File: StringView.cpp

package info (click to toggle)
jazz2-native 3.5.0-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 16,912 kB
  • sloc: cpp: 172,557; xml: 113; python: 36; makefile: 5; sh: 2
file content (1318 lines) | stat: -rw-r--r-- 63,584 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
#include "StringView.h"
#include "Array.h"
#include "ArrayView.h"
#include "GrowableArray.h"
#include "StaticArray.h"
#include "String.h"
#include "../Asserts.h"
#include "../Cpu.h"

#include <cstring>
#include <algorithm>

// Clang-CL has DEATH_ENABLE_BMI1 enabled only when explicitly specified on command line, so the includes have to be
// complicated like this to still include the headers for count() implementation which needs just POPCNT and not BMI1
#if ((defined(DEATH_ENABLE_SSE2) || defined(DEATH_ENABLE_AVX)) && defined(DEATH_ENABLE_BMI1)) || (defined(DEATH_ENABLE_AVX) && defined(DEATH_ENABLE_POPCNT))
#	include "../IntrinsicsAvx.h" /* TZCNT is in AVX headers :( */
#elif defined(DEATH_ENABLE_SSE2) && defined(DEATH_ENABLE_POPCNT)
#	include "../IntrinsicsSse4.h"
#endif
#if defined(DEATH_ENABLE_NEON) && !defined(DEATH_TARGET_32BIT)
#	include <arm_neon.h>
#	if defined(DEATH_TARGET_MSVC) && !defined(DEATH_TARGET_CLANG)
#		include <intrin.h> /* _CountTrailingZeros64() */
#	endif
#endif
#if defined(DEATH_ENABLE_SIMD128)
#	include <wasm_simd128.h>
#endif

namespace Death { namespace Containers {
//###==##====#=====--==~--~=~- --- -- -  -  -   -

	template<class T> BasicStringView<T>::BasicStringView(T* const data, const StringViewFlags flags, std::nullptr_t) noexcept : BasicStringView{data,
		data ? std::strlen(data) : 0,
		flags | (data ? StringViewFlags::NullTerminated : StringViewFlags::Global)} {}

	template<class T> BasicStringView<T>::BasicStringView(String& string) noexcept : BasicStringView{string.data(), string.size(), string.viewFlags()} {}

	template<> template<> BasicStringView<const char>::BasicStringView(const String& string) noexcept : BasicStringView{string.data(), string.size(), string.viewFlags()} {}

	template<class T> Array<BasicStringView<T>> BasicStringView<T>::split(const char delimiter) const {
		Array<BasicStringView<T>> parts;
		T* const end = this->end();
		T* oldpos = _data;
		T* pos;
		while (oldpos < end && (pos = static_cast<T*>(std::memchr(oldpos, delimiter, end - oldpos)))) {
			arrayAppend(parts, slice(oldpos, pos));
			oldpos = pos + 1;
		}

		if (!empty())
			arrayAppend(parts, suffix(oldpos));

		return parts;
	}

	template<class T> Array<BasicStringView<T>> BasicStringView<T>::splitWithoutEmptyParts(const char delimiter) const {
		Array<BasicStringView<T>> parts;
		T* const end = this->end();
		T* oldpos = _data;
		while (oldpos < end) {
			T* pos = static_cast<T*>(std::memchr(oldpos, delimiter, end - oldpos));
			// Not sure why memchr can't just do this, it would make much more sense
			if (!pos) pos = end;

			if (pos != oldpos)
				arrayAppend(parts, slice(oldpos, pos));

			oldpos = pos + 1;
		}

		return parts;
	}

	namespace Implementation
	{
		const char* stringFindString(const char* data, const std::size_t size, const char* const substring, const std::size_t substringSize) {
			// If the substring is not larger than the string we search in
			if (substringSize > 0 && substringSize <= size) {
				if (size == 0) return data;

				// Otherwise compare it with the string at all possible positions in the string until we have a match
				/*for (const char* const max = data + size - substringSize; data <= max; ++data) {
					if (std::memcmp(data, substring, substringSize) == 0)
						return data;
				}*/

				// Simplified Boyer-Moore algorithm should be faster than std::memcmp()
				std::size_t substringSize_1 = substringSize - 1;
				char lastNeedle = substring[substringSize_1];

				// Boyer-Moore skip value for the last char in the needle
				// Zero is not a valid value, skip will be computed the first time it's needed
				std::size_t skip = 0;
				const char* begin = data;
				const char* end = data + size - substringSize_1;

				while (begin < end) {
					// Boyer-Moore: match the last element in the needle
					while (begin[substringSize_1] != lastNeedle) {
						if (++begin == end) {
							return {};
						}
					}
					// Here we know that the last char matches, continue in pedestrian mode
					for (std::size_t j = 0; ; ) {
						if (begin[j] != substring[j]) {
							// Not found, we can skip, compute the skip value lazily
							if (skip == 0) {
								skip = 1;
								while (skip <= substringSize_1 && substring[substringSize_1 - skip] != lastNeedle) {
									++skip;
								}
							}
							begin += skip;
							break;
						}

						if (++j == substringSize) {
							return begin;
						}
					}
				}
			}

			// If the substring is larger or no match was found, fail
			return {};
		}
	}

	template<class T> Array<BasicStringView<T>> BasicStringView<T>::split(const StringView delimiter) const {
		const char* const delimiterData = delimiter.data();
		const std::size_t delimiterSize = delimiter.size();
		DEATH_ASSERT(delimiterSize, "Delimiter is empty", {});

		Array<BasicStringView<T>> parts;
		const char* const end = this->end();
		const char* oldpos = _data;
		const char* pos;
		while (oldpos < end && (pos = Implementation::stringFindString(oldpos, end - oldpos, delimiterData, delimiterSize))) {
			arrayAppend(parts, slice(const_cast<T*>(oldpos), const_cast<T*>(pos)));
			oldpos = pos + delimiterSize;
		}

		if (!empty())
			arrayAppend(parts, suffix(const_cast<T*>(oldpos)));

		return parts;
	}

	namespace Implementation
	{
		const char* stringFindLastString(const char* const data, const std::size_t size, const char* const substring, const std::size_t substringSize) {
			// If the substring is not larger than the string we search in
			if (substringSize <= size) {
				if (!size) return data;

				// Otherwise compare it with the string at all possible positions in the string until we have a match.
				for (const char* i = data + size - substringSize; i >= data; --i) {
					if (std::memcmp(i, substring, substringSize) == 0)
						return i;
				}
			}

			// If the substring is larger or no match was found, fail
			return {};
		}

		namespace
		{
			/* SIMD implementation of character lookup. Loosely based off
			   https://docs.rs/memchr/2.3.4/src/memchr/x86/sse2.rs.html, which in turn is
			   based off https://gms.tf/stdfind-and-memchr-optimizations.html, which at the
			   time of writing (Jul 2022) uses m.css, so the circle is complete :))
			   The code below is commented, but the core points are the following:
				1.  do as much as possible via aligned loads,
				2.  otherwise, do as much as possible via unaligned vector loads even at
					the cost of ovelapping with an aligned load,
				3.  otherwise, fall back to a smaller vector width (AVX -> SSE) or to a
					scalar code
			   The 128-bit variant first checks if there's less than 16 bytes. If it is, it
			   just checks each of them sequentially. Otherwise, with 16 and more bytes,
			   the following is done:
				  +---+                         +---+
				  | A |                         | D |
				  +---+                         +---+
					+---+---+---+---+     +---+--
					| B :   :   :   | ... | C | ...
					+---+---+---+---+     +---+--
				A.  First it does an unconditional unaligned load of a single vector
					(assuming an extra conditional branch would likely be slower than the
					unaligned load ovehead), compares all bytes inside to the (broadcasted)
					search value and for all bytes that are equal calculates a bitmask (if
					4th and 7th byte is present, the bitmask has bit 4 and 7 set). Then, if
					any bit is set, returns the  position of the first bit which is the
					found index.
				B.  Next it finds an aligned position. If the vector A was already aligned,
					it will start right after, otherwise there may be up to 15 bytes
					overlap that'll be checked twice. From the aligned position, to avoid
					branching too often, it goes in a batch of four vectors at a time,
					checking the result together for all four. Which also helps offset the
					extra work from the initial overlap.
				C.  Once there is less than four vectors left, it goes vector-by-vector,
					still doing aligned loads, but branching for every.
				D.  Once there's less than 16 bytes left, it performs an unaligned load
					that may overlap with the previous aligned vector, similarly to the
					initial unaligned load A.
				The 256-bit variant is mostly just about expanding from 16 bytes at a time
				to 32 bytes at a time. The only difference is that instead of doing a
				scalar fallback for less than 32 bytes, it delegates to the 128-bit
				variant --- effectively performing the lookup with either two overlapping
				16-byte vectors (or falling back to scalar for less than 16 bytes).
				The ARM variant has the high-level concept similar to x86, except that NEON
				doesn't have a bitmask instruction. Instead a "right shift and narrow"
				instruction is used, see comments there for details.
				The WASM variant is mostly a direct translation of the x86 variant, except
				as noted in code comments. */

#if defined(DEATH_ENABLE_SSE2) && defined(DEATH_ENABLE_BMI1)
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE(SSE2, BMI1) typename std::decay<decltype(stringFindCharacter)>::type stringFindCharacterImplementation(DEATH_CPU_DECLARE(Cpu::Sse2 | Cpu::Bmi1)) {
				// Can't use trailing return type due to a GCC 9.3 bug, which is the default on Ubuntu 20.04: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90333
				return [](const char* const data, const std::size_t size, const char character) DEATH_ENABLE(SSE2, BMI1) {
					/* If we have less than 16 bytes, do it the stupid way. Compared to a plain
					   loop this is 1.5-2x faster when unrolled. Interestingly enough, on GCC
					   (11) doing a pre-increment and `return j` leads to
						lea    0x1(%rcx),%rax
						mov    %rax,%r8
						cmp    0x1(%rcx),%dl
						je     0x63f43 <+243>
					   repeated 15 times (with <+243> returning %r8 for all), while a
					   post-increment and `return j - 1` is just
						lea    0x1(%rax),%rcx
						cmp    (%rax),%dl
						je     0x63f20 <+208>
					   with %rax and %rcx alternating in every case and the jump always
					   different. That's 25% instructions less for the post-increment, and the
					   benchmark confirms that (~3.50 vs ~2.80 µs). Clang (13) does a similar
					   thing, although it has `lea, cmp, mov, je` in the first case instead and
					   `cmp, je, add` in the second case instead, and (probably due to the
					   different order?) the benchmark doesn't show any difference between the
					   two. Since post-increment significantly helps GCC and doesn't make
					   Clang slower, use it. */
					{
						const char* j = data;
						switch (size) {
							case 15: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case 14: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case 13: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case 12: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case 11: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case 10: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case  9: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case  8: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case  7: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case  6: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case  5: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case  4: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case  3: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case  2: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case  1: if (*j++ == character) return j - 1; DEATH_FALLTHROUGH
							case  0: return static_cast<const char*>(nullptr);
						}
					}

					const __m128i vn1 = _mm_set1_epi8(character);

					// Unconditionally do a lookup in the first vector a slower, unaligned way. Any extra branching to avoid
					// the unaligned load if already aligned would be most probably more expensive than the actual unaligned load.
					{
						const __m128i chunk = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
						if (const int mask = _mm_movemask_epi8(_mm_cmpeq_epi8(chunk, vn1)))
							return data + _tzcnt_u32(mask);
					}

					// Go to the next aligned position. If the pointer was already aligned, we'll go to the next aligned vector;
					// if not, there will be an overlap and we'll check some bytes twice.
					const char* i = reinterpret_cast<const char*>(reinterpret_cast<std::uintptr_t>(data + 16) & ~0xf);
					DEATH_DEBUG_ASSERT(i > data && reinterpret_cast<std::uintptr_t>(i) % 16 == 0);

					// Go four vectors at a time with the aligned pointer
					const char* const end = data + size;
					for (; i + 4 * 16 <= end; i += 4 * 16) {
						const __m128i a = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 0);
						const __m128i b = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 1);
						const __m128i c = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 2);
						const __m128i d = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 3);

						const __m128i eqA = _mm_cmpeq_epi8(vn1, a);
						const __m128i eqB = _mm_cmpeq_epi8(vn1, b);
						const __m128i eqC = _mm_cmpeq_epi8(vn1, c);
						const __m128i eqD = _mm_cmpeq_epi8(vn1, d);

						const __m128i or1 = _mm_or_si128(eqA, eqB);
						const __m128i or2 = _mm_or_si128(eqC, eqD);
						const __m128i or3 = _mm_or_si128(or1, or2);
						if (_mm_movemask_epi8(or3)) {
							if (const int mask = _mm_movemask_epi8(eqA))
								return i + 0 * 16 + _tzcnt_u32(mask);
							if (const int mask = _mm_movemask_epi8(eqB))
								return i + 1 * 16 + _tzcnt_u32(mask);
							if (const int mask = _mm_movemask_epi8(eqC))
								return i + 2 * 16 + _tzcnt_u32(mask);
							if (const int mask = _mm_movemask_epi8(eqD))
								return i + 3 * 16 + _tzcnt_u32(mask);
							// Unreachable
						}
					}

					// Handle remaining less than four vectors
					for (; i + 16 <= end; i += 16) {
						const __m128i chunk = _mm_load_si128(reinterpret_cast<const __m128i*>(i));
						if (const int mask = _mm_movemask_epi8(_mm_cmpeq_epi8(chunk, vn1)))
							return i + _tzcnt_u32(mask);
					}

					// Handle remaining less than a vector with an unaligned search, again overlapping back
					// with the previous already-searched elements
					if (i < end) {
						DEATH_DEBUG_ASSERT(i + 16 > end);
						i = end - 16;
						const __m128i chunk = _mm_loadu_si128(reinterpret_cast<const __m128i*>(i));
						if (const int mask = _mm_movemask_epi8(_mm_cmpeq_epi8(chunk, vn1)))
							return i + _tzcnt_u32(mask);
					}

					return static_cast<const char*>(nullptr);
				};
			}
#endif

#if defined(DEATH_ENABLE_AVX2) && defined(DEATH_ENABLE_BMI1)
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE(AVX2, BMI1) typename std::decay<decltype(stringFindCharacter)>::type stringFindCharacterImplementation(DEATH_CPU_DECLARE(Cpu::Avx2 | Cpu::Bmi1)) {
				// Can't use trailing return type due to a GCC 9.3 bug, which is the default on Ubuntu 20.04: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90333
				return [](const char* const data, const std::size_t size, const char character) DEATH_ENABLE(AVX2, BMI1) {
					// If we have less than 32 bytes, fall back to the SSE variant
					if (size < 32)
						return stringFindCharacterImplementation(DEATH_CPU_SELECT(Cpu::Sse2 | Cpu::Bmi1))(data, size, character);

					const __m256i vn1 = _mm256_set1_epi8(character);

					// Unconditionally do a lookup in the first vector a slower, unaligned way. Any extra branching to avoid
					// the unaligned load if already aligned would be most probably more expensive than the actual unaligned load.
					{
						// _mm256_lddqu_si256 is just an alias to _mm256_loadu_si256, no reason to use it: https://stackoverflow.com/a/47426790
						const __m256i chunk = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(data));
						if (const int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(chunk, vn1)))
							return data + _tzcnt_u32(mask);
					}

					// Go to the next aligned position. If the pointer was already aligned, we'll go to the next aligned vector;
					// if not, there will be an overlap and we'll check some bytes twice.
					const char* i = reinterpret_cast<const char*>(reinterpret_cast<std::uintptr_t>(data + 32) & ~0x1f);
					DEATH_DEBUG_ASSERT(i > data && reinterpret_cast<std::uintptr_t>(i) % 32 == 0);

					// Go four vectors at a time with the aligned pointer
					const char* const end = data + size;
					for (; i + 4 * 32 <= end; i += 4 * 32) {
						const __m256i a = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 0);
						const __m256i b = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 1);
						const __m256i c = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 2);
						const __m256i d = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 3);

						const __m256i eqA = _mm256_cmpeq_epi8(vn1, a);
						const __m256i eqB = _mm256_cmpeq_epi8(vn1, b);
						const __m256i eqC = _mm256_cmpeq_epi8(vn1, c);
						const __m256i eqD = _mm256_cmpeq_epi8(vn1, d);

						const __m256i or1 = _mm256_or_si256(eqA, eqB);
						const __m256i or2 = _mm256_or_si256(eqC, eqD);
						const __m256i or3 = _mm256_or_si256(or1, or2);
						if (_mm256_movemask_epi8(or3)) {
							if (const int mask = _mm256_movemask_epi8(eqA))
								return i + 0 * 32 + _tzcnt_u32(mask);
							if (const int mask = _mm256_movemask_epi8(eqB))
								return i + 1 * 32 + _tzcnt_u32(mask);
							if (const int mask = _mm256_movemask_epi8(eqC))
								return i + 2 * 32 + _tzcnt_u32(mask);
							if (const int mask = _mm256_movemask_epi8(eqD))
								return i + 3 * 32 + _tzcnt_u32(mask);
							// Unreachable
						}
					}

					// Handle remaining less than four vectors
					for (; i + 32 <= end; i += 32) {
						const __m256i chunk = _mm256_load_si256(reinterpret_cast<const __m256i*>(i));
						if (const int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(chunk, vn1)))
							return i + _tzcnt_u32(mask);
					}

					// Handle remaining less than a vector with an unaligned search, again overlapping back with the previous
					// already-searched elements
					if (i < end) {
						DEATH_DEBUG_ASSERT(i + 32 > end);
						i = end - 32;
						const __m256i chunk = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(i));
						if (const int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(chunk, vn1)))
							return i + _tzcnt_u32(mask);
					}

					return static_cast<const char*>(nullptr);
				};
			}
#endif

#if defined(DEATH_ENABLE_NEON) && !defined(DEATH_TARGET_32BIT)
			// `vshrn_n_u16` and `vaddvq_u8` are missing in `armeabi-v7a` on Android, so enable it only on ARM64.
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE(NEON) typename std::decay<decltype(stringFindCharacter)>::type stringFindCharacterImplementation(DEATH_CPU_DECLARE(Cpu::Neon)) {
				// Can't use trailing return type due to a GCC 9.3 bug, which is the default on Ubuntu 20.04: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90333
				return [](const char* const data, const std::size_t size, const char character) DEATH_ENABLE(NEON) {
					const char* const end = data + size;

					// If we have less than 16 bytes, do it the stupid way. Unlike x86 or WASM, unrolling
					// the loop here makes things actually worse.
					if (size < 16) {
						for (const char* i = data; i != end; ++i)
							if (*i == character) return i;
						return static_cast<const char*>(nullptr);
					}

					const uint8x16_t vn1 = vdupq_n_u8(character);

					// Unconditionally do a lookup in the first vector a slower, unaligned way. Any extra branching to avoid
					// the unaligned load if already aligned would be most probably more expensive than the actual unaligned load.
					{
						/* AArch64 doesn't differentiate between aligned and unaligned loads.
						   ARM32 does, but it's not exposed in the intrinsics, only in
						   compiler-specific ways. Since 32-bit ARM is increasingly rare (and
						   this code doesn't work on it anyway), not bothering at all.
						   https://stackoverflow.com/a/53245244 */
						const uint8x16_t chunk = vld1q_u8(reinterpret_cast<const std::uint8_t*>(data));

						/* Emulating _mm_movemask_epi8() on ARM is rather expensive, even the
						   most optimized variant listed at
						   https://github.com/WebAssembly/simd/pull/201 is 6+ instructions.
						   Instead, a "shift right and narrow" is used, based on an idea from
						   https://twitter.com/Danlark1/status/1539344281336422400 and further
						   explained in https://github.com/facebook/zstd/pull/3139.
						   First, similarly to x86, an equivalence mask is calculated with
						   bytes being either ff or 00 based on whether they match:
							00 ff ff 00 00 00 ff ff 00 00 00 00 ff 00 00 00
						   The result is reinterpreted as 8 16bit values:
							00ff  ff00  0000  ffff  0000  0000  ff00  0000
						   Then, the vshrn_n_u16() instruction shifts each 16bit value four
						   bits to the right, and drops the high half:
							000f  0ff0  0000  0fff  0000  0000  0ff0  0000
							  0f    f0    00    ff    00    00    f0    00
						   The result, stored in the lower half of a 128-bit register, is then
						   extracted as a single 64-bit number:
							0ff0 00ff 0000 f000
						   This effectively reduces the original 128-bit mask to a half, with
						   every four bits describing a masked byte. While that's still 4x more
						   than what _mm_movemask_epi8() produces, it can be tested against
						   zero using regular scalar operations. Finally,
						   `__builtin_ctzll(mask) >> 2` is equivalent to what TZCNT on a 16bit
						   mask produced by _mm_movemask_epi8() would return -- there's simply
						   just 4x more bits. */
						const uint16x8_t eq16 = vreinterpretq_u16_u8(vceqq_u8(chunk, vn1));
						const uint64x1_t shrn64 = vreinterpret_u64_u8(vshrn_n_u16(eq16, 4));
						if (const uint64_t mask = vget_lane_u64(shrn64, 0))
							return data +
								/* https://learn.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics
								   which hopefully just compiles down to the clz instruction.
								   Clang has only _CountLeadingZeros64() and only since version
								   18 (https://github.com/llvm/llvm-project/pull/66554), so
								   keeping to use the GCC builtin there (which is documented to
								   be undefined for 0, but again hoping it just compiles to clz
								   which is well-defined for 0). */
#	if defined(DEATH_TARGET_MSVC) && !defined(DEATH_TARGET_CLANG)
								(_CountTrailingZeros64(mask) >> 2);
#	else
								(__builtin_ctzll(mask) >> 2);
#	endif
					}

					// Go to the next aligned position. If the pointer was already aligned, we'll go to the next aligned vector;
					// if not, there will be an overlap and we'll check some bytes twice.
					const char* i = reinterpret_cast<const char*>(reinterpret_cast<std::uintptr_t>(data + 16) & ~0xf);
					DEATH_DEBUG_ASSERT(i > data && reinterpret_cast<std::uintptr_t>(i) % 16 == 0);

					// Go four vectors at a time with the aligned pointer
					for (; i + 4 * 16 <= end; i += 4 * 16) {
						const uint8x16_t a = vld1q_u8(reinterpret_cast<const std::uint8_t*>(i) + 0 * 16);
						const uint8x16_t b = vld1q_u8(reinterpret_cast<const std::uint8_t*>(i) + 1 * 16);
						const uint8x16_t c = vld1q_u8(reinterpret_cast<const std::uint8_t*>(i) + 2 * 16);
						const uint8x16_t d = vld1q_u8(reinterpret_cast<const std::uint8_t*>(i) + 3 * 16);

						const uint8x16_t eqA = vceqq_u8(vn1, a);
						const uint8x16_t eqB = vceqq_u8(vn1, b);
						const uint8x16_t eqC = vceqq_u8(vn1, c);
						const uint8x16_t eqD = vceqq_u8(vn1, d);

						// Similar to the first unaligned vector above, except that four "shift right and narrow" operations are done,
						// interleaving the result into two registers instead of four
						const uint8x8_t maskA = vshrn_n_u16(vreinterpretq_u16_u8(eqA), 4);
						const uint8x16_t maskAB = vshrn_high_n_u16(maskA, vreinterpretq_u16_u8(eqB), 4);
						const uint8x8_t maskC = vshrn_n_u16(vreinterpretq_u16_u8(eqC), 4);
						const uint8x16_t maskCD = vshrn_high_n_u16(maskC, vreinterpretq_u16_u8(eqD), 4);

						// Which makes it possible to test with just one OR and a horizontal add instead of three ORs and a horizontal add
						if (vaddvq_u8(vorrq_u8(maskAB, maskCD))) {
							if (const std::uint64_t mask = vgetq_lane_u64(vreinterpretq_u64_u8(maskAB), 0))
								return i + 0 * 16 + /* The clz instruction, see comment above */
#	if defined(DEATH_TARGET_MSVC) && !defined(DEATH_TARGET_CLANG)
									(_CountTrailingZeros64(mask) >> 2);
#	else
									(__builtin_ctzll(mask) >> 2);
#	endif
							if (const std::uint64_t mask = vgetq_lane_u64(vreinterpretq_u64_u8(maskAB), 1))
								return i + 1 * 16 +  /* The clz instruction, see comment above */
#	if defined(DEATH_TARGET_MSVC) && !defined(DEATH_TARGET_CLANG)
									(_CountTrailingZeros64(mask) >> 2);
#	else
									(__builtin_ctzll(mask) >> 2);
#	endif
							if (const std::uint64_t mask = vgetq_lane_u64(vreinterpretq_u64_u8(maskCD), 0))
								return i + 2 * 16 +  /* The clz instruction, see comment above */
#	if defined(DEATH_TARGET_MSVC) && !defined(DEATH_TARGET_CLANG)
									(_CountTrailingZeros64(mask) >> 2);
#	else
									(__builtin_ctzll(mask) >> 2);
#	endif
							if (const std::uint64_t mask = vgetq_lane_u64(vreinterpretq_u64_u8(maskCD), 1))
								return i + 3 * 16 +  /* The clz instruction, see comment above */
#	if defined(DEATH_TARGET_MSVC) && !defined(DEATH_TARGET_CLANG)
									(_CountTrailingZeros64(mask) >> 2);
#	else
									(__builtin_ctzll(mask) >> 2);
#	endif
							// Unreachable
						}
					}

					// Handle remaining less than four vectors
					for (; i + 16 <= end; i += 16) {
						const uint8x16_t chunk = vld1q_u8(reinterpret_cast<const std::uint8_t*>(i));
						const uint16x8_t eq16 = vreinterpretq_u16_u8(vceqq_u8(chunk, vn1));
						const uint64x1_t shrn64 = vreinterpret_u64_u8(vshrn_n_u16(eq16, 4));
						if (const uint64_t mask = vget_lane_u64(shrn64, 0))
							return i +  /* The clz instruction, see comment above */
#	if defined(DEATH_TARGET_MSVC) && !defined(DEATH_TARGET_CLANG)
								(_CountTrailingZeros64(mask) >> 2);
#	else
								(__builtin_ctzll(mask) >> 2);
#	endif
					}

					// Handle remaining less than a vector with an unaligned search, again overlapping back with
					// the previous already-searched elements
					if (i < end) {
						DEATH_DEBUG_ASSERT(i + 16 > end);
						i = end - 16;
						const uint8x16_t chunk = vld1q_u8(reinterpret_cast<const std::uint8_t*>(i));
						const uint16x8_t eq16 = vreinterpretq_u16_u8(vceqq_u8(chunk, vn1));
						const uint64x1_t shrn64 = vreinterpret_u64_u8(vshrn_n_u16(eq16, 4));
						if (const uint64_t mask = vget_lane_u64(shrn64, 0))
							return i +  /* The clz instruction, see comment above */
#	if defined(DEATH_TARGET_MSVC) && !defined(DEATH_TARGET_CLANG)
								(_CountTrailingZeros64(mask) >> 2);
#	else
								(__builtin_ctzll(mask) >> 2);
#	endif
					}

					return static_cast<const char*>(nullptr);
				};
			}
#endif

#if defined(DEATH_ENABLE_SIMD128)
			// WASM doesn't differentiate between aligned and unaligned load, it's always unaligned :(
			DEATH_CPU_MAYBE_UNUSED typename std::decay<decltype(stringFindCharacter)>::type stringFindCharacterImplementation(DEATH_CPU_DECLARE(Cpu::Simd128)) {
				return [](const char* const data, const std::size_t size, const char character) DEATH_ENABLE_SIMD128 -> const char* {
					// If we have less than 16 bytes, do it the stupid way. Compared to a plain loop, this is 25% faster when unrolled.
					// Strangely enough, if the switch is put into an external always inline function to avoid duplication with
					// the SSE2 variant, it no longer gives the advantage. Furthermore, the post-increment optimization from the x86 case
					// doesn't help here at all, on the contrary makes the code slightly slower.
					{
						const char* j = data - 1;
						switch (size) {
							case 15: if (*++j == character) return j; DEATH_FALLTHROUGH
							case 14: if (*++j == character) return j; DEATH_FALLTHROUGH
							case 13: if (*++j == character) return j; DEATH_FALLTHROUGH
							case 12: if (*++j == character) return j; DEATH_FALLTHROUGH
							case 11: if (*++j == character) return j; DEATH_FALLTHROUGH
							case 10: if (*++j == character) return j; DEATH_FALLTHROUGH
							case  9: if (*++j == character) return j; DEATH_FALLTHROUGH
							case  8: if (*++j == character) return j; DEATH_FALLTHROUGH
							case  7: if (*++j == character) return j; DEATH_FALLTHROUGH
							case  6: if (*++j == character) return j; DEATH_FALLTHROUGH
							case  5: if (*++j == character) return j; DEATH_FALLTHROUGH
							case  4: if (*++j == character) return j; DEATH_FALLTHROUGH
							case  3: if (*++j == character) return j; DEATH_FALLTHROUGH
							case  2: if (*++j == character) return j; DEATH_FALLTHROUGH
							case  1: if (*++j == character) return j; DEATH_FALLTHROUGH
							case  0: return {};
						}
					}

					const v128_t vn1 = wasm_i8x16_splat(character);

					// Unconditionally do a lookup in the first vector a slower, unaligned way. Any extra branching to avoid
					// the unaligned load if already aligned would be most probably more expensive than the actual unaligned load.
					{
						const v128_t chunk = wasm_v128_load(data);
						if (const int mask = wasm_i8x16_bitmask(wasm_i8x16_eq(chunk, vn1)))
							return data + __builtin_ctz(mask);
					}

					// Go to the next aligned position. If the pointer was already aligned, we'll go to the next aligned vector;
					// if not, there will be an overlap and we'll check some bytes twice.
					const char* i = reinterpret_cast<const char*>(reinterpret_cast<std::uintptr_t>(data + 16) & ~0xf);
					DEATH_DEBUG_ASSERT(i > data && reinterpret_cast<std::uintptr_t>(i) % 16 == 0);

					// Go four vectors at a time with the aligned pointer
					const char* const end = data + size;
					for (; i + 4 * 16 <= end; i += 4 * 16) {
						const v128_t a = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 0);
						const v128_t b = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 1);
						const v128_t c = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 2);
						const v128_t d = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 3);

						const v128_t eqA = wasm_i8x16_eq(vn1, a);
						const v128_t eqB = wasm_i8x16_eq(vn1, b);
						const v128_t eqC = wasm_i8x16_eq(vn1, c);
						const v128_t eqD = wasm_i8x16_eq(vn1, d);

						const v128_t or1 = wasm_v128_or(eqA, eqB);
						const v128_t or2 = wasm_v128_or(eqC, eqD);
						const v128_t or3 = wasm_v128_or(or1, or2);
						// wasm_i8x16_bitmask(or3) maps directly to the SSE2 variant and is thus fast on x86, but on ARM wasm_v128_any_true(or3)
						// is faster. With StringViewBenchmark::findCharacterRare() and runtime dispatch disabled for tests, on x86 (node.js 17.8)
						// bitmask is ~1.35 µs and any_true ~1.85 µs; on ARM (Huawei P10, Vivaldi w/ Chromium 102) bitmask is 14.3 µs
						// and any_true 11.7 µs. Ideally we'd have two runtime versions, one picking x86-friendly instructions
						// and the other ARM-friendly, but function pointer dispatch has a *massive* overhead currently. Related info
						// about instruction complexity:
						// https://github.com/WebAssembly/simd/pull/201
						// https://github.com/zeux/wasm-simd/blob/master/Instructions.md */
						if (wasm_i8x16_bitmask(or3)) {
							if (const int mask = wasm_i8x16_bitmask(eqA))
								return i + 0 * 16 + __builtin_ctz(mask);
							if (const int mask = wasm_i8x16_bitmask(eqB))
								return i + 1 * 16 + __builtin_ctz(mask);
							if (const int mask = wasm_i8x16_bitmask(eqC))
								return i + 2 * 16 + __builtin_ctz(mask);
							if (const int mask = wasm_i8x16_bitmask(eqD))
								return i + 3 * 16 + __builtin_ctz(mask);
							// Unreachable
						}
					}

					// Handle remaining less than four vectors
					for (; i + 16 <= end; i += 16) {
						const v128_t chunk = wasm_v128_load(i);
						if (const int mask = wasm_i8x16_bitmask(wasm_i8x16_eq(chunk, vn1)))
							return i + __builtin_ctz(mask);
					}

					// Handle remaining less than a vector with an unaligned search, again overlapping back with the previous
					// already-searched elements
					if (i < end) {
						DEATH_DEBUG_ASSERT(i + 16 > end);
						i = end - 16;
						const v128_t chunk = wasm_v128_load(i);
						if (const int mask = wasm_i8x16_bitmask(wasm_i8x16_eq(chunk, vn1)))
							return i + __builtin_ctz(mask);
					}

					return {};
				};
			}
#endif

			DEATH_CPU_MAYBE_UNUSED typename std::decay<decltype(stringFindCharacter)>::type stringFindCharacterImplementation(DEATH_CPU_DECLARE(Cpu::Scalar)) {
				return [](const char* const data, const std::size_t size, const char character) -> const char* {
					// Yet again I'm not sure if null pointers are allowed and cppreference says nothing about that, so this might need to get patched
					return static_cast<const char*>(std::memchr(data, character, size));
				};
			}
		}

#if defined(DEATH_TARGET_X86)
		DEATH_CPU_DISPATCHER(stringFindCharacterImplementation, Cpu::Bmi1)
#else
		DEATH_CPU_DISPATCHER(stringFindCharacterImplementation)
#endif
		DEATH_CPU_DISPATCHED(stringFindCharacterImplementation, const char* DEATH_CPU_DISPATCHED_DECLARATION(stringFindCharacter)(const char* data, std::size_t size, char character))({
			return stringFindCharacterImplementation(DEATH_CPU_SELECT(Cpu::Default))(data, size, character);
		})

		const char* stringFindLastCharacter(const char* const data, const std::size_t size, const char character) {
			// Linux has a memrchr() function but other OSes not. So let's just do it myself, that way I also don't need
			// to worry about null pointers being allowed or not ... haha, well, except that if data is nullptr,
			// `*(data - 1)` blows up, so I actually need to.
			if (data) for (const char* i = data + size - 1; i >= data; --i)
				if (*i == character) return i;
			return {};
		}

		/* I don't want to include <algorithm> just for std::find_first_of() and
			unfortunately there's no equivalent in the C string library. Coming close
			are strpbrk() or strcspn() but both of them work with null-terminated
			strings, which is absolutely useless here, not to mention that both do
			*exactly* the same thing, with one returning a pointer but the other an
			offset, so what's the point of having both? What the hell. And there's no
			memcspn() or whatever which would take explicit lengths. Which means I'm
			left to my own devices. Looking at how strpbrk() / strcspn() is done, it
			ranges from trivial code:

			https://github.com/bminor/newlib/blob/6497fdfaf41d47e835fdefc78ecb0a934875d7cf/newlib/libc/string/strcspn.c
			
			to extremely optimized machine-specific code (don't look, it's GPL):
			
			https://github.com/bminor/glibc/blob/43b1048ab9418e902aac8c834a7a9a88c501620a/sysdeps/x86_64/multiarch/strcspn-c.c
			
			and the only trick I realized above the nested loop is using memchr() in an
			inverse way. In all honesty, I think that'll still be *at least* as fast as
			std::find_first_of() because I doubt STL implementations explicitly optimize
			for that case. Yes, std::string::find_first_of() probably would have that,
			but I'd first need to allocate to make use of that and FUCK NO. */
		const char* stringFindAny(const char* const data, const std::size_t size, const char* const characters, const std::size_t characterCount) {
			for (const char* i = data, *end = data + size; i != end; ++i)
				if (std::memchr(characters, *i, characterCount)) return i;
			return {};
		}

		// Variants of the above. Not sure if those even have any vaguely corresponding C lib API. Probably not.

		const char* stringFindLastAny(const char* const data, const std::size_t size, const char* const characters, const std::size_t characterCount) {
			for (const char* i = data + size; i != data; --i)
				if (std::memchr(characters, *(i - 1), characterCount)) return i - 1;
			return {};
		}

		const char* stringFindNotAny(const char* const data, const std::size_t size, const char* const characters, const std::size_t characterCount) {
			for (const char* i = data, *end = data + size; i != end; ++i)
				if (!std::memchr(characters, *i, characterCount)) return i;
			return {};
		}

		const char* stringFindLastNotAny(const char* const data, const std::size_t size, const char* const characters, const std::size_t characterCount) {
			for (const char* i = data + size; i != data; --i)
				if (!std::memchr(characters, *(i - 1), characterCount)) return i - 1;
			return {};
		}

		namespace
		{
			// SIMD implementation of character counting, which is basically just a simpler variant of stringFindCharacterImplementation()
			// -- we don't need the extra branching logic with tzcnt for getting the first found position, instead just counting the matches.
			// On the other hand have to ensure that the overlaps aren't counted twice.

			// The 64-bit variants of POPCNT instructions aren't exposed on 32-bit systems for some reason. 32-bit x86 isn't that important
			// nowadays so there it uses just the scalar code, I won't bother making a 32-bit variant.
#if defined(DEATH_ENABLE_SSE2) && defined(DEATH_ENABLE_POPCNT) && !defined(DEATH_TARGET_32BIT)
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE(SSE2, POPCNT) typename std::decay<decltype(stringCountCharacter)>::type stringCountCharacterImplementation(DEATH_CPU_DECLARE(Cpu::Sse2 | Cpu::Popcnt)) {
				return [](const char* const data, const std::size_t size, const char character) DEATH_ENABLE(SSE2, POPCNT) {
					std::size_t count = 0;

					// If we have less than 16 bytes, do it the stupid way
					{
						const char* j = data;
						switch (size) {
							case 15: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case 14: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case 13: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case 12: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case 11: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case 10: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  9: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  8: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  7: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  6: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  5: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  4: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  3: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  2: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  1: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  0: return count;
						}
					}

					const __m128i vn1 = _mm_set1_epi8(character);

					// Calculate the next aligned position. If the pointer was already aligned, we'll go to the next aligned vector;
					// if not, there will be an overlap and we'll check some bytes twice.
					const char* i = reinterpret_cast<const char*>(reinterpret_cast<std::uintptr_t>(data + 16) & ~0xf);
					DEATH_DEBUG_ASSERT(i > data && reinterpret_cast<std::uintptr_t>(i) % 16 == 0);

					// Unconditionally load the first vector a slower, unaligned way, and mask out the part that overlaps
					// with the next aligned position to not count it twice
					{
						const __m128i chunk = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
						const std::uint32_t found = _mm_movemask_epi8(_mm_cmpeq_epi8(chunk, vn1));
						// Masking the bytes before the aligned `i`, so if `data` is 12 and `i` 16, it creates a mask for the low 4 bits, 0x...01111
						count += _mm_popcnt_u32(found & ((1 << (i - data)) - 1));
					}

					// Go four vectors at a time to make use of the full 64-bit popcnt instruction. This is significantly faster
					// than calling popcnt for each 16-bit vector, and slightly faster than going just two vectors at a time.
					const char* const end = data + size;
					for (; i + 4 * 16 <= end; i += 4 * 16) {
						const __m128i a = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 0);
						const __m128i b = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 1);
						const __m128i c = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 2);
						const __m128i d = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 3);
						count += _mm_popcnt_u64(
							(std::uint64_t(_mm_movemask_epi8(_mm_cmpeq_epi8(a, vn1))) << 0) |
							(std::uint64_t(_mm_movemask_epi8(_mm_cmpeq_epi8(b, vn1))) << 16) |
							(std::uint64_t(_mm_movemask_epi8(_mm_cmpeq_epi8(c, vn1))) << 32) |
							(std::uint64_t(_mm_movemask_epi8(_mm_cmpeq_epi8(d, vn1))) << 48));
					}

					// Handle remaining less than four aligned vectors. Try to make use of the full 32-bit width for popcnt if possible,
					// as that's faster than calling popcnt separately for each 16-bit vector. Conversely, accumulating everything into
					// a 64-bit integer to call popcnt just once doesn't make it faster either.
					if (i + 2 * 16 <= end) {
						const __m128i a = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 0);
						const __m128i b = _mm_load_si128(reinterpret_cast<const __m128i*>(i) + 1);
						count += _mm_popcnt_u32(
							(_mm_movemask_epi8(_mm_cmpeq_epi8(a, vn1)) << 0) |
							(_mm_movemask_epi8(_mm_cmpeq_epi8(b, vn1)) << 16));
						i += 2 * 16;
					}
					if (i + 16 <= end) {
						const __m128i c = _mm_load_si128(reinterpret_cast<const __m128i*>(i));
						count += _mm_popcnt_u32(_mm_movemask_epi8(_mm_cmpeq_epi8(c, vn1)));
						i += 16;
					}

					// Handle remaining less than a vector with an unaligned load, again with the overlapping part masked out to not count it twice
					if (i < end) {
						DEATH_DEBUG_ASSERT(i + 16 > end);
						const __m128i chunk = _mm_loadu_si128(reinterpret_cast<const __m128i*>(end - 16));
						const std::uint32_t found = _mm_movemask_epi8(_mm_cmpeq_epi8(chunk, vn1));
						// Masking the bytes after the aligned `i`, so if `end` is 20 and `i` 16, it creates a mask for the low 12 bits
						// and then inverts it, ending up with just the high 4 bits, 0x11110...
						count += _mm_popcnt_u32(found & ~((1 << (i + 16 - end)) - 1));
					}

					return count;
				};
			}
#endif

			// The 64-bit variants of POPCNT instructions aren't exposed on 32-bit systems for some reason. 32-bit x86 isn't that
			// important nowadays so there it uses just the scalar code, I won't bother making a 32-bit variant.
#if defined(DEATH_ENABLE_AVX2) && defined(DEATH_ENABLE_POPCNT) && !defined(DEATH_TARGET_32BIT)
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE(AVX2, POPCNT) typename std::decay<decltype(stringCountCharacter)>::type stringCountCharacterImplementation(DEATH_CPU_DECLARE(Cpu::Avx2 | Cpu::Popcnt)) {
				return [](const char* const data, const std::size_t size, const char character) DEATH_ENABLE(AVX2, POPCNT) {
					// If we have less than 32 bytes, fall back to the SSE variant
					if (size < 32)
						return stringCountCharacterImplementation(DEATH_CPU_SELECT(Cpu::Sse2 | Cpu::Popcnt))(data, size, character);

					std::size_t count = 0;
					const __m256i vn1 = _mm256_set1_epi8(character);

					/* Calculate the next aligned position. If the pointer was already aligned,
					   we'll go to the next aligned vector; if not, there will be an overlap
					   and we'll check some bytes twice. */
					const char* i = reinterpret_cast<const char*>(reinterpret_cast<std::uintptr_t>(data + 32) & ~0x1f);
					DEATH_DEBUG_ASSERT(i > data && reinterpret_cast<std::uintptr_t>(i) % 32 == 0);

					// Unconditionally load the first vector a slower, unaligned way, and mask out the part that overlaps with
					// the next aligned position to not count it twice
					{
						// _mm256_lddqu_si256 is just an alias to _mm256_loadu_si256, no reason to use it: https://stackoverflow.com/a/47426790
						const __m256i chunk = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(data));
						const std::uint32_t found = _mm256_movemask_epi8(_mm256_cmpeq_epi8(chunk, vn1));
						// Masking the bytes before the aligned `i`, so if `data` is 28 and `i` 32, it creates a mask for the low 4 bits,
						// 0x...01111. Have to use a 64-bit integer because otherwise `(1u << 32) - 1` is undefined behavior and evaluates
						// to 0 or just whatever else.
						count += _mm_popcnt_u32(found & ((1ull << (i - data)) - 1));
					}

					// Go two vectors at a time to make use of the full 64-bit popcnt instruction. Similarly as in the SSE2 case,
					// this is significantly faster than calling popcnt for each 32-bit vector.
					const char* const end = data + size;
					for (; i + 2 * 32 <= end; i += 2 * 32) {
						const __m256i a = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 0);
						const __m256i b = _mm256_load_si256(reinterpret_cast<const __m256i*>(i) + 1);
						count += _mm_popcnt_u64(
							// Movemask returns a *signed* int, which means if the highest bit is set, it gets sign-extended to 64-bit.
							// Cast to an unsigned type first to avoid that. FFS.
							(std::uint64_t(std::uint32_t(_mm256_movemask_epi8(_mm256_cmpeq_epi8(a, vn1)))) << 0) |
							(std::uint64_t(std::uint32_t(_mm256_movemask_epi8(_mm256_cmpeq_epi8(b, vn1)))) << 32));
					}

					// Handle remaining less than two aligned vectors, i.e. just one vector
					if (i + 32 <= end) {
						const __m256i chunk = _mm256_load_si256(reinterpret_cast<const __m256i*>(i));
						count += _mm_popcnt_u32(_mm256_movemask_epi8(_mm256_cmpeq_epi8(chunk, vn1)));
						i += 32;
					}

					// Handle remaining less than a vector with an unaligned load, again with the overlapping part masked out to not count it twice
					if (i < end) {
						DEATH_DEBUG_ASSERT(i + 32 > end);
						// _mm256_lddqu_si256 is just an alias to _mm256_loadu_si256, no reason to use it: https://stackoverflow.com/a/47426790
						const __m256i chunk = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(end - 32));
						const std::uint32_t found = _mm256_movemask_epi8(_mm256_cmpeq_epi8(chunk, vn1));
						// Masking the bytes after the aligned `i`, so if `end` is 36 and `i` 32, it creates a mask for the low 28 bits
						// and then inverts it, ending up with just the high 4 bits, 0x11110... Here don't need to use a 64-bit integer
						// because the distance between i and end is never more than 32.
						count += _mm_popcnt_u32(found & ~((1u << (i + 32 - end)) - 1));
					}

					return count;
				};
			}
#endif

			// Basically just a straight translation of the SSE2 code right now
#if defined(DEATH_ENABLE_SIMD128)
			DEATH_CPU_MAYBE_UNUSED DEATH_ENABLE_SIMD128 typename std::decay<decltype(stringCountCharacter)>::type stringCountCharacterImplementation(DEATH_CPU_DECLARE(Cpu::Simd128)) {
				return [](const char* const data, const std::size_t size, const char character) DEATH_ENABLE_SIMD128 {
				  std::size_t count = 0;

					// If we have less than 16 bytes, do it the stupid way
					{
						const char* j = data;
						switch (size) {
							case 15: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case 14: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case 13: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case 12: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case 11: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case 10: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  9: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  8: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  7: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  6: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  5: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  4: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  3: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  2: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  1: if (*j++ == character) ++count; DEATH_FALLTHROUGH
							case  0: return count;
						}
					}

					const v128_t vn1 = wasm_i8x16_splat(character);

					// Calculate the next aligned position. If the pointer was already aligned, we'll go to the next aligned vector;
					// if not, there will be an overlap and we'll check some bytes twice.
					const char* i = reinterpret_cast<const char*>(reinterpret_cast<std::uintptr_t>(data + 16) & ~0xf);
					DEATH_DEBUG_ASSERT(i > data && reinterpret_cast<std::uintptr_t>(i) % 16 == 0);

					// Unconditionally load the first vector a slower, unaligned way and mask out the part that overlaps with
					// the next aligned position to not count it twice. WASM doesn't differentiate between aligned and unaligned load,
					// it's always unaligned, but the hardware might behave better if we try to avoid unaligned loads.
					{
						const v128_t chunk = wasm_v128_load(reinterpret_cast<const v128_t*>(data));
						const std::uint32_t found = wasm_i8x16_bitmask(wasm_i8x16_eq(chunk, vn1));
						count += __builtin_popcount(found & ((1 << (i - data)) - 1));
					}

					// Go four vectors at a time to make use of the full 64-bit popcnt instruction
					const char* const end = data + size;
					for (; i + 4 * 16 <= end; i += 4 * 16) {
						const v128_t a = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 0);
						const v128_t b = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 1);
						const v128_t c = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 2);
						const v128_t d = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 3);
						count += __builtin_popcountll(
							(std::uint64_t(wasm_i8x16_bitmask(wasm_i8x16_eq(a, vn1))) << 0) |
							(std::uint64_t(wasm_i8x16_bitmask(wasm_i8x16_eq(b, vn1))) << 16) |
							(std::uint64_t(wasm_i8x16_bitmask(wasm_i8x16_eq(c, vn1))) << 32) |
							(std::uint64_t(wasm_i8x16_bitmask(wasm_i8x16_eq(d, vn1))) << 48));
					}

					// Handle remaining less than four aligned vectors
					if (i + 2 * 16 <= end) {
						const v128_t a = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 0);
						const v128_t b = wasm_v128_load(reinterpret_cast<const v128_t*>(i) + 1);
						count += __builtin_popcount(
							(wasm_i8x16_bitmask(wasm_i8x16_eq(a, vn1)) << 0) |
							(wasm_i8x16_bitmask(wasm_i8x16_eq(b, vn1)) << 16));
						i += 2 * 16;
					}
					if (i + 16 <= end) {
						const v128_t c = wasm_v128_load(reinterpret_cast<const v128_t*>(i));
						count += __builtin_popcount(wasm_i8x16_bitmask(wasm_i8x16_eq(c, vn1)));
						i += 16;
					}

					// Handle remaining less than a vector with an unaligned load, again with the overlapping part masked out
					// to not count it twice. Again WASM doesn't have any dedicated unaligned load instruction.
					if (i < end) {
						DEATH_DEBUG_ASSERT(i + 16 > end);
						const v128_t chunk = wasm_v128_load(reinterpret_cast<const v128_t*>(end - 16));
						const std::uint32_t found = wasm_i8x16_bitmask(wasm_i8x16_eq(chunk, vn1));
						count += __builtin_popcount(found & ~((1 << (i + 16 - end)) - 1));
					}

					return count;
				};
			}
#endif

			DEATH_CPU_MAYBE_UNUSED typename std::decay<decltype(stringCountCharacter)>::type stringCountCharacterImplementation(DEATH_CPU_DECLARE(Cpu::Scalar)) {
				return [](const char* const data, const std::size_t size, const char character) -> std::size_t {
					std::size_t count = 0;
					for (const char* i = data, *end = data + size; i != end; ++i)
						if (*i == character) ++count;
					return count;
				};
			}

		}

#if defined(DEATH_TARGET_X86)
		DEATH_CPU_DISPATCHER(stringCountCharacterImplementation, Cpu::Popcnt)
#else
		DEATH_CPU_DISPATCHER(stringCountCharacterImplementation)
#endif
		DEATH_CPU_DISPATCHED(stringCountCharacterImplementation, std::size_t DEATH_CPU_DISPATCHED_DECLARATION(stringCountCharacter)(const char* data, std::size_t size, char character))({
			return stringCountCharacterImplementation(DEATH_CPU_SELECT(Cpu::Default))(data, size, character);
		})
	}

	template<class T> Array<BasicStringView<T>> BasicStringView<T>::splitOnAnyWithoutEmptyParts(const StringView delimiters) const {
		Array<BasicStringView<T>> parts;
		const char* const characters = delimiters._data;
		const std::size_t characterCount = delimiters.size();
		T* oldpos = _data;
		T* const end = _data + size();

		while (oldpos < end) {
			if (T* const pos = const_cast<T*>(Implementation::stringFindAny(oldpos, end - oldpos, characters, characterCount))) {
				if (pos != oldpos)
					arrayAppend(parts, slice(oldpos, pos));
				oldpos = pos + 1;
			} else {
				arrayAppend(parts, slice(oldpos, end));
				break;
			}
		}

		return parts;
	}

	namespace
	{
		/* If I use an externally defined view in splitWithoutEmptyParts(),
		   trimmed() and elsewhere, MSVC (2015, 2017, 2019) will blow up on the
		   explicit template instantiation with

			error C2946: explicit instantiation; 'Death::Containers::BasicStringView<const char>::<lambda_e55a1a450af96fadfe37cfb50a99d6f7>' is not a template-class specialization

		   I spent an embarrassing amount of time trying to find what lambda it
		   doesn't like, reimplemented std::find_first_of() used in
		   splitWithoutEmptyParts(), added a non-asserting variants of slice() etc,
		   but nothing helped. */
#if !defined(DEATH_TARGET_MSVC) || defined(DEATH_TARGET_CLANG_CL) || _MSC_VER >= 1930 /* MSVC 2022 works */
		using namespace Literals;
		constexpr StringView Whitespace = " \t\f\v\r\n"_s;
#else
#	define WHITESPACE_MACRO_BECAUSE_MSVC_IS_STUPID " \t\f\v\r\n"_s
#endif
	}

	template<class T> Array<BasicStringView<T>> BasicStringView<T>::splitOnWhitespaceWithoutEmptyParts() const {
#if !defined(DEATH_TARGET_MSVC) || defined(DEATH_TARGET_CLANG_CL) || _MSC_VER >= 1930 /* MSVC 2022 works */
		return splitOnAnyWithoutEmptyParts(Whitespace);
#else
		using namespace Literals;
		return splitOnAnyWithoutEmptyParts(WHITESPACE_MACRO_BECAUSE_MSVC_IS_STUPID);
#endif
	}

	template<class T> StaticArray<3, BasicStringView<T>> BasicStringView<T>::partition(const char separator) const {
		const std::size_t size = this->size();
		T* const pos = static_cast<T*>(std::memchr(_data, separator, size));
		return {
			pos ? prefix(pos) : *this,
			pos ? slice(pos, pos + 1) : exceptPrefix(size),
			pos ? suffix(pos + 1) : exceptPrefix(size)
		};
	}

	template<class T> StaticArray<3, BasicStringView<T>> BasicStringView<T>::partition(const StringView separator) const {
		const char* const separatorData = separator.data();
		const std::size_t separatorSize = separator.size();
		const std::size_t size = this->size();
		T* const pos = const_cast<T*>(Implementation::stringFindString(_data, size, separatorData, separatorSize));
		return {
			pos ? prefix(pos) : *this,
			pos ? slice(pos, pos + separatorSize) : exceptPrefix(size),
			pos ? suffix(pos + separatorSize) : exceptPrefix(size)
		};
	}

	template<class T> String BasicStringView<T>::join(const ArrayView<const StringView> strings) const {
		// Calculate size of the resulting string including delimiters
		const std::size_t delimiterSize = size();
		std::size_t totalSize = strings.empty() ? 0 : (strings.size() - 1) * delimiterSize;
		for (const StringView s : strings) totalSize += s.size();

		// Reserve memory for the resulting string
		String result{NoInit, totalSize};

		// Join strings
		char* out = result.data();
		char* const end = out + totalSize;
		for (const StringView string : strings) {
			const std::size_t stringSize = string.size();
			// Apparently memcpy() can't be called with null pointers, even if size is zero. I call that bullying.
			if (stringSize != 0) {
				std::memcpy(out, string._data, stringSize);
				out += stringSize;
			}
			if (delimiterSize != 0 && out != end) {
				std::memcpy(out, _data, delimiterSize);
				out += delimiterSize;
			}
		}

		return result;
	}

	template<class T> String BasicStringView<T>::join(const std::initializer_list<StringView> strings) const {
		return join(arrayView(strings));
	}

	template<class T> String BasicStringView<T>::joinWithoutEmptyParts(const ArrayView<const StringView> strings) const {
		// Calculate size of the resulting string including delimiters
		const std::size_t delimiterSize = size();
		std::size_t totalSize = 0;
		for (const StringView string : strings) {
			if (string.empty()) continue;
			totalSize += string.size() + delimiterSize;
		}
		if (totalSize != 0) totalSize -= delimiterSize;

		// Reserve memory for the resulting string
		String result{NoInit, totalSize};

		// Join strings
		char* out = result.data();
		char* const end = out + totalSize;
		for (const StringView string : strings) {
			if (string.empty()) continue;

			const std::size_t stringSize = string.size();
			// Apparently memcpy() can't be called with null pointers, even if size is zero. I call that bullying.
			if (stringSize != 0) {
				std::memcpy(out, string._data, stringSize);
				out += stringSize;
			}
			if (delimiterSize != 0 && out != end) {
				std::memcpy(out, _data, delimiterSize);
				out += delimiterSize;
			}
		}

		return result;
	}

	template<class T> String BasicStringView<T>::joinWithoutEmptyParts(const std::initializer_list<StringView> strings) const {
		return joinWithoutEmptyParts(arrayView(strings));
	}

	template<class T> bool BasicStringView<T>::hasPrefix(const StringView prefix) const {
		const std::size_t prefixSize = prefix.size();
		if (size() < prefixSize) return false;

		return std::memcmp(_data, prefix._data, prefixSize) == 0;
	}

	template<class T> bool BasicStringView<T>::hasPrefix(const char prefix) const {
		const std::size_t size = this->size();
		return size && _data[0] == prefix;
	}

	template<class T> bool BasicStringView<T>::hasSuffix(const StringView suffix) const {
		const std::size_t size = this->size();
		const std::size_t suffixSize = suffix.size();
		if (size < suffixSize) return false;

		return std::memcmp(_data + size - suffixSize, suffix._data, suffixSize) == 0;
	}

	template<class T> bool BasicStringView<T>::hasSuffix(const char suffix) const {
		const std::size_t size = this->size();
		return size != 0 && _data[size - 1] == suffix;
	}

	template<class T> BasicStringView<T> BasicStringView<T>::exceptPrefix(const StringView prefix) const {
		// Stripping a hardcoded prefix is unlikely to be called in a tight loop -- and the main purpose of this API is this
		// check -- so it shouldn't be a debug assert
		DEATH_ASSERT(hasPrefix(prefix), "String doesn't begin with specified prefix", {});
		return exceptPrefix(prefix.size());
	}

	template<class T> BasicStringView<T> BasicStringView<T>::exceptSuffix(const StringView suffix) const {
		// Stripping a hardcoded suffix is unlikely to be called in a tight loop -- and the main purpose of this API is this
		// check -- so it shouldn't be a debug assert
		DEATH_ASSERT(hasSuffix(suffix), "String doesn't end with specified suffix", {});
		return exceptSuffix(suffix.size());
	}

	template<class T> BasicStringView<T> BasicStringView<T>::trimmed() const {
#if !defined(DEATH_TARGET_MSVC) || defined(DEATH_TARGET_CLANG_CL) || _MSC_VER >= 1930 /* MSVC 2022 works */
		return trimmed(Whitespace);
#else
		using namespace Literals;
		return trimmed(WHITESPACE_MACRO_BECAUSE_MSVC_IS_STUPID);
#endif
	}

	template<class T> BasicStringView<T> BasicStringView<T>::trimmedPrefix() const {
#if !defined(DEATH_TARGET_MSVC) || defined(DEATH_TARGET_CLANG_CL) || _MSC_VER >= 1930 /* MSVC 2022 works */
		return trimmedPrefix(Whitespace);
#else
		using namespace Literals;
		return trimmedPrefix(WHITESPACE_MACRO_BECAUSE_MSVC_IS_STUPID);
#endif
	}

	template<class T> BasicStringView<T> BasicStringView<T>::trimmedSuffix() const {
#if !defined(DEATH_TARGET_MSVC) || defined(DEATH_TARGET_CLANG_CL) || _MSC_VER >= 1930 /* MSVC 2022 works */
		return trimmedSuffix(Whitespace);
#else
		using namespace Literals;
		return trimmedSuffix(WHITESPACE_MACRO_BECAUSE_MSVC_IS_STUPID);
#endif
	}

	template class BasicStringView<char>;
	template class BasicStringView<const char>;

	bool operator==(const StringView a, const StringView b) {
		// Not using the size() accessor to speed up debug builds
		const std::size_t aSize = a._sizePlusFlags & ~Implementation::StringViewSizeMask;
		return aSize == (b._sizePlusFlags & ~Implementation::StringViewSizeMask) &&
			std::memcmp(a._data, b._data, aSize) == 0;
	}

	bool operator!=(const StringView a, const StringView b) {
		// Not using the size() accessor to speed up debug builds
		const std::size_t aSize = a._sizePlusFlags & ~Implementation::StringViewSizeMask;
		return aSize != (b._sizePlusFlags & ~Implementation::StringViewSizeMask) ||
			std::memcmp(a._data, b._data, aSize) != 0;
	}

	bool operator<(const StringView a, const StringView b) {
		// Not using the size() accessor to speed up debug builds
		const std::size_t aSize = a._sizePlusFlags & ~Implementation::StringViewSizeMask;
		const std::size_t bSize = b._sizePlusFlags & ~Implementation::StringViewSizeMask;
		const int result = std::memcmp(a._data, b._data, std::min(aSize, bSize));
		if (result != 0) return result < 0;
		if (aSize < bSize) return true;
		return false;
	}

	bool operator<=(const StringView a, const StringView b) {
		// Not using the size() accessor to speed up debug builds
		const std::size_t aSize = a._sizePlusFlags & ~Implementation::StringViewSizeMask;
		const std::size_t bSize = b._sizePlusFlags & ~Implementation::StringViewSizeMask;
		const int result = std::memcmp(a._data, b._data, std::min(aSize, bSize));
		if (result != 0) return result < 0;
		if (aSize <= bSize) return true;
		return false;
	}

	bool operator>=(const StringView a, const StringView b) {
		// Not using the size() accessor to speed up debug builds
		const std::size_t aSize = a._sizePlusFlags & ~Implementation::StringViewSizeMask;
		const std::size_t bSize = b._sizePlusFlags & ~Implementation::StringViewSizeMask;
		const int result = std::memcmp(a._data, b._data, std::min(aSize, bSize));
		if (result != 0) return result > 0;
		if (aSize >= bSize) return true;
		return false;
	}

	bool operator>(const StringView a, const StringView b) {
		// Not using the size() accessor to speed up debug builds
		const std::size_t aSize = a._sizePlusFlags & ~Implementation::StringViewSizeMask;
		const std::size_t bSize = b._sizePlusFlags & ~Implementation::StringViewSizeMask;
		const int result = std::memcmp(a._data, b._data, std::min(aSize, bSize));
		if (result != 0) return result > 0;
		if (aSize > bSize) return true;
		return false;
	}

	String operator*(const StringView string, const std::size_t count) {
		// Not using the size() accessor to speed up debug builds
		const std::size_t size = string._sizePlusFlags & ~Implementation::StringViewSizeMask;

		String result{NoInit, size * count};

		// Apparently memcpy() can't be called with null pointers, even if size is zero. I call that bullying.
		char* out = result.data();
		if (size != 0) for (std::size_t i = 0; i != count; ++i)
			std::memcpy(out + i * size, string._data, size);

		return result;
	}

	String operator*(const std::size_t count, const StringView string) {
		return string * count;
	}

	namespace Implementation
	{
		ArrayView<char> ArrayViewConverter<char, BasicStringView<char>>::from(const BasicStringView<char>& other) {
			return {other.data(), other.size()};
		}
		ArrayView<const char> ArrayViewConverter<const char, BasicStringView<char>>::from(const BasicStringView<char>& other) {
			return {other.data(), other.size()};
		}
		ArrayView<const char> ArrayViewConverter<const char, BasicStringView<const char>>::from(const BasicStringView<const char>& other) {
			return {other.data(), other.size()};
		}
	}

}}