1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
#include "HashFunctions.h"
#include <Base/Memory.h>
#include <utility>
#if defined(DEATH_TARGET_APPLE)
# include <libkern/OSByteOrder.h>
#endif
namespace nCine
{
// Compression function for Merkle-Damgard construction.
uint64_t fasthash_mix(uint64_t h)
{
h ^= h >> 23;
h *= 0x2127599bf4325c37ULL;
h ^= h >> 47;
return h;
}
uint64_t fasthash64(const void* buf, size_t len, uint64_t seed)
{
const uint64_t m = 0x880355f21e6d1965ULL;
const uint64_t* pos = reinterpret_cast<const uint64_t*>(buf);
const uint64_t* end = pos + (len / 8);
uint64_t h = seed ^ (len * m);
uint64_t v = 0;
while (pos != end) {
v = *pos++;
h ^= fasthash_mix(v);
h *= m;
}
const unsigned char* pos2 = reinterpret_cast<const unsigned char*>(pos);
v = 0;
switch (len & 7) {
case 7: v ^= static_cast<uint64_t>(pos2[6]) << 48;
case 6: v ^= static_cast<uint64_t>(pos2[5]) << 40;
case 5: v ^= static_cast<uint64_t>(pos2[4]) << 32;
case 4: v ^= static_cast<uint64_t>(pos2[3]) << 24;
case 3: v ^= static_cast<uint64_t>(pos2[2]) << 16;
case 2: v ^= static_cast<uint64_t>(pos2[1]) << 8;
case 1: v ^= static_cast<uint64_t>(pos2[0]);
h ^= fasthash_mix(v);
h *= m;
}
return fasthash_mix(h);
}
uint32_t fasthash32(const void* buf, size_t len, uint32_t seed)
{
// The following trick converts the 64-bit hashcode to Fermat residue, which
// shall retain information from both the higher and lower parts of hashcode.
uint64_t h = fasthash64(buf, len, seed);
return static_cast<uint32_t>(h - (h >> 32));
}
// CityHash
#if defined(__has_builtin)
# define DEATH_HAS_BUILTIN(x) __has_builtin(x)
#else
# define DEATH_HAS_BUILTIN(x) 0
#endif
inline std::uint32_t ByteSwap32(std::uint32_t value)
{
#if defined(DEATH_TARGET_MSVC)
return _byteswap_ulong(value);
#elif defined(DEATH_TARGET_APPLE)
return _OSSwapInt32(value);
#elif DEATH_HAS_BUILTIN(__builtin_bswap32) || defined(DEATH_TARGET_GCC)
return __builtin_bswap32(value);
#else
return (((value & std::uint32_t{0xFF}) << 24) |
((value & std::uint32_t{0xFF00}) << 8) |
((value & std::uint32_t{0xFF0000}) >> 8) |
((value & std::uint32_t{0xFF000000}) >> 24));
#endif
}
inline std::uint64_t ByteSwap64(std::uint64_t value)
{
#if defined(DEATH_TARGET_MSVC)
return _byteswap_uint64(value);
#elif defined(DEATH_TARGET_APPLE)
return _OSSwapInt64(value);
#elif DEATH_HAS_BUILTIN(__builtin_bswap64) || defined(DEATH_TARGET_GCC)
return __builtin_bswap64(value);
#else
return (((value & std::uint64_t{0xFF}) << 56) |
((value & std::uint64_t{0xFF00}) << 40) |
((value & std::uint64_t{0xFF0000}) << 24) |
((value & std::uint64_t{0xFF000000}) << 8) |
((value & std::uint64_t{0xFF00000000}) >> 8) |
((value & std::uint64_t{0xFF0000000000}) >> 24) |
((value & std::uint64_t{0xFF000000000000}) >> 40) |
((value & std::uint64_t{0xFF00000000000000}) >> 56));
#endif
}
static std::uint64_t Fetch64(const char* p)
{
using namespace Death::Memory;
#if defined(DEATH_TARGET_BIG_ENDIAN)
return SwapBytes(LoadUnaligned<std::uint64_t>(p));
#else
return LoadUnaligned<std::uint64_t>(p);
#endif
}
static std::uint32_t Fetch32(const char* p)
{
using namespace Death::Memory;
#if defined(DEATH_TARGET_BIG_ENDIAN)
return SwapBytes(LoadUnaligned<std::uint32_t>(p));
#else
return LoadUnaligned<std::uint32_t>(p);
#endif
}
// Some primes between 2^63 and 2^64 for various uses.
static const std::uint64_t k0 = 0xc3a5c85c97cb3127ULL;
static const std::uint64_t k1 = 0xb492b66fbe98f273ULL;
static const std::uint64_t k2 = 0x9ae16a3b2f90404fULL;
// Magic numbers for 32-bit hashing. Copied from Murmur3.
static const std::uint32_t c1 = 0xcc9e2d51;
static const std::uint32_t c2 = 0x1b873593;
// A 32-bit to 32-bit integer hash copied from Murmur3.
static std::uint32_t fmix(std::uint32_t h)
{
h ^= h >> 16;
h *= 0x85ebca6b;
h ^= h >> 13;
h *= 0xc2b2ae35;
h ^= h >> 16;
return h;
}
static std::uint32_t Rotate32(std::uint32_t val, std::int32_t shift)
{
// Avoid shifting by 32: doing so yields an undefined result.
return (shift == 0 ? val : ((val >> shift) | (val << (32 - shift))));
}
#undef PERMUTE3
#define PERMUTE3(a, b, c) \
do { \
std::swap(a, b); \
std::swap(a, c); \
} while (0)
static std::uint32_t Mur(std::uint32_t a, std::uint32_t h)
{
// Helper from Murmur3 for combining two 32-bit values.
a *= c1;
a = Rotate32(a, 17);
a *= c2;
h ^= a;
h = Rotate32(h, 19);
return h * 5 + 0xe6546b64;
}
static std::uint32_t Hash32Len13to24(const char* s, std::size_t len)
{
std::uint32_t a = Fetch32(s - 4 + (len >> 1));
std::uint32_t b = Fetch32(s + 4);
std::uint32_t c = Fetch32(s + len - 8);
std::uint32_t d = Fetch32(s + (len >> 1));
std::uint32_t e = Fetch32(s);
std::uint32_t f = Fetch32(s + len - 4);
std::uint32_t h = static_cast<std::uint32_t>(len);
return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h)))))));
}
static std::uint32_t Hash32Len0to4(const char* s, std::size_t len)
{
std::uint32_t b = 0;
std::uint32_t c = 9;
for (std::size_t i = 0; i < len; i++) {
signed char v = static_cast<signed char>(s[i]);
b = b * c1 + static_cast<std::uint32_t>(v);
c ^= b;
}
return fmix(Mur(b, Mur(static_cast<std::uint32_t>(len), c)));
}
static std::uint32_t Hash32Len5to12(const char* s, std::size_t len)
{
std::uint32_t a = static_cast<std::uint32_t>(len), b = a * 5, c = 9, d = b;
a += Fetch32(s);
b += Fetch32(s + len - 4);
c += Fetch32(s + ((len >> 1) & 4));
return fmix(Mur(c, Mur(b, Mur(a, d))));
}
std::uint32_t CityHash32(const char* s, std::size_t len)
{
if (len <= 24) {
return len <= 12
? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len))
: Hash32Len13to24(s, len);
}
// len > 24
std::uint32_t h = static_cast<std::uint32_t>(len), g = c1 * h, f = g;
std::uint32_t a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2;
std::uint32_t a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2;
std::uint32_t a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2;
std::uint32_t a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2;
std::uint32_t a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2;
h ^= a0;
h = Rotate32(h, 19);
h = h * 5 + 0xe6546b64;
h ^= a2;
h = Rotate32(h, 19);
h = h * 5 + 0xe6546b64;
g ^= a1;
g = Rotate32(g, 19);
g = g * 5 + 0xe6546b64;
g ^= a3;
g = Rotate32(g, 19);
g = g * 5 + 0xe6546b64;
f += a4;
f = Rotate32(f, 19);
f = f * 5 + 0xe6546b64;
std::size_t iters = (len - 1) / 20;
do {
std::uint32_t b0 = Rotate32(Fetch32(s) * c1, 17) * c2;
std::uint32_t b1 = Fetch32(s + 4);
std::uint32_t b2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2;
std::uint32_t b3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2;
std::uint32_t b4 = Fetch32(s + 16);
h ^= b0;
h = Rotate32(h, 18);
h = h * 5 + 0xe6546b64;
f += b1;
f = Rotate32(f, 19);
f = f * c1;
g += b2;
g = Rotate32(g, 18);
g = g * 5 + 0xe6546b64;
h ^= b3 + b1;
h = Rotate32(h, 19);
h = h * 5 + 0xe6546b64;
g ^= b4;
g = ByteSwap32(g) * 5;
h += b4 * 5;
h = ByteSwap32(h);
f += b0;
PERMUTE3(f, h, g);
s += 20;
} while (--iters != 0);
g = Rotate32(g, 11) * c1;
g = Rotate32(g, 17) * c1;
f = Rotate32(f, 11) * c1;
f = Rotate32(f, 17) * c1;
h = Rotate32(h + g, 19);
h = h * 5 + 0xe6546b64;
h = Rotate32(h, 17) * c1;
h = Rotate32(h + f, 19);
h = h * 5 + 0xe6546b64;
h = Rotate32(h, 17) * c1;
return h;
}
// Bitwise right rotate. Normally this will compile to a single
// instruction, especially if the shift is a manifest constant.
static std::uint64_t Rotate(std::uint64_t val, std::int32_t shift)
{
// Avoid shifting by 64: doing so yields an undefined result.
return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
}
static std::uint64_t ShiftMix(std::uint64_t val)
{
return val ^ (val >> 47);
}
static std::uint64_t HashLen16(std::uint64_t u, std::uint64_t v, std::uint64_t mul)
{
// Murmur-inspired hashing.
std::uint64_t a = (u ^ v) * mul;
a ^= (a >> 47);
std::uint64_t b = (v ^ a) * mul;
b ^= (b >> 47);
b *= mul;
return b;
}
static std::uint64_t HashLen16(std::uint64_t u, std::uint64_t v)
{
const std::uint64_t kMul = 0x9ddfea08eb382d69ULL;
return HashLen16(u, v, kMul);
}
static std::uint64_t HashLen0to16(const char* s, std::size_t len)
{
if (len >= 8) {
std::uint64_t mul = k2 + len * 2;
std::uint64_t a = Fetch64(s) + k2;
std::uint64_t b = Fetch64(s + len - 8);
std::uint64_t c = Rotate(b, 37) * mul + a;
std::uint64_t d = (Rotate(a, 25) + b) * mul;
return HashLen16(c, d, mul);
}
if (len >= 4) {
std::uint64_t mul = k2 + len * 2;
std::uint64_t a = Fetch32(s);
return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul);
}
if (len > 0) {
std::uint8_t a = static_cast<std::uint8_t>(s[0]);
std::uint8_t b = static_cast<std::uint8_t>(s[len >> 1]);
std::uint8_t c = static_cast<std::uint8_t>(s[len - 1]);
std::uint32_t y = static_cast<std::uint32_t>(a) + (static_cast<std::uint32_t>(b) << 8);
std::uint32_t z = static_cast<std::uint32_t>(len) + (static_cast<std::uint32_t>(c) << 2);
return ShiftMix(y * k2 ^ z * k0) * k2;
}
return k2;
}
// This probably works well for 16-byte strings as well, but it may be overkill in that case.
static std::uint64_t HashLen17to32(const char* s, std::size_t len)
{
std::uint64_t mul = k2 + len * 2;
std::uint64_t a = Fetch64(s) * k1;
std::uint64_t b = Fetch64(s + 8);
std::uint64_t c = Fetch64(s + len - 8) * mul;
std::uint64_t d = Fetch64(s + len - 16) * k2;
return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d, a + Rotate(b + k2, 18) + c, mul);
}
// Return a 16-byte hash for 48 bytes. Quick and dirty.
// Callers do best to use "random-looking" values for a and b.
static std::pair<std::uint64_t, std::uint64_t> WeakHashLen32WithSeeds(std::uint64_t w, std::uint64_t x, std::uint64_t y, std::uint64_t z, std::uint64_t a, std::uint64_t b)
{
a += w;
b = Rotate(b + a + z, 21);
std::uint64_t c = a;
a += x;
a += y;
b += Rotate(a, 44);
return std::make_pair(a + z, b + c);
}
// Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty.
static std::pair<std::uint64_t, std::uint64_t> WeakHashLen32WithSeeds(const char* s, std::uint64_t a, std::uint64_t b)
{
return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16), Fetch64(s + 24), a, b);
}
// Return an 8-byte hash for 33 to 64 bytes.
static std::uint64_t HashLen33to64(const char* s, std::size_t len)
{
std::uint64_t mul = k2 + len * 2;
std::uint64_t a = Fetch64(s) * k2;
std::uint64_t b = Fetch64(s + 8);
std::uint64_t c = Fetch64(s + len - 24);
std::uint64_t d = Fetch64(s + len - 32);
std::uint64_t e = Fetch64(s + 16) * k2;
std::uint64_t f = Fetch64(s + 24) * 9;
std::uint64_t g = Fetch64(s + len - 8);
std::uint64_t h = Fetch64(s + len - 16) * mul;
std::uint64_t u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9;
std::uint64_t v = ((a + g) ^ d) + f + 1;
std::uint64_t w = ByteSwap64((u + v) * mul) + h;
std::uint64_t x = Rotate(e + f, 42) + c;
std::uint64_t y = (ByteSwap64((v + w) * mul) + g) * mul;
std::uint64_t z = e + f + c;
a = ByteSwap64((x + z) * mul + y) + b;
b = ShiftMix((z + a) * mul + d + h) * mul;
return b + x;
}
std::uint64_t CityHash64(const char* s, std::size_t len)
{
if (len <= 32) {
if (len <= 16) {
return HashLen0to16(s, len);
} else {
return HashLen17to32(s, len);
}
} else if (len <= 64) {
return HashLen33to64(s, len);
}
// For strings over 64 bytes we hash the end first, and then as we
// loop we keep 56 bytes of state: v, w, x, y, and z.
std::uint64_t x = Fetch64(s + len - 40);
std::uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56);
std::uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24));
std::pair<std::uint64_t, std::uint64_t> v = WeakHashLen32WithSeeds(s + len - 64, len, z);
std::pair<std::uint64_t, std::uint64_t> w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x);
x = x * k1 + Fetch64(s);
// Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
len = (len - 1) & ~static_cast<std::size_t>(63);
do {
x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
x ^= w.second;
y += v.first + Fetch64(s + 40);
z = Rotate(z + w.first, 33) * k1;
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
std::swap(z, x);
s += 64;
len -= 64;
} while (len != 0);
return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z, HashLen16(v.second, w.second) + x);
}
std::uint64_t CityHash64WithSeeds(const char* s, std::size_t len, std::uint64_t seed0, uint64_t seed1)
{
return HashLen16(CityHash64(s, len) - seed0, seed1);
}
std::uint64_t CityHash64WithSeed(const char* s, std::size_t len, std::uint64_t seed)
{
return CityHash64WithSeeds(s, len, k2, seed);
}
}
|