0ff33,
			0x0ff34, 0x0ff35, 0x0ff36, 0x0ff37, 0x0ff38, 0x0ff39, 0x0ff3a, 0x10400, 0x10401, 0x10402, 0x10403, 0x10404, 0x10405, 0x10406, 0x10407, 0x10408,
			0x10409, 0x1040a, 0x1040b, 0x1040c, 0x1040d, 0x1040e, 0x1040f, 0x10410, 0x10411, 0x10412, 0x10413, 0x10414, 0x10415, 0x10416, 0x10417, 0x10418,
			0x10419, 0x1041a, 0x1041b, 0x1041c, 0x1041d, 0x1041e, 0x1041f, 0x10420, 0x10421, 0x10422, 0x10423, 0x10424, 0x10425, 0x10426, 0x10427, 0x104b0,
			0x104b1, 0x104b2, 0x104b3, 0x104b4, 0x104b5, 0x104b6, 0x104b7, 0x104b8, 0x104b9, 0x104ba, 0x104bb, 0x104bc, 0x104bd, 0x104be, 0x104bf, 0x104c0,
			0x104c1, 0x104c2, 0x104c3, 0x104c4, 0x104c5, 0x104c6, 0x104c7, 0x104c8, 0x104c9, 0x104ca, 0x104cb, 0x104cc, 0x104cd, 0x104ce, 0x104cf, 0x104d0,
			0x104d1, 0x104d2, 0x104d3, 0x10c80, 0x10c81, 0x10c82, 0x10c83, 0x10c84, 0x10c85, 0x10c86, 0x10c87, 0x10c88, 0x10c89, 0x10c8a, 0x10c8b, 0x10c8c,
			0x10c8d, 0x10c8e, 0x10c8f, 0x10c90, 0x10c91, 0x10c92, 0x10c93, 0x10c94, 0x10c95, 0x10c96, 0x10c97, 0x10c98, 0x10c99, 0x10c9a, 0x10c9b, 0x10c9c,
			0x10c9d, 0x10c9e, 0x10c9f, 0x10ca0, 0x10ca1, 0x10ca2, 0x10ca3, 0x10ca4, 0x10ca5, 0x10ca6, 0x10ca7, 0x10ca8, 0x10ca9, 0x10caa, 0x10cab, 0x10cac,
			0x10cad, 0x10cae, 0x10caf, 0x10cb0, 0x10cb1, 0x10cb2, 0x118a0, 0x118a1, 0x118a2, 0x118a3, 0x118a4, 0x118a5, 0x118a6, 0x118a7, 0x118a8, 0x118a9,
			0x118aa, 0x118ab, 0x118ac, 0x118ad, 0x118ae, 0x118af, 0x118b0, 0x118b1, 0x118b2, 0x118b3, 0x118b4, 0x118b5, 0x118b6, 0x118b7, 0x118b8, 0x118b9,
			0x118ba, 0x118bb, 0x118bc, 0x118bd, 0x118be, 0x118bf, 0x16e40, 0x16e41, 0x16e42, 0x16e43, 0x16e44, 0x16e45, 0x16e46, 0x16e47, 0x16e48, 0x16e49,
			0x16e4a, 0x16e4b, 0x16e4c, 0x16e4d, 0x16e4e, 0x16e4f, 0x16e50, 0x16e51, 0x16e52, 0x16e53, 0x16e54, 0x16e55, 0x16e56, 0x16e57, 0x16e58, 0x16e59,
			0x16e5a, 0x16e5b, 0x16e5c, 0x16e5d, 0x16e5e, 0x16e5f, 0x1e900, 0x1e901, 0x1e902, 0x1e903, 0x1e904, 0x1e905, 0x1e906, 0x1e907, 0x1e908, 0x1e909,
			0x1e90a, 0x1e90b, 0x1e90c, 0x1e90d, 0x1e90e, 0x1e90f, 0x1e910, 0x1e911, 0x1e912, 0x1e913, 0x1e914, 0x1e915, 0x1e916, 0x1e917, 0x1e918, 0x1e919,
			0x1e91a, 0x1e91b, 0x1e91c, 0x1e91d, 0x1e91e, 0x1e91f, 0x1e920, 0x1e921
		};

		Array<char> output;
		std::size_t stringLength = string.size();
		std::size_t idx = 0;

		arrayReserve(output, stringLength + 1);

		do {
			auto [c, nextIdx] = Utf8::NextChar(string, idx);

			const char32_t* f = std::lower_bound(l2u, l2u + arraySize(l2u), c);
			if (f != l2u + arraySize(l2u) && *f == c) {
				c = uc[f - l2u];
			}

			if (c < 0x7f) {
				arrayAppend(output, (char)c);
			} else if (c < 0x7ff) {
				arrayAppend(output, 0xC0 | (c >> 6));
				arrayAppend(output, 0x80 | (c & 0x3f));
			} else if (c < 0xFFFF) {
				arrayAppend(output, 0xE0 | (c >> 12));
				arrayAppend(output, 0x80 | ((c >> 6) & 0x3f));
				arrayAppend(output, 0x80 | (c & 0x3f));
			} else {
				arrayAppend(output, 0xF0 | (c >> 18));
				arrayAppend(output, 0x80 | ((c >> 12) & 0x3f));
				arrayAppend(output, 0x80 | ((c >> 6) & 0x3f));
				arrayAppend(output, 0x80 | (c & 0x3f));
			}

			idx = nextIdx;
		} while (idx < stringLength);

		arrayAppend(output, '\0');
		const std::size_t size = output.size();
		// This assumes that the growable array uses std::malloc() (which has to be std::free()'d later) in order to be
		// able to std::realloc(). The deleter doesn't use the size argument so it should be fine to transfer it over
		// to a String with the size excluding the null terminator.
		void(*const deleter)(char*, std::size_t) = output.deleter();
		DEATH_DEBUG_ASSERT(deleter, "Invalid deleter used", {});
		return String{output.release(), size - 1, deleter};
	}
	
	String replaceFirst(StringView string, StringView search, StringView replace) {
		// Handle also the case when the search string is empty - find() returns (empty) begin in that case and we just
		// prepend the replace string.
		const StringView found = string.find(search);
		if (!search || found) {
			String output{NoInit, string.size() + replace.size() - found.size()};
			const std::size_t begin = found.begin() - string.begin();
			std::memcpy(output.data(), string.data(), begin);
			std::memcpy(output.data() + begin, replace.data(), replace.size());
			const std::size_t end = begin + search.size();
			std::memcpy(output.data() + begin + replace.size(), string.data() + end, string.size() - end);
			return output;
		}

		return string;
	}

	String replaceAll(StringView string, StringView search, StringView replace) {
		DEATH_ASSERT(!search.empty(), "Empty search string would cause an infinite loop", {});
		Array<char> output;
		while (const StringView found = string.find(search)) {
			arrayAppend(output, string.prefix(found.begin()));
			arrayAppend(output, replace);
			string = string.slice(found.end(), string.end());
		}
		arrayAppend(output, string);
		arrayAppend(output, '\0');
		const std::size_t size = output.size();
		// This assumes that the growable array uses std::malloc() (which has to be std::free()'d later) in order to be
		// able to std::realloc(). The deleter doesn't use the size argument so it should be fine to transfer it over
		// to a String with the size excluding the null terminator.
		void(*const deleter)(char*, std::size_t) = output.deleter();
		DEATH_DEBUG_ASSERT(deleter, "Invalid deleter used", {});
		return String{output.release(), size - 1, deleter};
	}

	String replaceAll(String string, char search, char replace) {
		// If not even a single character is found, pass the argument through unchanged
		const MutableStringView found = string.find(search);
		if (!found) return string;

		// Convert the found pointer to an index to be able to replace even after a potential reallocation below
		const std::size_t firstFoundPosition = found.begin() - string.begin();

		// Otherwise, in the rare scenario where we'd get a non-owned string (such as String::nullTerminatedView() passed
		// right into the function), make it owned first. Usually it'll get copied however, which already makes it owned.
		if (!string.isSmall() && string.deleter()) string = String{string};

		// Replace the already-found occurence and delegate the rest further
		string[firstFoundPosition] = replace;
		replaceAllInPlace(string.exceptPrefix(firstFoundPosition + 1), search, replace);
		return string;
	}

	namespace Implementation
	{
		namespace
		{
			// Has to be first because the Avx2 variant may delegate to it if DEATH_ENABLE_SSE41 isn't defined due to compiler warts
			DEATH_CPU_MAYBE_UNUSED typename std::decay<decltype(replaceAllInPlaceCharacter)>::type replaceAllInPlaceCharacterImplementation(Cpu::ScalarT) {
				return [](char* const data, const std::size_t size, const char search, const char replace) {
					for (char* i = data, *end = data + size; i != end; ++i)
						if (*i == search) *i = replace;
				};
			}

			// SIMD implementation of character replacement. All tricks inherited from stringFindCharacterImplementation(),
			// in particular the unaligned preamble and postamble, as well as reducing the branching overhead by going through
			// four vectors at a time. See its documentation for more background info.
#if defined(DEATH_ENABLE_SSE41)
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE_SSE41 typename std::decay<decltype(replaceAllInPlaceCharacter)>::type replaceAllInPlaceCharacterImplementation(Cpu::Sse41T) {
				return [](char* const data, const std::size_t size, const char search, const char replace) DEATH_ENABLE_SSE41 {
					// If we have less than 16 bytes, do it the stupid way
					{
						char* j = data;
						switch (size) {
							case 15: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case 14: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case 13: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case 12: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case 11: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case 10: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  9: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  8: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  7: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  6: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  5: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  4: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  3: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  2: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  1: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  0: return;
						}
					}

					const __m128i vsearch = _mm_set1_epi8(search);
					const __m128i vreplace = _mm_set1_epi8(replace);

					// Calculate the next aligned position. If the pointer was already aligned, we'll go to the next aligned
					// vector; if not, there will be an overlap and we'll process some bytes twice.
					char* i = reinterpret_cast<char*>(reinterpret_cast<std::uintptr_t>(data + 16) & ~0xf);
					DEATH_DEBUG_ASSERT(i > data && reinterpret_cast<std::uintptr_t>(i) % 16 == 0);

					// Unconditionally process the first vector a slower, unaligned way. Do the replacement unconditionally
					// because it's faster than checking first.
					{
						const __m128i in = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
						const __m128i out = _mm_blendv_epi8(in, vreplace, _mm_cmpeq_epi8(in, vsearch));
						_mm_storeu_si128(reinterpret_cast<__m128i*>(data), out);
					}

					// Go four aligned vectors at a time. Bytes overlapping with the previous unaligned load will be processed
					// twice, but as everything is already replaced there, it'll be a no-op for those. Similarly to the find()
					// implementation, this reduces the branching overhead compared to branching on every vector, making
					// it comparable to an unconditional replace with a character that occurs often, but significantly faster
					// for characters that are rare.
					char* const end = data + size;
					for (; i + 4 * 16 <= end; i += 4 * 16) {
						const __m128i inA = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 0);
						const __m128i inB = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 1);
						const __m128i inC = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 2);
						const __m128i inD = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 3);

						const __m128i eqA = _mm_cmpeq_epi8(inA, vsearch);
						const __m128i eqB = _mm_cmpeq_epi8(inB, vsearch);
						const __m128i eqC = _mm_cmpeq_epi8(inC, vsearch);
						const __m128i eqD = _mm_cmpeq_epi8(inD, vsearch);

						const __m128i or1 = _mm_or_si128(eqA, eqB);
						const __m128i or2 = _mm_or_si128(eqC, eqD);
						const __m128i or3 = _mm_or_si128(or1, or2);
						// If any of the four vectors contained the character, replace all of them -- branching again
						// on each would hurt the "common character" case
						if (_mm_movemask_epi8(or3)) {
							const __m128i outA = _mm_blendv_epi8(inA, vreplace, eqA);
							const __m128i outB = _mm_blendv_epi8(inB, vreplace, eqB);
							const __m128i outC = _mm_blendv_epi8(inC, vreplace, eqC);
							const __m128i outD = _mm_blendv_epi8(inD, vreplace, eqD);

							_mm_store_si128(reinterpret_cast<__m128i*>(i) + 0, outA);
							_mm_store_si128(reinterpret_cast<__m128i*>(i) + 1, outB);
							_mm_store_si128(reinterpret_cast<__m128i*>(i) + 2, outC);
							_mm_store_si128(reinterpret_cast<__m128i*>(i) + 3, outD);
						}
					}

					// Handle remaining less than four aligned vectors. Again do the replacement unconditionally.
					for (; i + 16 <= end; i += 16) {
						const __m128i in = _mm_load_si128(reinterpret_cast<const __m128i*>(i));
						const __m128i out = _mm_blendv_epi8(in, vreplace, _mm_cmpeq_epi8(in, vsearch));
						_mm_store_si128(reinterpret_cast<__m128i*>(i), out);
					}

					// Handle remaining less than a vector in an unaligned way, again unconditionally and again overlapping bytes are no-op.
					if (i < end) {
						DEATH_DEBUG_ASSERT(i + 16 > end);
						i = end - 16;
						const __m128i in = _mm_loadu_si128(reinterpret_cast<const __m128i*>(i));
						const __m128i out = _mm_blendv_epi8(in, vreplace, _mm_cmpeq_epi8(in, vsearch));
						_mm_storeu_si128(reinterpret_cast<__m128i*>(i), out);
					}
				};
			}
#endif

#if defined(DEATH_ENABLE_AVX2)
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE_AVX2 typename std::decay<decltype(replaceAllInPlaceCharacter)>::type replaceAllInPlaceCharacterImplementation(Cpu::Avx2T) {
				return [](char* const data, const std::size_t size, const char search, const char replace) DEATH_ENABLE_AVX2 {
					// If we have less than 32 bytes, fall back to the SSE variant
					if (size < 32)
						return replaceAllInPlaceCharacterImplementation(Cpu::Sse41)(data, size, search, replace);

					const __m256i vsearch = _mm256_set1_epi8(search);
					const __m256i vreplace = _mm256_set1_epi8(replace);

					// Calculate the next aligned position. If the pointer was already aligned, we'll go to the next aligned vector;
					// if not, there will be an overlap and we'll process some bytes twice.
					char* i = reinterpret_cast<char*>(reinterpret_cast<std::uintptr_t>(data + 32) & ~0x1f);
					DEATH_DEBUG_ASSERT(i > data && reinterpret_cast<std::uintptr_t>(i) % 32 == 0);

					// Unconditionally process the first vector a slower, unaligned way. Do the replacement unconditionally
					// because it's faster than checking first.
					{
						// _mm256_lddqu_si256 is just an alias to _mm256_loadu_si256, no reason to use it: https://stackoverflow.com/a/47426790
						const __m256i in = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(data));
						const __m256i out = _mm256_blendv_epi8(in, vreplace, _mm256_cmpeq_epi8(in, vsearch));
						_mm256_storeu_si256(reinterpret_cast<__m256i*>(data), out);
					}

					// Go four aligned vectors at a time. Bytes overlapping with the previous unaligned load will be processed twice,
					// but as everything is already replaced there, it'll be a no-op for those. Similarly to the SSE2 implementation,
					// this reduces the branching overhead compared to branching on every vector, making it comparable to an unconditional
					// replace with a character that occurs often, but significantly faster for characters that are rare.
					char* const end = data + size;
					for (; i + 4 * 32 <= end; i += 4 * 32) {
						const __m256i inA = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 0);
						const __m256i inB = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 1);
						const __m256i inC = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 2);
						const __m256i inD = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 3);

						const __m256i eqA = _mm256_cmpeq_epi8(inA, vsearch);
						const __m256i eqB = _mm256_cmpeq_epi8(inB, vsearch);
						const __m256i eqC = _mm256_cmpeq_epi8(inC, vsearch);
						const __m256i eqD = _mm256_cmpeq_epi8(inD, vsearch);

						const __m256i or1 = _mm256_or_si256(eqA, eqB);
						const __m256i or2 = _mm256_or_si256(eqC, eqD);
						const __m256i or3 = _mm256_or_si256(or1, or2);
						// If any of the four vectors contained the character, replace all of them -- branching again
						// on each would hurt the "common character" case
						if (_mm256_movemask_epi8(or3)) {
							const __m256i outA = _mm256_blendv_epi8(inA, vreplace, eqA);
							const __m256i outB = _mm256_blendv_epi8(inB, vreplace, eqB);
							const __m256i outC = _mm256_blendv_epi8(inC, vreplace, eqC);
							const __m256i outD = _mm256_blendv_epi8(inD, vreplace, eqD);

							_mm256_store_si256(reinterpret_cast<__m256i*>(i) + 0, outA);
							_mm256_store_si256(reinterpret_cast<__m256i*>(i) + 1, outB);
							_mm256_store_si256(reinterpret_cast<__m256i*>(i) + 2, outC);
							_mm256_store_si256(reinterpret_cast<__m256i*>(i) + 3, outD);
						}
					}

					// Handle remaining less than four aligned vectors. Again do the replacement unconditionally.
					for (; i + 32 <= end; i += 32) {
						const __m256i in = _mm256_load_si256(reinterpret_cast<const __m256i*>(i));
						const __m256i out = _mm256_blendv_epi8(in, vreplace, _mm256_cmpeq_epi8(in, vsearch));
						_mm256_store_si256(reinterpret_cast<__m256i*>(i), out);
					}

					// Handle remaining less than a vector in an unaligned way, again unconditionally and again overlapping bytes are no-op.
					if (i < end) {
						DEATH_DEBUG_ASSERT(i + 32 > end);
						i = end - 32;
						// _mm256_lddqu_si256 is just an alias to _mm256_loadu_si256, no reason to use it: https://stackoverflow.com/a/47426790
						const __m256i in = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(i));
						const __m256i out = _mm256_blendv_epi8(in, vreplace, _mm256_cmpeq_epi8(in, vsearch));
						_mm256_storeu_si256(reinterpret_cast<__m256i*>(i), out);
					}
				};
			}
#endif

			// Just a direct translation of the SSE4.1 code
#if defined(DEATH_ENABLE_SIMD128)
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE_SIMD128 typename std::decay<decltype(replaceAllInPlaceCharacter)>::type replaceAllInPlaceCharacterImplementation(Cpu::Simd128T) {
				return [](char* const data, const std::size_t size, const char search, const char replace) DEATH_ENABLE_SIMD128 {
					// If we have less than 16 bytes, do it the stupid way
					{
						char* j = data;
						switch (size) {
							case 15: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case 14: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case 13: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case 12: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case 11: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case 10: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  9: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  8: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  7: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  6: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  5: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  4: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  3: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  2: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  1: if (*j++ == search) *(j - 1) = replace; DEATH_FALLTHROUGH
							case  0: return;
						}
					}

					const v128_t vsearch = wasm_i8x16_splat(search);
					const v128_t vreplace = wasm_i8x16_splat(replace);

					// Calculate the next aligned position. If the pointer was already aligned, we'll go to the next aligned
					// vector; if not, there will be an overlap and we'll process some bytes twice.
					char* i = reinterpret_cast<char*>(reinterpret_cast<std::uintptr_t>(data + 16) & ~0xf);
					DEATH_DEBUG_ASSERT(i > data && reinterpret_cast<std::uintptr_t>(i) % 16 == 0);

					// Unconditionally process the first vector a slower, unaligned way. WASM doesn't differentiate between
					// aligned and unaligned load/store, it's always unaligned, but the hardware might behave better if we
					// try to avoid unaligned operations.
					{
						const v128_t in = wasm_v128_load(reinterpret_cast<const v128_t*>(data));
						const v128_t out = wasm_v128_bitselect(vreplace, in, wasm_i8x16_eq(in, vsearch));
						wasm_v128_store(reinterpret_cast<v128_t*>(data), out);
					}

					// Go four aligned vectors at a time. Bytes overlapping with the previous unaligned load will be processed
					// twice, but as everything is already replaced there, it'll be a no-op for those. Similarly to the SSE2 / AVX2
					// implementation, this reduces the branching overhead compared to branching on every vector, making it
					// comparable to an unconditional replace with a character that occurs often, but significantly faster for
					// characters that are rare, on x86 at least. Elsewhere it *can* be slower due to the slow movemask emulation.
					char* const end = data + size;
					for (; i + 4 * 16 <= end; i += 4 * 16) {
						const v128_t inA = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 0);
						const v128_t inB = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 1);
						const v128_t inC = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 2);
						const v128_t inD = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 3);

						const v128_t eqA = wasm_i8x16_eq(inA, vsearch);
						const v128_t eqB = wasm_i8x16_eq(inB, vsearch);
						const v128_t eqC = wasm_i8x16_eq(inC, vsearch);
						const v128_t eqD = wasm_i8x16_eq(inD, vsearch);

						const v128_t or1 = wasm_v128_or(eqA, eqB);
						const v128_t or2 = wasm_v128_or(eqC, eqD);
						const v128_t or3 = wasm_v128_or(or1, or2);
						// If any of the four vectors contained the character, replace all of them -- branching again
						// on each would hurt the "common character" case
						if (wasm_i8x16_bitmask(or3)) {
							const v128_t outA = wasm_v128_bitselect(vreplace, inA, eqA);
							const v128_t outB = wasm_v128_bitselect(vreplace, inB, eqB);
							const v128_t outC = wasm_v128_bitselect(vreplace, inC, eqC);
							const v128_t outD = wasm_v128_bitselect(vreplace, inD, eqD);

							wasm_v128_store(reinterpret_cast<v128_t*>(i) + 0, outA);
							wasm_v128_store(reinterpret_cast<v128_t*>(i) + 1, outB);
							wasm_v128_store(reinterpret_cast<v128_t*>(i) + 2, outC);
							wasm_v128_store(reinterpret_cast<v128_t*>(i) + 3, outD);
						}
					}

					// Handle remaining less than four aligned vectors. Again do the replacement unconditionally.
					for (; i + 16 <= end; i += 16) {
						const v128_t in = wasm_v128_load(reinterpret_cast<const v128_t*>(i));
						const v128_t out = wasm_v128_bitselect(vreplace, in, wasm_i8x16_eq(in, vsearch));
						wasm_v128_store(reinterpret_cast<v128_t*>(i), out);
					}

					// Handle remaining less than a vector in an unaligned way. Overlapping bytes are again no-op.
					// Again WASM doesn't have any dedicated unaligned load/store instruction.
					if (i < end) {
						DEATH_DEBUG_ASSERT(i + 16 > end);
						i = end - 16;
						const v128_t in = wasm_v128_load(reinterpret_cast<const v128_t*>(i));
						const v128_t out = wasm_v128_bitselect(vreplace, in, wasm_i8x16_eq(in, vsearch));
						wasm_v128_store(reinterpret_cast<v128_t*>(i), out);
					}
				};
			}
#endif
		}

		DEATH_CPU_DISPATCHER_BASE(replaceAllInPlaceCharacterImplementation)
		DEATH_CPU_DISPATCHED(replaceAllInPlaceCharacterImplementation, void DEATH_CPU_DISPATCHED_DECLARATION(replaceAllInPlaceCharacter)(char* data, std::size_t size, char search, char replace))({
			return replaceAllInPlaceCharacterImplementation(Cpu::DefaultBase)(data, size, search, replace);
		})
	}

}}}