File: HashFunctions.cpp

package info (click to toggle)
jazz2-native 3.5.0-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 16,912 kB
  • sloc: cpp: 172,557; xml: 113; python: 36; makefile: 5; sh: 2
file content (429 lines) | stat: -rw-r--r-- 13,101 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#include "HashFunctions.h"

#include <Base/Memory.h>

#include <utility>

#if defined(DEATH_TARGET_APPLE)
#	include <libkern/OSByteOrder.h>
#endif

namespace nCine
{
	// Compression function for Merkle-Damgard construction.
	uint64_t fasthash_mix(uint64_t h)
	{
		h ^= h >> 23;
		h *= 0x2127599bf4325c37ULL;
		h ^= h >> 47;
		return h;
	}

	uint64_t fasthash64(const void* buf, size_t len, uint64_t seed)
	{
		const uint64_t m = 0x880355f21e6d1965ULL;
		const uint64_t* pos = reinterpret_cast<const uint64_t*>(buf);
		const uint64_t* end = pos + (len / 8);
		uint64_t h = seed ^ (len * m);
		uint64_t v = 0;

		while (pos != end) {
			v = *pos++;
			h ^= fasthash_mix(v);
			h *= m;
		}

		const unsigned char* pos2 = reinterpret_cast<const unsigned char*>(pos);
		v = 0;

		switch (len & 7) {
			case 7: v ^= static_cast<uint64_t>(pos2[6]) << 48;
			case 6: v ^= static_cast<uint64_t>(pos2[5]) << 40;
			case 5: v ^= static_cast<uint64_t>(pos2[4]) << 32;
			case 4: v ^= static_cast<uint64_t>(pos2[3]) << 24;
			case 3: v ^= static_cast<uint64_t>(pos2[2]) << 16;
			case 2: v ^= static_cast<uint64_t>(pos2[1]) << 8;
			case 1: v ^= static_cast<uint64_t>(pos2[0]);
				h ^= fasthash_mix(v);
				h *= m;
		}

		return fasthash_mix(h);
	}

	uint32_t fasthash32(const void* buf, size_t len, uint32_t seed)
	{
		// The following trick converts the 64-bit hashcode to Fermat residue, which
		// shall retain information from both the higher and lower parts of hashcode.
		uint64_t h = fasthash64(buf, len, seed);
		return static_cast<uint32_t>(h - (h >> 32));
	}

	// CityHash
#if defined(__has_builtin)
#	define DEATH_HAS_BUILTIN(x) __has_builtin(x)
#else
#	define DEATH_HAS_BUILTIN(x) 0
#endif

	inline std::uint32_t ByteSwap32(std::uint32_t value)
	{
#if defined(DEATH_TARGET_MSVC)
		return _byteswap_ulong(value);
#elif defined(DEATH_TARGET_APPLE)
		return _OSSwapInt32(value);
#elif DEATH_HAS_BUILTIN(__builtin_bswap32) || defined(DEATH_TARGET_GCC)
		return __builtin_bswap32(value);
#else
		return (((value & std::uint32_t{0xFF}) << 24) |
				((value & std::uint32_t{0xFF00}) << 8) |
				((value & std::uint32_t{0xFF0000}) >> 8) |
				((value & std::uint32_t{0xFF000000}) >> 24));
#endif
	}

	inline std::uint64_t ByteSwap64(std::uint64_t value)
	{
#if defined(DEATH_TARGET_MSVC)
		return _byteswap_uint64(value);
#elif defined(DEATH_TARGET_APPLE)
		return _OSSwapInt64(value);
#elif DEATH_HAS_BUILTIN(__builtin_bswap64) || defined(DEATH_TARGET_GCC)
		return __builtin_bswap64(value);
#else
		return (((value & std::uint64_t{0xFF}) << 56) |
				((value & std::uint64_t{0xFF00}) << 40) |
				((value & std::uint64_t{0xFF0000}) << 24) |
				((value & std::uint64_t{0xFF000000}) << 8) |
				((value & std::uint64_t{0xFF00000000}) >> 8) |
				((value & std::uint64_t{0xFF0000000000}) >> 24) |
				((value & std::uint64_t{0xFF000000000000}) >> 40) |
				((value & std::uint64_t{0xFF00000000000000}) >> 56));
#endif
	}

	static std::uint64_t Fetch64(const char* p)
	{
		using namespace Death::Memory;
#if defined(DEATH_TARGET_BIG_ENDIAN)
		return SwapBytes(LoadUnaligned<std::uint64_t>(p));
#else
		return LoadUnaligned<std::uint64_t>(p);
#endif
	}

	static std::uint32_t Fetch32(const char* p)
	{
		using namespace Death::Memory;
#if defined(DEATH_TARGET_BIG_ENDIAN)
		return SwapBytes(LoadUnaligned<std::uint32_t>(p));
#else
		return LoadUnaligned<std::uint32_t>(p);
#endif
	}

	// Some primes between 2^63 and 2^64 for various uses.
	static const std::uint64_t k0 = 0xc3a5c85c97cb3127ULL;
	static const std::uint64_t k1 = 0xb492b66fbe98f273ULL;
	static const std::uint64_t k2 = 0x9ae16a3b2f90404fULL;

	// Magic numbers for 32-bit hashing. Copied from Murmur3.
	static const std::uint32_t c1 = 0xcc9e2d51;
	static const std::uint32_t c2 = 0x1b873593;

	// A 32-bit to 32-bit integer hash copied from Murmur3.
	static std::uint32_t fmix(std::uint32_t h)
	{
		h ^= h >> 16;
		h *= 0x85ebca6b;
		h ^= h >> 13;
		h *= 0xc2b2ae35;
		h ^= h >> 16;
		return h;
	}

	static std::uint32_t Rotate32(std::uint32_t val, std::int32_t shift)
	{
		// Avoid shifting by 32: doing so yields an undefined result.
		return (shift == 0 ? val : ((val >> shift) | (val << (32 - shift))));
	}

#undef PERMUTE3
#define PERMUTE3(a, b, c)		\
	do {						\
		std::swap(a, b);		\
		std::swap(a, c);		\
	} while (0)

	static std::uint32_t Mur(std::uint32_t a, std::uint32_t h)
	{
		// Helper from Murmur3 for combining two 32-bit values.
		a *= c1;
		a = Rotate32(a, 17);
		a *= c2;
		h ^= a;
		h = Rotate32(h, 19);
		return h * 5 + 0xe6546b64;
	}

	static std::uint32_t Hash32Len13to24(const char* s, std::size_t len)
	{
		std::uint32_t a = Fetch32(s - 4 + (len >> 1));
		std::uint32_t b = Fetch32(s + 4);
		std::uint32_t c = Fetch32(s + len - 8);
		std::uint32_t d = Fetch32(s + (len >> 1));
		std::uint32_t e = Fetch32(s);
		std::uint32_t f = Fetch32(s + len - 4);
		std::uint32_t h = static_cast<std::uint32_t>(len);
		return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h)))))));
	}

	static std::uint32_t Hash32Len0to4(const char* s, std::size_t len)
	{
		std::uint32_t b = 0;
		std::uint32_t c = 9;
		for (std::size_t i = 0; i < len; i++) {
			signed char v = static_cast<signed char>(s[i]);
			b = b * c1 + static_cast<std::uint32_t>(v);
			c ^= b;
		}
		return fmix(Mur(b, Mur(static_cast<std::uint32_t>(len), c)));
	}

	static std::uint32_t Hash32Len5to12(const char* s, std::size_t len)
	{
		std::uint32_t a = static_cast<std::uint32_t>(len), b = a * 5, c = 9, d = b;
		a += Fetch32(s);
		b += Fetch32(s + len - 4);
		c += Fetch32(s + ((len >> 1) & 4));
		return fmix(Mur(c, Mur(b, Mur(a, d))));
	}

	std::uint32_t CityHash32(const char* s, std::size_t len)
	{
		if (len <= 24) {
			return len <= 12
				? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len))
				: Hash32Len13to24(s, len);
		}

		// len > 24
		std::uint32_t h = static_cast<std::uint32_t>(len), g = c1 * h, f = g;

		std::uint32_t a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2;
		std::uint32_t a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2;
		std::uint32_t a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2;
		std::uint32_t a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2;
		std::uint32_t a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2;
		h ^= a0;
		h = Rotate32(h, 19);
		h = h * 5 + 0xe6546b64;
		h ^= a2;
		h = Rotate32(h, 19);
		h = h * 5 + 0xe6546b64;
		g ^= a1;
		g = Rotate32(g, 19);
		g = g * 5 + 0xe6546b64;
		g ^= a3;
		g = Rotate32(g, 19);
		g = g * 5 + 0xe6546b64;
		f += a4;
		f = Rotate32(f, 19);
		f = f * 5 + 0xe6546b64;
		std::size_t iters = (len - 1) / 20;
		do {
			std::uint32_t b0 = Rotate32(Fetch32(s) * c1, 17) * c2;
			std::uint32_t b1 = Fetch32(s + 4);
			std::uint32_t b2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2;
			std::uint32_t b3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2;
			std::uint32_t b4 = Fetch32(s + 16);
			h ^= b0;
			h = Rotate32(h, 18);
			h = h * 5 + 0xe6546b64;
			f += b1;
			f = Rotate32(f, 19);
			f = f * c1;
			g += b2;
			g = Rotate32(g, 18);
			g = g * 5 + 0xe6546b64;
			h ^= b3 + b1;
			h = Rotate32(h, 19);
			h = h * 5 + 0xe6546b64;
			g ^= b4;
			g = ByteSwap32(g) * 5;
			h += b4 * 5;
			h = ByteSwap32(h);
			f += b0;
			PERMUTE3(f, h, g);
			s += 20;
		} while (--iters != 0);
		g = Rotate32(g, 11) * c1;
		g = Rotate32(g, 17) * c1;
		f = Rotate32(f, 11) * c1;
		f = Rotate32(f, 17) * c1;
		h = Rotate32(h + g, 19);
		h = h * 5 + 0xe6546b64;
		h = Rotate32(h, 17) * c1;
		h = Rotate32(h + f, 19);
		h = h * 5 + 0xe6546b64;
		h = Rotate32(h, 17) * c1;
		return h;
	}

	// Bitwise right rotate.  Normally this will compile to a single
	// instruction, especially if the shift is a manifest constant.
	static std::uint64_t Rotate(std::uint64_t val, std::int32_t shift)
	{
		// Avoid shifting by 64: doing so yields an undefined result.
		return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
	}

	static std::uint64_t ShiftMix(std::uint64_t val)
	{
		return val ^ (val >> 47);
	}

	static std::uint64_t HashLen16(std::uint64_t u, std::uint64_t v, std::uint64_t mul)
	{
		// Murmur-inspired hashing.
		std::uint64_t a = (u ^ v) * mul;
		a ^= (a >> 47);
		std::uint64_t b = (v ^ a) * mul;
		b ^= (b >> 47);
		b *= mul;
		return b;
	}

	static std::uint64_t HashLen16(std::uint64_t u, std::uint64_t v)
	{
		const std::uint64_t kMul = 0x9ddfea08eb382d69ULL;
		return HashLen16(u, v, kMul);
	}

	static std::uint64_t HashLen0to16(const char* s, std::size_t len)
	{
		if (len >= 8) {
			std::uint64_t mul = k2 + len * 2;
			std::uint64_t a = Fetch64(s) + k2;
			std::uint64_t b = Fetch64(s + len - 8);
			std::uint64_t c = Rotate(b, 37) * mul + a;
			std::uint64_t d = (Rotate(a, 25) + b) * mul;
			return HashLen16(c, d, mul);
		}
		if (len >= 4) {
			std::uint64_t mul = k2 + len * 2;
			std::uint64_t a = Fetch32(s);
			return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul);
		}
		if (len > 0) {
			std::uint8_t a = static_cast<std::uint8_t>(s[0]);
			std::uint8_t b = static_cast<std::uint8_t>(s[len >> 1]);
			std::uint8_t c = static_cast<std::uint8_t>(s[len - 1]);
			std::uint32_t y = static_cast<std::uint32_t>(a) + (static_cast<std::uint32_t>(b) << 8);
			std::uint32_t z = static_cast<std::uint32_t>(len) + (static_cast<std::uint32_t>(c) << 2);
			return ShiftMix(y * k2 ^ z * k0) * k2;
		}
		return k2;
	}

	// This probably works well for 16-byte strings as well, but it may be overkill in that case.
	static std::uint64_t HashLen17to32(const char* s, std::size_t len)
	{
		std::uint64_t mul = k2 + len * 2;
		std::uint64_t a = Fetch64(s) * k1;
		std::uint64_t b = Fetch64(s + 8);
		std::uint64_t c = Fetch64(s + len - 8) * mul;
		std::uint64_t d = Fetch64(s + len - 16) * k2;
		return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d, a + Rotate(b + k2, 18) + c, mul);
	}

	// Return a 16-byte hash for 48 bytes.  Quick and dirty.
	// Callers do best to use "random-looking" values for a and b.
	static std::pair<std::uint64_t, std::uint64_t> WeakHashLen32WithSeeds(std::uint64_t w, std::uint64_t x, std::uint64_t y, std::uint64_t z, std::uint64_t a, std::uint64_t b)
	{
		a += w;
		b = Rotate(b + a + z, 21);
		std::uint64_t c = a;
		a += x;
		a += y;
		b += Rotate(a, 44);
		return std::make_pair(a + z, b + c);
	}

	// Return a 16-byte hash for s[0] ... s[31], a, and b.  Quick and dirty.
	static std::pair<std::uint64_t, std::uint64_t> WeakHashLen32WithSeeds(const char* s, std::uint64_t a, std::uint64_t b)
	{
		return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16), Fetch64(s + 24), a, b);
	}

	// Return an 8-byte hash for 33 to 64 bytes.
	static std::uint64_t HashLen33to64(const char* s, std::size_t len)
	{
		std::uint64_t mul = k2 + len * 2;
		std::uint64_t a = Fetch64(s) * k2;
		std::uint64_t b = Fetch64(s + 8);
		std::uint64_t c = Fetch64(s + len - 24);
		std::uint64_t d = Fetch64(s + len - 32);
		std::uint64_t e = Fetch64(s + 16) * k2;
		std::uint64_t f = Fetch64(s + 24) * 9;
		std::uint64_t g = Fetch64(s + len - 8);
		std::uint64_t h = Fetch64(s + len - 16) * mul;
		std::uint64_t u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9;
		std::uint64_t v = ((a + g) ^ d) + f + 1;
		std::uint64_t w = ByteSwap64((u + v) * mul) + h;
		std::uint64_t x = Rotate(e + f, 42) + c;
		std::uint64_t y = (ByteSwap64((v + w) * mul) + g) * mul;
		std::uint64_t z = e + f + c;
		a = ByteSwap64((x + z) * mul + y) + b;
		b = ShiftMix((z + a) * mul + d + h) * mul;
		return b + x;
	}

	std::uint64_t CityHash64(const char* s, std::size_t len)
	{
		if (len <= 32) {
			if (len <= 16) {
				return HashLen0to16(s, len);
			} else {
				return HashLen17to32(s, len);
			}
		} else if (len <= 64) {
			return HashLen33to64(s, len);
		}

		// For strings over 64 bytes we hash the end first, and then as we
		// loop we keep 56 bytes of state: v, w, x, y, and z.
		std::uint64_t x = Fetch64(s + len - 40);
		std::uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56);
		std::uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24));
		std::pair<std::uint64_t, std::uint64_t> v = WeakHashLen32WithSeeds(s + len - 64, len, z);
		std::pair<std::uint64_t, std::uint64_t> w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x);
		x = x * k1 + Fetch64(s);

		// Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
		len = (len - 1) & ~static_cast<std::size_t>(63);
		do {
			x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
			y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
			x ^= w.second;
			y += v.first + Fetch64(s + 40);
			z = Rotate(z + w.first, 33) * k1;
			v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
			w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
			std::swap(z, x);
			s += 64;
			len -= 64;
		} while (len != 0);
		return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z, HashLen16(v.second, w.second) + x);
	}

	std::uint64_t CityHash64WithSeeds(const char* s, std::size_t len, std::uint64_t seed0, uint64_t seed1)
	{
		return HashLen16(CityHash64(s, len) - seed0, seed1);
	}

	std::uint64_t CityHash64WithSeed(const char* s, std::size_t len, std::uint64_t seed)
	{
		return CityHash64WithSeeds(s, len, k2, seed);
	}
}