File: Logger.cpp

package info (click to toggle)
jazz2-native 3.5.0-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 16,912 kB
  • sloc: cpp: 172,557; xml: 113; python: 36; makefile: 5; sh: 2
file content (1157 lines) | stat: -rw-r--r-- 38,623 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
#include "Logger.h"

#if defined(DEATH_TRACE)

#include "../Containers/GrowableArray.h"

#include <stdarg.h>
#include <cstdio>

#if defined(DEATH_TRACE_ASYNC)
#	include <algorithm>
#endif

using namespace Death::Containers;

static constexpr std::uint32_t ResyncLagCycles = 10000;

namespace Death { namespace Trace {
//###==##====#=====--==~--~=~- --- -- -  -  -   -

#if defined(DEATH_TRACE_ASYNC)
	namespace Implementation
	{
		RdtscClock::RdtscTicks& RdtscClock::RdtscTicks::instance()
		{
			static RdtscTicks inst;
			return inst;
		}

		RdtscClock::RdtscTicks::RdtscTicks()
			: _nanosecondsPerTick(0.0)
		{
			constexpr std::chrono::milliseconds SpinDuration = std::chrono::milliseconds{10};
			constexpr std::int32_t MaxTrials = 15;
			constexpr std::int32_t MinTrials = 3;
			constexpr double ConvergenceThreshold = 0.01; // 1% threshold

			StaticArray<MaxTrials, double> rates(ValueInit);
			std::size_t ratesCount = 0;
			double previousMedian = 0.0;

			for (std::size_t i = 0; i < MaxTrials; i++) {
				auto begTs = std::chrono::nanoseconds{std::chrono::steady_clock::now().time_since_epoch().count()};
				std::uint64_t const begTsc = rdtsc();
				std::uint64_t endTsc;
				std::chrono::nanoseconds elapsedNs;
				do {
					auto endTs = std::chrono::nanoseconds{std::chrono::steady_clock::now().time_since_epoch().count()};
					endTsc = rdtsc();
					elapsedNs = endTs - begTs;
				} while (elapsedNs < SpinDuration);

				rates[ratesCount++] = static_cast<double>(endTsc - begTsc) / static_cast<double>(elapsedNs.count());

				if (((i + 1) >= MinTrials) && (((i + 1) % 2) != 0)) {
					std::nth_element(rates.begin(), rates.begin() + static_cast<std::ptrdiff_t>((i + 1) / 2), rates.begin() + ratesCount);
					double currentMedian = rates[(i + 1) / 2];

					if (std::abs(currentMedian - previousMedian) / currentMedian < ConvergenceThreshold) {
						break;
					}

					previousMedian = currentMedian;
				}
			}

			std::nth_element(rates.begin(), rates.begin() + static_cast<std::ptrdiff_t>(ratesCount / 2), rates.begin() + ratesCount);

			double const ticksPerNanoseconds = rates[ratesCount / 2];
			_nanosecondsPerTick = 1.0 / ticksPerNanoseconds;
		}

		RdtscClock::RdtscClock(std::chrono::nanoseconds resyncInterval)
			: _nanosecondsPerTick(RdtscTicks::instance().nanosecondsPerTick())

		{
			const double calcValue = static_cast<double>(resyncInterval.count()) * _nanosecondsPerTick;

			// Check for overflow and negative values
			if (calcValue >= static_cast<double>(std::numeric_limits<std::int64_t>::max()) || calcValue < 0) {
				_resyncIntervalTicks = std::numeric_limits<std::int64_t>::max();
			} else {
				_resyncIntervalTicks = static_cast<std::int64_t>(calcValue);
			}

			_resyncIntervalOriginal = _resyncIntervalTicks;

			if (!resync(ResyncLagCycles)) {
				// Try to resync again with higher lag
				if (!resync(ResyncLagCycles * 2u)) {
#	if defined(DEATH_DEBUG)
					LOGW("Failed to sync clock, timestamps will be incorrect");
#	endif
				}
			}
		}

		std::uint64_t RdtscClock::timeSinceEpoch(std::uint64_t rdtscValue) const noexcept
		{
			// Should only get called by the backend thread

			// Get the current index, this is only sef called my the thread that is doing the resync
			auto index = _version.load(std::memory_order_relaxed) & (_base.size() - 1);

			// Get rdtsc current value and compare the diff then add it to base wall time
			auto diff = static_cast<std::int64_t>(rdtscValue - _base[index].BaseTsc);

			// We need to sync after we calculated otherwise BaseTsc value will be ahead of passed tsc value
			if (diff > _resyncIntervalTicks) {
				resync(ResyncLagCycles);
				diff = static_cast<std::int64_t>(rdtscValue - _base[index].BaseTsc);
			}

			return static_cast<std::uint64_t>(_base[index].BaseTime + static_cast<std::int64_t>(static_cast<double>(diff) * _nanosecondsPerTick));
		}

		std::uint64_t RdtscClock::timeSinceEpochSafe(std::uint64_t rdtscValue) const noexcept
		{
			// Thread-safe, can be called by anyone
			std::uint32_t version;
			std::uint64_t wallTs;

			do {
				version = _version.load(std::memory_order_acquire);
				std::uint64_t index = version & (_base.size() - 1);

				if DEATH_UNLIKELY(_base[index].BaseTsc == 0 && _base[index].BaseTime == 0) {
					return 0;
				}

				// Get rdtsc current value and compare the diff then add it to base wall time
				auto diff = static_cast<std::int64_t>(rdtscValue - _base[index].BaseTsc);
				wallTs = static_cast<std::uint64_t>(_base[index].BaseTime + static_cast<std::int64_t>(static_cast<double>(diff) * _nanosecondsPerTick));
			} while (version != _version.load(std::memory_order_acquire));

			return wallTs;
		}

		bool RdtscClock::resync(std::uint32_t lag) const noexcept
		{
			// Sometimes we might get an interrupt and might never resync, so we will try again up to max_attempts
			constexpr std::uint8_t MaxAttempts = 4;

			for (std::uint8_t attempt = 0; attempt < MaxAttempts; attempt++) {
				std::uint64_t beg = rdtsc();
				// We force convert to nanoseconds because the precision of system_clock::time-point is not portable across platforms.
				std::int64_t wallTime = std::chrono::nanoseconds{std::chrono::system_clock::now().time_since_epoch()}.count();
				std::uint64_t end = rdtsc();

				if DEATH_LIKELY(end - beg <= lag) {
					// Update the next index
					auto index = (_version.load(std::memory_order_relaxed) + 1) & (_base.size() - 1);
					_base[index].BaseTime = wallTime;
					_base[index].BaseTsc = fastAverage(beg, end);
					_version.fetch_add(1, std::memory_order_release);

					_resyncIntervalTicks = _resyncIntervalOriginal;
					return true;
				}
			}

			// We failed to return earlier and we never resynced, but we don't really want to keep retrying on each call
			// to timeSinceEpoch(), so we do non-accurate resync and we will increase the resync duration to resync later
			constexpr std::int64_t maxHalfInt64 = std::numeric_limits<std::int64_t>::max() / 2;
			if (_resyncIntervalTicks <= maxHalfInt64) {
				_resyncIntervalTicks = _resyncIntervalTicks * 2;
			}

			return false;
		}
	}

	ThreadContextManager& ThreadContextManager::Get() noexcept
	{
		static ThreadContextManager instance;
		return instance;
	}

	void ThreadContextManager::RegisterThreadContext(std::shared_ptr<ThreadContext> const& threadContext) noexcept
	{
		_spinlock.lock();
		_threadContexts.push_back(threadContext);
		_spinlock.unlock();
		_newThreadContextFlag.store(true, std::memory_order_release);
	}

	void ThreadContextManager::AddInvalidThreadContext() noexcept
	{
		_invalidThreadContextCount.fetch_add(1, std::memory_order_relaxed);
	}

	bool ThreadContextManager::HasInvalidThreadContext() const noexcept
	{
		// Here we do relaxed, because if the value is not zero, we will look inside ThreadContext invalid flag that is
		// also a relaxed atomic, and then we will look into the SPSC queue size that is also atomic. Even if we don't
		// read everything in order, we will check again in the next circle.
		return _invalidThreadContextCount.load(std::memory_order_relaxed) != 0;
	}

	bool ThreadContextManager::HasNewThreadContext() noexcept
	{
		// Again relaxed memory model as in case it is false, we will acquire the lock
		if (_newThreadContextFlag.load(std::memory_order_relaxed)) {
			// If the variable was updated to true, set it to false. There should not be any race condition here as this
			// is the only place _changed is set to false, and we will return true anyway.
			_newThreadContextFlag.store(false, std::memory_order_relaxed);
			return true;
		}
		return false;
	}

	void ThreadContextManager::RemoveSharedInvalidatedThreadContext(ThreadContext const* threadContext) noexcept
	{
		std::unique_lock lock{_spinlock};

		auto threadContextIt = _threadContexts.end();
		for (auto it = _threadContexts.begin(); it != _threadContexts.end(); ++it) {
			if (it->get() == threadContext) {
				threadContextIt = it;
				break;
			}
		}

		DEATH_DEBUG_ASSERT(threadContextIt != _threadContexts.end(), "Attempting to remove a non existent thread context", );
		DEATH_DEBUG_ASSERT(!threadContextIt->get()->IsValid(), "Attempting to remove a valid thread context", );

#	if defined(DEATH_DEBUG)
		DEATH_DEBUG_ASSERT(threadContext->HasUnboundedQueueType() || threadContext->HasBoundedQueueType());

		if (threadContext->HasUnboundedQueueType()) {
			DEATH_DEBUG_ASSERT(threadContext->GetSpscQueueUnion().UnboundedSpscQueue.empty(),
				   "Attempting to remove a thread context with a non empty queue", );
		} else if (threadContext->HasBoundedQueueType()) {
			DEATH_DEBUG_ASSERT(threadContext->GetSpscQueueUnion().BoundedSpscQueue.empty(),
				   "Attempting to remove a thread context with a non empty queue", );
		}
#	endif

		_threadContexts.erase(threadContextIt);

		_invalidThreadContextCount.fetch_sub(1, std::memory_order_relaxed);
	}
#endif

	BacktraceStorage::BacktraceStorage()
		: _capacity(0), _index(0)
	{
	}

	BacktraceStorage::BacktraceStorage(std::uint32_t capacity)
		: _capacity(capacity), _index(0)
	{
		_storedEvents.reserve(_capacity);
	}

	void BacktraceStorage::Store(TransitEvent transitEvent, StringView threadId) noexcept
	{
		if (_storedEvents.size() < _capacity) {
			_storedEvents.emplace_back(threadId, Death::move(transitEvent));
		} else {
			StoredTransitEvent& ste = _storedEvents[_index];

			ste = StoredTransitEvent{threadId, Death::move(transitEvent)};

			if (_index < _capacity - 1) {
				_index++;
			} else {
				_index = 0;
			}
		}
	}

	void BacktraceStorage::Process(Function<void(TransitEvent const& event, StringView threadId)>&& callback) noexcept
	{
		std::uint32_t index = _index;

		for (std::uint32_t i = 0; i < _storedEvents.size(); i++) {
			auto& e = _storedEvents[index];
			callback(e.Event, e.ThreadId);

			if (index < _storedEvents.size() - 1) {
				index++;
			} else {
				index = 0;
			}
		}

		_storedEvents.clear();
		_index = 0;
	}

	void BacktraceStorage::SetCapacity(std::uint32_t capacity) noexcept
	{
		if (_capacity != capacity) {
			_capacity = capacity;
			_index = 0;
			_storedEvents.clear();
			_storedEvents.reserve(_capacity);
		}
	}

	BacktraceStorage::StoredTransitEvent::StoredTransitEvent(String threadId, TransitEvent transitEvent)
		: ThreadId(Death::move(threadId)), Event(Death::move(transitEvent))
	{
	}

	LoggerBackend::LoggerBackend()
		: _backtraceFlushLevel(TraceLevel::Unknown)
#if defined(DEATH_TRACE_ASYNC)
			, _rdtscClock(Implementation::RdtscResyncInterval), _lastRdtscResyncTime(std::chrono::system_clock::now()), _workerThreadAlive(false)
#endif
	{
	}

	LoggerBackend::~LoggerBackend()
	{
		Dispose();
	}

	void LoggerBackend::AttachSink(ITraceSink* sink)
	{
		_sinks.push_back(sink);

		if (_sinks.size() == 1) {
			Initialize();
		}
	}

	void LoggerBackend::RemoveSink(ITraceSink* sink)
	{
		for (std::size_t i = 0; i < _sinks.size(); i++) {
			if (_sinks[i] == sink) {
				_sinks.eraseUnordered(&_sinks[i]);
				if (_sinks.empty()) {
					Dispose();
				}
				break;
			}
		}
	}

	void LoggerBackend::Notify() noexcept
	{
#if defined(DEATH_TRACE_ASYNC)
		_wakeUpEvent.SetEvent();
#endif
	}

	TraceLevel LoggerBackend::GetBacktraceFlushLevel() const noexcept
	{
#if defined(DEATH_TRACE_ASYNC)
		return _backtraceFlushLevel.load(std::memory_order_relaxed);
#else
		return _backtraceFlushLevel;
#endif
	}

	void LoggerBackend::SetBacktraceFlushLevel(TraceLevel flushLevel) noexcept
	{
#if defined(DEATH_TRACE_ASYNC)
		_backtraceFlushLevel.store(flushLevel, std::memory_order_relaxed);
#else
		_backtraceFlushLevel = flushLevel;
#endif
	}

	void LoggerBackend::Initialize()
	{
#if defined(DEATH_TRACE_ASYNC)
		if (_workerThreadAlive.load(std::memory_order_relaxed)) {
			return;
		}

		std::thread workerThread([this]() {
			_workerThreadAlive.store(true);

			while DEATH_LIKELY(_workerThreadAlive.load(std::memory_order_relaxed)) {
				ProcessEvents();
			}

			CleanUpBeforeExit();
		});

		_workerThread.swap(workerThread);

		while (!_workerThreadAlive.load(std::memory_order_seq_cst)) {
			// Wait for the thread to start
			std::this_thread::sleep_for(std::chrono::microseconds{100});
		}
#endif
	}

	void LoggerBackend::Dispose()
	{
#if defined(DEATH_TRACE_ASYNC)
		if (!_workerThreadAlive.exchange(false)) {
			return;
		}

		_wakeUpEvent.SetEvent();

		// Wait the backend thread to join, if backend thread was never started it won't be joinable
		if (_workerThread.joinable()) {
			_workerThread.join();
		}
#endif
	}

#if defined(DEATH_TRACE_ASYNC)
	bool LoggerBackend::IsAlive() const noexcept
	{
		return _workerThreadAlive.load(std::memory_order_relaxed);
	}

	bool LoggerBackend::IsWorkerThread() const noexcept
	{
		return (std::this_thread::get_id() == _workerThread.get_id());
	}

	void LoggerBackend::CleanUpBeforeExit() noexcept
	{
		using namespace Implementation;

		while (true) {
			bool queuesAndEventsEmpty = (!WaitForQueuesToEmptyBeforeExit || CheckThreadQueuesAndCachedTransitEventsEmpty());
			if (queuesAndEventsEmpty) {
				// We are done, all queues are now empty
				//_check_failure_counter(_options.error_notifier);
				FlushActiveSinks();
				break;
			}

			std::uint64_t cachedTransitEventsCount = PopulateTransitEventsFromFrontendQueues();
			if (cachedTransitEventsCount > 0) {
				while (!HasPendingEventsForCachingWhenTransitEventBufferEmpty() && ProcessLowestTimestampTransitEvent()) {
					// We need to be cautious because there are log messages in the lock-free queues that have not yet
					// been cached in the transit event buffer. Logging only the cached messages can result in out-of-order
					// log entries, as messages with larger timestamps in the queue might be missed.
				}
			}
		}

		CleanUpInvalidatedThreadContexts();
	}

	void LoggerBackend::UpdateActiveThreadContextsCache() noexcept
	{
		ThreadContextManager& threadManager = ThreadContextManager::Get();

		// Check if _threadContexts has changed, this can happen only when a new thread context is added by any Logger
		if DEATH_UNLIKELY(threadManager.HasNewThreadContext()) {
			_activeThreadContextsCache.clear();
			threadManager.ForEachThreadContext([this](ThreadContext* threadContext) {
				_activeThreadContextsCache.push_back(threadContext);
			});
		}
	}

	void LoggerBackend::CleanUpInvalidatedThreadContexts() noexcept
	{
		ThreadContextManager& threadManager = ThreadContextManager::Get();

		if (!threadManager.HasInvalidThreadContext()) {
			return;
		}

		auto findInvalidAndEmptyThreadContextCallback = [](ThreadContext* threadContext) {
			// If the thread context is invalid, it means the thread that created it has now died.
			// We also want to empty the queue from all LogRecords before removing the thread context
			if (!threadContext->IsValid()) {
				DEATH_DEBUG_ASSERT(threadContext->HasUnboundedQueueType() || threadContext->HasBoundedQueueType());

				if (threadContext->HasUnboundedQueueType()) {
					return threadContext->GetSpscQueueUnion().UnboundedSpscQueue.empty() &&
						threadContext->_transitEventBuffer.empty();
				}

				if (threadContext->HasBoundedQueueType()) {
					return threadContext->GetSpscQueueUnion().BoundedSpscQueue.empty() &&
						threadContext->_transitEventBuffer.empty();
				}
			}

			return false;
		};

		// First we iterate our existing cache and we look for any invalidated contexts
		auto foundInvalidAndEmptyThreadContext =
			std::find_if(_activeThreadContextsCache.begin(), _activeThreadContextsCache.end(),
						 findInvalidAndEmptyThreadContextCallback);

		while DEATH_UNLIKELY(foundInvalidAndEmptyThreadContext != std::end(_activeThreadContextsCache)) {
			// If we found anything then remove it - Here if we have more than one to remove, we will try to acquire
			// the lock multiple times, but it should be fine as it is unlikely to have that many to remove
			threadManager.RemoveSharedInvalidatedThreadContext(*foundInvalidAndEmptyThreadContext);

			// We also need to remove it from _thread_context_cache, that is used only by the backend
			_activeThreadContextsCache.erase(foundInvalidAndEmptyThreadContext);

			// And then look again
			foundInvalidAndEmptyThreadContext = std::find_if(_activeThreadContextsCache.begin(),
				_activeThreadContextsCache.end(), findInvalidAndEmptyThreadContextCallback);
		}
	}

	bool LoggerBackend::PopulateTransitEventFromThreadQueue(const std::uint8_t*& readPos, ThreadContext* threadContext, std::uint64_t tsNow) noexcept
	{
		using namespace Implementation;

		// Allocate a new TransitEvent or use an existing one to store the message from the queue
		TransitEvent* transitEvent = threadContext->_transitEventBuffer.back();

		transitEvent->Level = (TraceLevel)readPos[0];
		readPos += 1;

		std::memcpy(&transitEvent->Timestamp, readPos, sizeof(transitEvent->Timestamp));
		readPos += sizeof(transitEvent->Timestamp);

		// Convert the rdtsc value to nanoseconds since epoch
		transitEvent->Timestamp = _rdtscClock.timeSinceEpoch(transitEvent->Timestamp);

		// Ensure the message timestamp is not greater than ts_now
		if DEATH_UNLIKELY(transitEvent->Timestamp > tsNow) {
			// If the message timestamp is ahead of the current time, temporarily halt processing. This guarantees
			// the integrity of message order and avoids missed messages. We halt processing here to avoid introducing
			// out-of-sequence messages. This scenario prevents potential race conditions where timestamps from the last
			// queue could overwrite those from the first queue before they are included. We return at this point
			// without adding the current event to the buffer.
			return false;
		}

		std::uintptr_t functionName;
		std::memcpy(&functionName, readPos, sizeof(std::uintptr_t));
		readPos += sizeof(std::uintptr_t);

		std::uint32_t length;
		std::memcpy(&length, readPos, sizeof(std::uint32_t));
		readPos += sizeof(std::uint32_t);

		// We need to check and do not try to format the flush events as that wouldn't be valid
		if DEATH_UNLIKELY(transitEvent->Level == FlushRequested) {
			// If this is a flush event then we do not need to format anything for the TransitEvent, but we need
			// to set the transit event's FlushFlag pointer instead
			transitEvent->FlushFlag = reinterpret_cast<std::atomic<bool>*>(functionName);
		} /*else if DEATH_UNLIKELY(transitEvent->Level == InitializeBacktraceRequested) {
			transitEvent->Capacity = static_cast<std::uint32_t>(functionName);
		}*/ else if DEATH_LIKELY(transitEvent->Level != FlushBacktraceRequested) {
			transitEvent->FunctionName = reinterpret_cast<const char*>(functionName);
			transitEvent->Message.resize(length);
			std::memcpy(&transitEvent->Message[0], readPos, length);
		}

		readPos += length;

		// Commit this transit event
		threadContext->_transitEventBuffer.push_back();

		return true;
	}

	std::size_t LoggerBackend::PopulateTransitEventsFromFrontendQueues() noexcept
	{
		using namespace Implementation;

		std::uint64_t const tsNow = LogTimestampOrderingGracePeriod.count()
			? static_cast<std::uint64_t>((std::chrono::duration_cast<std::chrono::nanoseconds>(
				std::chrono::system_clock::now().time_since_epoch()) -
				LogTimestampOrderingGracePeriod).count())
			: std::numeric_limits<std::uint64_t>::max();

		std::size_t cachedTransitEventsCount = 0;

		for (ThreadContext* threadContext : _activeThreadContextsCache) {
			DEATH_DEBUG_ASSERT(threadContext->HasUnboundedQueueType() || threadContext->HasBoundedQueueType());

			if (threadContext->HasUnboundedQueueType()) {
				cachedTransitEventsCount += ReadAndDecodeThreadQueue(
				  threadContext->GetSpscQueueUnion().UnboundedSpscQueue, threadContext, tsNow);
			} else if (threadContext->HasBoundedQueueType()) {
				cachedTransitEventsCount += ReadAndDecodeThreadQueue(
				  threadContext->GetSpscQueueUnion().BoundedSpscQueue, threadContext, tsNow);
			}
		}

		return cachedTransitEventsCount;
	}

	bool LoggerBackend::HasPendingEventsForCachingWhenTransitEventBufferEmpty() noexcept
	{
		UpdateActiveThreadContextsCache();

		for (ThreadContext* threadContext : _activeThreadContextsCache) {
			if (threadContext->_transitEventBuffer.empty()) {
				// If there is no _transitEventBuffer yet, check only the queue
				if (threadContext->HasUnboundedQueueType() &&
					!threadContext->GetSpscQueueUnion().UnboundedSpscQueue.empty()) {
					return true;
				}

				if (threadContext->HasBoundedQueueType() &&
					!threadContext->GetSpscQueueUnion().BoundedSpscQueue.empty()) {
					return true;
				}
			}
		}

		return false;
	}

	bool LoggerBackend::CheckThreadQueuesAndCachedTransitEventsEmpty() noexcept
	{
		UpdateActiveThreadContextsCache();

		bool allEmpty = true;

		for (ThreadContext* threadContext : _activeThreadContextsCache) {
			DEATH_DEBUG_ASSERT(threadContext->HasUnboundedQueueType() || threadContext->HasBoundedQueueType());

			if (threadContext->HasUnboundedQueueType()) {
				allEmpty &= threadContext->GetSpscQueueUnion().UnboundedSpscQueue.empty();
			} else if (threadContext->HasBoundedQueueType()) {
				allEmpty &= threadContext->GetSpscQueueUnion().BoundedSpscQueue.empty();
			}

			allEmpty &= threadContext->_transitEventBuffer.empty();
		}

		return allEmpty;
	}

	void LoggerBackend::ResyncRdtscClock() noexcept
	{
		using namespace Implementation;

		if (auto now = std::chrono::system_clock::now();
			(now - _lastRdtscResyncTime) > RdtscResyncInterval) {
			if (_rdtscClock.resync(ResyncLagCycles)) {
				_lastRdtscResyncTime = now;
			}
		}
	}

	void LoggerBackend::DispatchTransitEventToSinks(TransitEvent const& transitEvent, StringView threadId) noexcept
	{
		StringView functionNameView{transitEvent.FunctionName, StringViewFlags::Global};
		StringView contentView{transitEvent.Message};

		for (std::size_t i = 0; i < _sinks.size(); i++) {
			_sinks[i]->OnTraceReceived(transitEvent.Level, transitEvent.Timestamp, threadId, functionNameView, contentView);
		}
	}

	void LoggerBackend::FlushActiveSinks() noexcept
	{
		for (std::size_t i = 0; i < _sinks.size(); i++) {
			_sinks[i]->OnTraceFlushed();
		}
	}

	void LoggerBackend::ProcessTransitEvent(ThreadContext const& threadContext, TransitEvent& transitEvent, std::atomic<bool>*& flushFlag) noexcept
	{
		using namespace Implementation;

		if DEATH_UNLIKELY(transitEvent.Level == FlushRequested) {
			FlushActiveSinks();

			// This is a flush event, so we capture the flush flag to notify the caller after processing
			flushFlag = transitEvent.FlushFlag;

			// Reset the flush flag as TransitEvents are re-used, preventing incorrect flag reuse
			transitEvent.FlushFlag = nullptr;

			// We defer notifying the caller until after this function completes
		} /*else if DEATH_UNLIKELY(transitEvent.Level == InitializeBacktraceRequested) {
			if (_backtraceStorage == nullptr) {
				_backtraceStorage = std::make_shared<BacktraceStorage>(transitEvent.Capacity);
			} else {
				_backtraceStorage->SetCapacity(transitEvent.Capacity);
			}
		}*/ else if DEATH_UNLIKELY(transitEvent.Level == FlushBacktraceRequested) {
			if (_backtraceStorage != nullptr) {
				_backtraceStorage->Process(
					[this](TransitEvent const& te, StringView threadId) { DispatchTransitEventToSinks(te, threadId); });
			}
		} else if DEATH_UNLIKELY(transitEvent.Level == TraceLevel::Deferred) {
			if (_backtraceStorage != nullptr) {
				_backtraceStorage->Store(Death::move(transitEvent), threadContext.GetThreadId());
			} else {
				// If the backtrace storage is not initialized, we dispatch the event directly to the sinks
				DispatchTransitEventToSinks(transitEvent, threadContext.GetThreadId());
			}
		} else {
			// First, dispatch any deferred entries if the trace level is high enough
			TraceLevel backtraceFlushLevel = _backtraceFlushLevel.load(std::memory_order_relaxed);
			if DEATH_UNLIKELY(backtraceFlushLevel != TraceLevel::Unknown && transitEvent.Level >= backtraceFlushLevel) {
				if (_backtraceStorage != nullptr) {
					_backtraceStorage->Process(
						[this](TransitEvent const& te, StringView threadId) { DispatchTransitEventToSinks(te, threadId); });
				}
			}

			DispatchTransitEventToSinks(transitEvent, threadContext.GetThreadId());
		}
	}

	bool LoggerBackend::ProcessLowestTimestampTransitEvent() noexcept
	{
		// Get the lowest timestamp
		std::uint64_t minTs = std::numeric_limits<std::uint64_t>::max();
		ThreadContext* threadContext = nullptr;

		for (ThreadContext* tc : _activeThreadContextsCache) {
			TransitEvent const* te = tc->_transitEventBuffer.front();
			if (te != nullptr && minTs > te->Timestamp) {
				minTs = te->Timestamp;
				threadContext = tc;
			}
		}

		if (threadContext == nullptr) {
			// All transit event buffers are empty
			return false;
		}

		TransitEvent* transitEvent = threadContext->_transitEventBuffer.front();

		std::atomic<bool>* flushFlag = nullptr;
		ProcessTransitEvent(*threadContext, *transitEvent, flushFlag);

		threadContext->_transitEventBuffer.pop_front();

		if (flushFlag != nullptr) {
			// Process the second part of the flush event after it's been removed from the buffer,
			// ensuring that we are no longer interacting with the threadContext or transitEvent.

			// This is particularly important for handling cases when Quill is used as a DLL on Windows.
			// If `FreeLibrary` is called, the backend thread may attempt to access an invalidated
			// `ThreadContext`, which can lead to a crash due to invalid memory access.
			//
			// To prevent this, whenever we receive a Flush event, we clean up any invalidated thread contexts
			// before notifying the caller. This ensures that when flush is invoked in `DllMain` during
			// `DLL_PROCESS_DETACH`, the `ThreadContext` is properly cleaned up before the DLL exits.
			CleanUpInvalidatedThreadContexts();

			// Now it’s safe to notify the caller to continue execution
			flushFlag->store(true);
		}

		return true;
	}

	void LoggerBackend::ProcessEvents() noexcept
	{
		using namespace Implementation;

		UpdateActiveThreadContextsCache();

		// Read all frontend queues and cache the log statements and the metadata as TransitEvents
		std::size_t cachedTransitEventsCount = PopulateTransitEventsFromFrontendQueues();

		if (cachedTransitEventsCount != 0) {
			// There are cached events to process
			if (cachedTransitEventsCount < TransitEventsSoftLimit) {
				// Process a single transit event, then give priority to reading the thread queues again
				ProcessLowestTimestampTransitEvent();
			} else {
				// We want to process a batch of events
				while (!HasPendingEventsForCachingWhenTransitEventBufferEmpty() && ProcessLowestTimestampTransitEvent()) {
					// We need to be cautious because there are log messages in the lock-free queues that have not
					// yet been cached in the transit event buffer. Logging only the cached messages can result
					// in out-of-order log entries, as messages with larger timestamps in the queue might be missed.
				}
			}
		} else {
			// No cached transit events to process, minimal thread workload

			// Force flush all remaining messages
			FlushActiveSinks();

			// Check for any dropped messages / blocked threads
			//_check_failure_counter(_options.error_notifier);

			ResyncRdtscClock();

			// Also check if all queues are empty
			bool queuesAndEventsEmpty = CheckThreadQueuesAndCachedTransitEventsEmpty();
			if (queuesAndEventsEmpty) {
				CleanUpInvalidatedThreadContexts();

				// There is nothing left to do, and we can let this thread sleep for a while
				_wakeUpEvent.Wait();

				ResyncRdtscClock();
			}
		}
	}
#else
	void LoggerBackend::DispatchEntryToSinks(TraceLevel level, std::uint64_t timestamp, const void* functionName, const void* content, std::uint32_t contentLength, StringView threadId) noexcept
	{
		using namespace Implementation;

		char buffer[16];
		if (threadId.empty()) {
			if (std::uint32_t tid = GetNativeThreadId()) {
				std::int32_t length = snprintf(buffer, sizeof(buffer), "%u", tid);
				threadId = StringView{buffer, static_cast<std::size_t>(length)};
			}
		}

		StringView functionNameView{static_cast<const char*>(functionName), StringViewFlags::Global};
		StringView contentView{static_cast<const char*>(content), std::size_t(contentLength)};

		for (std::size_t i = 0; i < _sinks.size(); i++) {
			_sinks[i]->OnTraceReceived(level, timestamp, threadId, functionNameView, contentView);
		}
	}

	void LoggerBackend::FlushActiveSinks() noexcept
	{
		for (std::size_t i = 0; i < _sinks.size(); i++) {
			_sinks[i]->OnTraceFlushed();
		}
	}
#endif

	void LoggerBackend::InitializeBacktrace(std::uint32_t capacity)
	{
		using namespace Implementation;

		if (_backtraceStorage == nullptr) {
			_backtraceStorage = std::make_shared<BacktraceStorage>(capacity);
		} else {
			_backtraceStorage->SetCapacity(capacity);
		}
	}

#if !defined(DEATH_TRACE_ASYNC)
	void LoggerBackend::FlushBacktraceAsync() noexcept
	{
		if (_backtraceStorage != nullptr) {
			_backtraceStorage->Process(
				[this](TransitEvent const& te, StringView threadId) { DispatchEntryToSinks(te.Level,
					te.Timestamp, te.FunctionName, te.Message.data(), static_cast<std::int32_t>(te.Message.size()), threadId); });
		}
	}

	void LoggerBackend::EnqueueEntryToBacktrace(std::uint64_t timestamp, const void* functionName, const void* content, std::uint32_t contentLength) noexcept
	{
		using namespace Implementation;

		if (_backtraceStorage != nullptr) {
			StringView threadId;
			char buffer[16];
			if (std::uint32_t tid = GetNativeThreadId()) {
				std::int32_t length = snprintf(buffer, sizeof(buffer), "%u", tid);
				threadId = StringView{buffer, static_cast<std::size_t>(length)};
			}

			TransitEvent transitEvent;
			transitEvent.Timestamp = timestamp;
			transitEvent.FunctionName = static_cast<const char*>(functionName);
			transitEvent.Message.resize(contentLength);
			transitEvent.Level = TraceLevel::Deferred;
			std::memcpy(&transitEvent.Message[0], content, contentLength);

			_backtraceStorage->Store(Death::move(transitEvent), threadId);
		} else {
			DispatchEntryToSinks(TraceLevel::Deferred, timestamp, functionName, content, contentLength, {});
		}
	}
#endif

	void Logger::AttachSink(ITraceSink* sink)
	{
		_backend.AttachSink(sink);
	}

	void Logger::RemoveSink(ITraceSink* sink)
	{
		_backend.RemoveSink(sink);
	}

	bool Logger::Write(TraceLevel level, const char* functionName, const char* message, std::uint32_t messageLength)
	{
#if defined(DEATH_TRACE_ASYNC)
		std::uint64_t timestamp = Implementation::rdtsc();
#else
		std::uint64_t timestamp = static_cast<std::uint64_t>(std::chrono::duration_cast<std::chrono::nanoseconds>(
			std::chrono::system_clock::now().time_since_epoch()).count());
#endif

		bool result = EnqueueEntry(level, timestamp, functionName, message, messageLength);

		if DEATH_UNLIKELY(level >= TraceLevel::Error) {
			// Flush all messages with level Error or higher because of potential immediate crash/termination
			Flush();
		} else {
			_backend.Notify();
		}

		return result;
	}

	void Logger::Flush(std::uint32_t sleepDurationNs) noexcept
	{
		using namespace Implementation;

#if defined(DEATH_TRACE_ASYNC)
		std::uint64_t timestamp = rdtsc();

		if (!_backend.IsAlive() || _backend.IsWorkerThread()) {
			// If the backend is not alive (yet) or it's called from worker thread itself (in case of error), don't try to wait for the flushing
			return;
		}

		std::atomic<bool> threadFlushed{false};
		std::atomic<bool>* threadFlushedPtr = &threadFlushed;

		// We do not want to drop the message if a dropping queue is used
		while (!EnqueueEntry(FlushRequested, timestamp, threadFlushedPtr, nullptr, 0)) {
			if (sleepDurationNs > 0) {
				std::this_thread::sleep_for(std::chrono::nanoseconds{sleepDurationNs});
			} else {
				std::this_thread::yield();
			}
		}

		_backend.Notify();

		// The caller thread keeps checking the flag until the backend thread flushes
		while (!threadFlushed.load()) {
			if (sleepDurationNs > 0) {
				std::this_thread::sleep_for(std::chrono::nanoseconds{sleepDurationNs});
			} else {
				std::this_thread::yield();
			}
		}
#endif
	}

	void Logger::InitializeBacktrace(std::uint32_t capacity, TraceLevel flushLevel)
	{
		// All deferred entries are logged immediately if the backtrace storage is not initialized

		// TODO: This piece of code doesn't work on 32-bit ARM Android for some reason,
		//       so the backtrace needs to be initialized on the current thread instead
		//       and changing the capacity of already initialized storage is not so safe

/*#if defined(DEATH_TRACE_ASYNC)
		using namespace Implementation;

		while (!EnqueueEntry(InitializeBacktraceRequested, 0,
					reinterpret_cast<const void*>(static_cast<std::uintptr_t>(capacity)), nullptr, 0)) {
			std::this_thread::sleep_for(std::chrono::nanoseconds{100});
		}

		_backend.SetBacktraceFlushLevel(flushLevel);
		_backend.Notify();
#else*/
		_backend.InitializeBacktrace(capacity);
		_backend.SetBacktraceFlushLevel(flushLevel);
/*#endif*/
	}

	void Logger::FlushBacktraceAsync() noexcept
	{
#if defined(DEATH_TRACE_ASYNC)
		using namespace Implementation;

		while (!EnqueueEntry(FlushBacktraceRequested, 0, nullptr, nullptr, 0)) {
			std::this_thread::sleep_for(std::chrono::nanoseconds{100});
		}

		_backend.Notify();
#else
		_backend.FlushBacktraceAsync();
#endif
	}

#if defined(DEATH_TRACE_ASYNC)
	void Logger::ShrinkThreadLocalQueue(std::size_t capacity) noexcept
	{
		using namespace Implementation;

		if constexpr (DefaultQueueType == QueueType::UnboundedDropping || DefaultQueueType == QueueType::UnboundedBlocking) {
			if (_threadContext != nullptr) {
				_threadContext->GetSpscQueue<DefaultQueueType>().shrink(capacity);
			}
		}
	}

	std::size_t Logger::GetThreadLocalQueueCapacity() noexcept
	{
		using namespace Implementation;

		if constexpr (DefaultQueueType == QueueType::UnboundedDropping || DefaultQueueType == QueueType::UnboundedBlocking) {
			if (_threadContext != nullptr) {
				return _threadContext->GetSpscQueue<DefaultQueueType>().producerCapacity();
			}
		} else {
			if (_threadContext != nullptr) {
				return _threadContext->GetSpscQueue<DefaultQueueType>().capacity();
			}
		}

		return 0;
	}

	ThreadContext* Logger::GetLocalThreadContext() noexcept
	{
		using namespace Implementation;

		DEATH_THREAD_LOCAL ScopedThreadContext scopedThreadContext
			{DefaultQueueType, InitialQueueCapacity, HugePagesEnabled};

		return scopedThreadContext.GetThreadContext();
	}

	bool Logger::EnqueueEntry(TraceLevel level, std::uint64_t timestamp, const void* functionName, const void* content, std::uint32_t contentLength) noexcept
	{
		using namespace Implementation;

		if DEATH_UNLIKELY(_threadContext == nullptr) {
			_threadContext = GetLocalThreadContext();
		}

		std::size_t totalSize = /*Level*/ sizeof(std::uint8_t) + /*Timestamp*/ sizeof(std::uint64_t) +
			/*FunctionName*/ sizeof(std::uintptr_t) + /*Length*/ sizeof(std::uint32_t) + /*Content*/ std::size_t(contentLength);
		std::uint8_t* writeBuffer = _threadContext->GetSpscQueue<DefaultQueueType>().prepareWrite(totalSize);

		if constexpr (DefaultQueueType == QueueType::BoundedDropping ||
					  DefaultQueueType == QueueType::UnboundedDropping) {
			if DEATH_UNLIKELY(writeBuffer == nullptr) {
				// Not enough space to push to queue, message is dropped
				if (level != FlushRequested && level != InitializeBacktraceRequested && level != FlushBacktraceRequested) {
					_threadContext->IncrementFailureCounter();
				}
				return false;
			}
		} else if constexpr (DefaultQueueType == QueueType::BoundedBlocking ||
							 DefaultQueueType == QueueType::UnboundedBlocking) {
			if DEATH_UNLIKELY(writeBuffer == nullptr) {
				if (level != FlushRequested && level != InitializeBacktraceRequested && level != FlushBacktraceRequested) {
					_threadContext->IncrementFailureCounter();
				}

				do {
					if constexpr (BlockingQueueRetryIntervalNanoseconds > 0) {
						std::this_thread::sleep_for(std::chrono::nanoseconds{BlockingQueueRetryIntervalNanoseconds});
					}

					// Not enough space to push to queue, keep trying
					writeBuffer = _threadContext->GetSpscQueue<DefaultQueueType>().prepareWrite(totalSize);
				} while (writeBuffer == nullptr);
			}
		}

#	if defined(DEATH_DEBUG)
		std::uint8_t* writeBegin = writeBuffer;
		DEATH_DEBUG_ASSERT(writeBegin != nullptr);
#	endif

		writeBuffer[0] = (std::uint8_t)level;
		writeBuffer += 1;

		std::memcpy(writeBuffer, &timestamp, sizeof(std::uint64_t));
		writeBuffer += sizeof(std::uint64_t);

		std::memcpy(writeBuffer, &functionName, sizeof(std::uintptr_t));
		writeBuffer += sizeof(std::uintptr_t);

		std::memcpy(writeBuffer, &contentLength, sizeof(std::uint32_t));
		writeBuffer += sizeof(std::uint32_t);

		std::memcpy(writeBuffer, content, contentLength);
		writeBuffer += contentLength;

#	if defined(DEATH_DEBUG)
		DEATH_DEBUG_ASSERT(writeBuffer > writeBegin);
		DEATH_DEBUG_ASSERT(totalSize == (static_cast<std::size_t>(writeBuffer - writeBegin)));
#	endif

		_threadContext->GetSpscQueue<DefaultQueueType>().finishAndCommitWrite(totalSize);

		return true;
	}
#else
	bool Logger::EnqueueEntry(TraceLevel level, std::uint64_t timestamp, const void* functionName, const void* content, std::uint32_t contentLength) noexcept
	{
		if DEATH_UNLIKELY(level == TraceLevel::Deferred) {
			_backend.EnqueueEntryToBacktrace(timestamp, functionName, content, contentLength);
			return true;
		}

		TraceLevel backtraceFlushLevel = _backend.GetBacktraceFlushLevel();
		if DEATH_UNLIKELY(backtraceFlushLevel != TraceLevel::Unknown && level >= backtraceFlushLevel) {
			_backend.FlushBacktraceAsync();
		}

		_backend.DispatchEntryToSinks(level, timestamp, functionName, content, contentLength, {});
		return true;
	}
#endif

	static Trace::Logger& GetMainLogger()
	{
		static Trace::Logger logger;
		return logger;
	}

	void AttachSink(ITraceSink* sink)
	{
		GetMainLogger().AttachSink(sink);
	}

	void RemoveSink(ITraceSink* sink)
	{
		GetMainLogger().RemoveSink(sink);
	}

	void Flush() noexcept
	{
		GetMainLogger().Flush();
	}

	void InitializeBacktrace(std::uint32_t maxCapacity, TraceLevel flushLevel)
	{
		GetMainLogger().InitializeBacktrace(maxCapacity, flushLevel);
	}

	void FlushBacktraceAsync() noexcept
	{
		GetMainLogger().FlushBacktraceAsync();
	}

#if defined(DEATH_TRACE_ASYNC) || defined(DOXYGEN_GENERATING_OUTPUT)
	void ShrinkThreadLocalQueue(std::size_t capacity) noexcept
	{
		GetMainLogger().ShrinkThreadLocalQueue(capacity);
	}

	std::size_t GetThreadLocalQueueCapacity() noexcept
	{
		return GetMainLogger().GetThreadLocalQueueCapacity();
	}
#endif

}}

void DEATH_TRACE(TraceLevel level, const char* functionName, const char* message, std::uint32_t messageLength) noexcept
{
	using namespace Death::Trace;

	GetMainLogger().Write(level, functionName, message, messageLength);
}

#endif