1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
|
#pragma once
#include <new>
#include "Algorithms.h"
#include "HashFunctions.h"
#include "ReverseIterator.h"
#include "../../Main.h"
namespace nCine
{
template<class K, class T, class HashFunc, std::uint32_t Capacity, bool IsConst> class StaticHashMapIterator;
template<class K, class T, class HashFunc, std::uint32_t Capacity, bool IsConst> struct StaticHashMapHelperTraits;
/// Static hashmap implementation with open addressing and leapfrog probing (version with static allocation)
template<class K, class T, std::uint32_t Capacity, class HashFunc = xxHash32Func<K>>
class StaticHashMap
{
public:
/// Iterator type
using Iterator = StaticHashMapIterator<K, T, HashFunc, Capacity, false>;
/// Constant iterator type
using ConstIterator = StaticHashMapIterator<K, T, HashFunc, Capacity, true>;
/// Reverse iterator type
using ReverseIterator = nCine::ReverseIterator<Iterator>;
/// Reverse constant iterator type
using ConstReverseIterator = nCine::ReverseIterator<ConstIterator>;
inline StaticHashMap()
: size_(0) {
init();
}
inline ~StaticHashMap() {
destructNodes();
}
/// Copy constructor
StaticHashMap(const StaticHashMap& other);
/// Move constructor
StaticHashMap(StaticHashMap&& other);
/// Aassignment operator
StaticHashMap& operator=(const StaticHashMap& other);
/// Move aassignment operator
StaticHashMap& operator=(StaticHashMap&& other);
/// Returns an iterator to the first element
Iterator begin();
/// Returns a reverse iterator to the last element
ReverseIterator rbegin();
/// Returns an iterator to past the last element
Iterator end();
/// Returns a reverse iterator to prior the first element
ReverseIterator rend();
/// Returns a constant iterator to the first element
ConstIterator begin() const;
/// Returns a constant reverse iterator to the last element
ConstReverseIterator rbegin() const;
/// Returns a constant iterator to past the last lement
ConstIterator end() const;
/// Returns a constant reverse iterator to prior the first element
ConstReverseIterator rend() const;
/// Returns a constant iterator to the first element
inline ConstIterator cbegin() const {
return begin();
}
/// Returns a constant reverse iterator to the last element
inline ConstReverseIterator crbegin() const {
return rbegin();
}
/// Returns a constant iterator to past the last lement
inline ConstIterator cend() const {
return end();
}
/// Returns a constant reverse iterator to prior the first element
inline ConstReverseIterator crend() const {
return rend();
}
/// Subscript operator
T& operator[](const K& key);
/// Inserts an element if no other has the same key
bool insert(const K& key, const T& value);
/// Moves an element if no other has the same key
bool insert(const K& key, T&& value);
/// Constructs an element if no other has the same key
template <typename... Args> bool emplace(const K& key, Args &&... args);
/// Returns the capacity of the hashmap
inline std::uint32_t capacity() const {
return Capacity;
}
/// Returns true if the hashmap is empty
inline bool empty() const {
return size_ == 0;
}
/// Returns the number of elements in the hashmap
inline std::uint32_t size() const {
return size_;
}
/// Returns the ratio between used and total buckets
inline float loadFactor() const {
return size_ / float(Capacity);
}
/// Returns the hash of a given key
inline hash_t hash(const K& key) const {
return hashFunc_(key);
}
/// Clears the hashmap
void clear();
/// Checks whether an element is in the hashmap or not
bool contains(const K& key, T& returnedValue) const;
/// Checks whether an element is in the hashmap or not
T* find(const K& key);
/// Checks whether an element is in the hashmap or not (read-only)
const T* find(const K& key) const;
/// Removes a key from the hashmap, if it exists
bool remove(const K& key);
private:
#ifndef DOXYGEN_GENERATING_OUTPUT
// Doxygen 1.12.0 outputs also private structs/unions even if it shouldn't
/// The template class for the node stored inside the hashmap
class Node
{
public:
K key;
T value;
Node() {}
explicit Node(K kk)
: key(kk) {}
Node(K kk, const T& vv)
: key(kk), value(vv) {}
Node(K kk, T&& vv)
: key(kk), value(std::move(vv)) {}
template <typename... Args>
Node(K kk, Args &&... args)
: key(kk), value(std::forward<Args>(args)...) {}
};
#endif
std::uint32_t size_;
std::uint8_t delta1_[Capacity];
std::uint8_t delta2_[Capacity];
hash_t hashes_[Capacity];
std::uint8_t nodesBuffer_[Capacity * sizeof(Node)];
Node* nodes_ = reinterpret_cast<Node*>(nodesBuffer_);
HashFunc hashFunc_;
void init();
void destructNodes();
bool findBucketIndex(const K& key, std::uint32_t& foundIndex, std::uint32_t& prevFoundIndex) const;
inline bool findBucketIndex(const K& key, std::uint32_t& foundIndex) const;
std::uint32_t addDelta1(std::uint32_t bucketIndex) const;
std::uint32_t addDelta2(std::uint32_t bucketIndex) const;
std::uint32_t calcNewDelta(std::uint32_t bucketIndex, std::uint32_t newIndex) const;
std::uint32_t linearSearch(std::uint32_t index, hash_t hash, const K& key) const;
bool bucketFoundOrEmpty(std::uint32_t index, hash_t hash, const K& key) const;
bool bucketFound(std::uint32_t index, hash_t hash, const K& key) const;
T& addNode(std::uint32_t index, hash_t hash, const K& key);
void insertNode(std::uint32_t index, hash_t hash, const K& key, const T& value);
void insertNode(std::uint32_t index, hash_t hash, const K& key, T&& value);
template <typename... Args> void emplaceNode(std::uint32_t index, hash_t hash, const K& key, Args &&... args);
friend class StaticHashMapIterator<K, T, HashFunc, Capacity, false>;
friend class StaticHashMapIterator<K, T, HashFunc, Capacity, true>;
friend struct StaticHashMapHelperTraits<K, T, HashFunc, Capacity, false>;
friend struct StaticHashMapHelperTraits<K, T, HashFunc, Capacity, true>;
};
template<class K, class T, std::uint32_t Capacity, class HashFunc>
typename StaticHashMap<K, T, Capacity, HashFunc>::Iterator StaticHashMap<K, T, Capacity, HashFunc>::begin()
{
Iterator iterator(this, Iterator::SentinelTagInit::BEGINNING);
return ++iterator;
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
typename StaticHashMap<K, T, Capacity, HashFunc>::ReverseIterator StaticHashMap<K, T, Capacity, HashFunc>::rbegin()
{
Iterator iterator(this, Iterator::SentinelTagInit::END);
return ReverseIterator(--iterator);
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
typename StaticHashMap<K, T, Capacity, HashFunc>::Iterator StaticHashMap<K, T, Capacity, HashFunc>::end()
{
return Iterator(this, Iterator::SentinelTagInit::END);
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
typename StaticHashMap<K, T, Capacity, HashFunc>::ReverseIterator StaticHashMap<K, T, Capacity, HashFunc>::rend()
{
Iterator iterator(this, Iterator::SentinelTagInit::BEGINNING);
return ReverseIterator(iterator);
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
inline typename StaticHashMap<K, T, Capacity, HashFunc>::ConstIterator StaticHashMap<K, T, Capacity, HashFunc>::begin() const
{
ConstIterator iterator(this, ConstIterator::SentinelTagInit::BEGINNING);
return ++iterator;
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
typename StaticHashMap<K, T, Capacity, HashFunc>::ConstReverseIterator StaticHashMap<K, T, Capacity, HashFunc>::rbegin() const
{
ConstIterator iterator(this, ConstIterator::SentinelTagInit::END);
return ConstReverseIterator(--iterator);
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
inline typename StaticHashMap<K, T, Capacity, HashFunc>::ConstIterator StaticHashMap<K, T, Capacity, HashFunc>::end() const
{
return ConstIterator(this, ConstIterator::SentinelTagInit::END);
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
typename StaticHashMap<K, T, Capacity, HashFunc>::ConstReverseIterator StaticHashMap<K, T, Capacity, HashFunc>::rend() const
{
ConstIterator iterator(this, ConstIterator::SentinelTagInit::BEGINNING);
return ConstReverseIterator(iterator);
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
StaticHashMap<K, T, Capacity, HashFunc>::StaticHashMap(const StaticHashMap<K, T, Capacity, HashFunc>& other)
: size_(other.size_)
{
for (std::uint32_t i = 0; i < Capacity; i++) {
if (other.hashes_[i] != NullHash) {
new (nodes_ + i) Node(other.nodes_[i]);
}
delta1_[i] = other.delta1_[i];
delta2_[i] = other.delta2_[i];
hashes_[i] = other.hashes_[i];
}
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
StaticHashMap<K, T, Capacity, HashFunc>::StaticHashMap(StaticHashMap<K, T, Capacity, HashFunc>&& other)
: size_(other.size_)
{
for (std::uint32_t i = 0; i < Capacity; i++) {
if (other.hashes_[i] != NullHash) {
new (nodes_ + i) Node(std::move(other.nodes_[i]));
}
delta1_[i] = other.delta1_[i];
delta2_[i] = other.delta2_[i];
hashes_[i] = other.hashes_[i];
}
other.destructNodes();
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
StaticHashMap<K, T, Capacity, HashFunc>& StaticHashMap<K, T, Capacity, HashFunc>::operator=(const StaticHashMap<K, T, Capacity, HashFunc>& other)
{
for (std::uint32_t i = 0; i < Capacity; i++) {
if (other.hashes_[i] != NullHash) {
if (hashes_[i] != NullHash) {
nodes_[i] = other.nodes_[i];
} else {
new (nodes_ + i) Node(other.nodes_[i]);
}
} else if (hashes_[i] != NullHash) {
destructObject(nodes_ + i);
}
delta1_[i] = other.delta1_[i];
delta2_[i] = other.delta2_[i];
hashes_[i] = other.hashes_[i];
}
size_ = other.size_;
return *this;
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
StaticHashMap<K, T, Capacity, HashFunc>& StaticHashMap<K, T, Capacity, HashFunc>::operator=(StaticHashMap<K, T, Capacity, HashFunc>&& other)
{
for (std::uint32_t i = 0; i < Capacity; i++) {
if (other.hashes_[i] != NullHash) {
if (hashes_[i] != NullHash) {
nodes_[i] = std::move(other.nodes_[i]);
} else {
new (nodes_ + i) Node(std::move(other.nodes_[i]));
}
} else if (hashes_[i] != NullHash) {
destructObject(nodes_ + i);
}
delta1_[i] = other.delta1_[i];
delta2_[i] = other.delta2_[i];
hashes_[i] = other.hashes_[i];
}
size_ = other.size_;
other.destructNodes();
return *this;
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
T& StaticHashMap<K, T, Capacity, HashFunc>::operator[](const K& key)
{
const hash_t hash = hashFunc_(key);
std::uint32_t bucketIndex = hash % Capacity;
if (bucketFoundOrEmpty(bucketIndex, hash, key) == false) {
if (delta1_[bucketIndex] != 0) {
bucketIndex = addDelta1(bucketIndex);
if (bucketFound(bucketIndex, hash, key) == false) {
while (delta2_[bucketIndex] != 0) {
bucketIndex = addDelta2(bucketIndex);
// Found at ideal index + delta1 + (n * delta2)
if (bucketFound(bucketIndex, hash, key)) {
return nodes_[bucketIndex].value;
}
}
// Adding at ideal index + delta1 + (n * delta2)
const std::uint32_t newIndex = linearSearch(bucketIndex + 1, hash, key);
delta2_[bucketIndex] = calcNewDelta(bucketIndex, newIndex);
return addNode(newIndex, hash, key);
} else {
// Found at ideal index + delta1
return nodes_[bucketIndex].value;
}
} else {
// Adding at ideal index + delta1
const std::uint32_t newIndex = linearSearch(bucketIndex + 1, hash, key);
delta1_[bucketIndex] = calcNewDelta(bucketIndex, newIndex);
return addNode(newIndex, hash, key);
}
} else {
// Using the ideal bucket index for the node
if (hashes_[bucketIndex] == NullHash) {
return addNode(bucketIndex, hash, key);
} else {
return nodes_[bucketIndex].value;
}
}
}
/*! \return True if the element has been inserted */
template<class K, class T, std::uint32_t Capacity, class HashFunc>
bool StaticHashMap<K, T, Capacity, HashFunc>::insert(const K& key, const T& value)
{
const hash_t hash = hashFunc_(key);
std::uint32_t bucketIndex = hash % Capacity;
if (bucketFoundOrEmpty(bucketIndex, hash, key) == false) {
if (delta1_[bucketIndex] != 0) {
bucketIndex = addDelta1(bucketIndex);
if (bucketFound(bucketIndex, hash, key) == false) {
while (delta2_[bucketIndex] != 0) {
bucketIndex = addDelta2(bucketIndex);
// Found at ideal index + delta1 + (n * delta2)
if (bucketFound(bucketIndex, hash, key)) {
return false;
}
}
// Adding at ideal index + delta1 + (n * delta2)
const std::uint32_t newIndex = linearSearch(bucketIndex + 1, hash, key);
delta2_[bucketIndex] = calcNewDelta(bucketIndex, newIndex);
insertNode(newIndex, hash, key, value);
return true;
} else {
// Found at ideal index + delta1
return false;
}
} else {
// Adding at ideal index + delta1
const std::uint32_t newIndex = linearSearch(bucketIndex + 1, hash, key);
delta1_[bucketIndex] = calcNewDelta(bucketIndex, newIndex);
insertNode(newIndex, hash, key, value);
return true;
}
} else {
// Using the ideal bucket index for the node
if (hashes_[bucketIndex] == NullHash) {
insertNode(bucketIndex, hash, key, value);
return true;
} else {
return false;
}
}
}
/*! \return True if the element has been inserted */
template<class K, class T, std::uint32_t Capacity, class HashFunc>
bool StaticHashMap<K, T, Capacity, HashFunc>::insert(const K& key, T&& value)
{
const hash_t hash = hashFunc_(key);
std::uint32_t bucketIndex = hash % Capacity;
if (bucketFoundOrEmpty(bucketIndex, hash, key) == false) {
if (delta1_[bucketIndex] != 0) {
bucketIndex = addDelta1(bucketIndex);
if (bucketFound(bucketIndex, hash, key) == false) {
while (delta2_[bucketIndex] != 0) {
bucketIndex = addDelta2(bucketIndex);
// Found at ideal index + delta1 + (n * delta2)
if (bucketFound(bucketIndex, hash, key)) {
return false;
}
}
// Adding at ideal index + delta1 + (n * delta2)
const std::uint32_t newIndex = linearSearch(bucketIndex + 1, hash, key);
delta2_[bucketIndex] = calcNewDelta(bucketIndex, newIndex);
insertNode(newIndex, hash, key, std::move(value));
return true;
} else {
// Found at ideal index + delta1
return false;
}
} else {
// Adding at ideal index + delta1
const std::uint32_t newIndex = linearSearch(bucketIndex + 1, hash, key);
delta1_[bucketIndex] = calcNewDelta(bucketIndex, newIndex);
insertNode(newIndex, hash, key, std::move(value));
return true;
}
} else {
// Using the ideal bucket index for the node
if (hashes_[bucketIndex] == NullHash) {
insertNode(bucketIndex, hash, key, std::move(value));
return true;
} else {
return false;
}
}
}
/*! \return True if the element has been emplaced */
template<class K, class T, std::uint32_t Capacity, class HashFunc>
template<typename... Args>
bool StaticHashMap<K, T, Capacity, HashFunc>::emplace(const K& key, Args &&... args)
{
const hash_t hash = hashFunc_(key);
std::uint32_t bucketIndex = hash % Capacity;
if (bucketFoundOrEmpty(bucketIndex, hash, key) == false) {
if (delta1_[bucketIndex] != 0) {
bucketIndex = addDelta1(bucketIndex);
if (bucketFound(bucketIndex, hash, key) == false) {
while (delta2_[bucketIndex] != 0) {
bucketIndex = addDelta2(bucketIndex);
// Found at ideal index + delta1 + (n * delta2)
if (bucketFound(bucketIndex, hash, key)) {
return false;
}
}
// Adding at ideal index + delta1 + (n * delta2)
const std::uint32_t newIndex = linearSearch(bucketIndex + 1, hash, key);
delta2_[bucketIndex] = calcNewDelta(bucketIndex, newIndex);
emplaceNode(newIndex, hash, key, std::forward<Args>(args)...);
return true;
} else {
// Found at ideal index + delta1
return false;
}
} else {
// Adding at ideal index + delta1
const std::uint32_t newIndex = linearSearch(bucketIndex + 1, hash, key);
delta1_[bucketIndex] = calcNewDelta(bucketIndex, newIndex);
emplaceNode(newIndex, hash, key, std::forward<Args>(args)...);
return true;
}
} else {
// Using the ideal bucket index for the node
if (hashes_[bucketIndex] == NullHash) {
emplaceNode(bucketIndex, hash, key, std::forward<Args>(args)...);
return true;
} else {
return false;
}
}
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
void StaticHashMap<K, T, Capacity, HashFunc>::clear()
{
destructNodes();
init();
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
bool StaticHashMap<K, T, Capacity, HashFunc>::contains(const K& key, T& returnedValue) const
{
std::uint32_t bucketIndex = 0;
const bool found = findBucketIndex(key, bucketIndex);
if (found) {
returnedValue = nodes_[bucketIndex].value;
}
return found;
}
/*! \note Prefer this method if copying `T` is expensive, but always check the validity of returned pointer. */
template<class K, class T, std::uint32_t Capacity, class HashFunc>
T* StaticHashMap<K, T, Capacity, HashFunc>::find(const K& key)
{
std::uint32_t bucketIndex = 0;
const bool found = findBucketIndex(key, bucketIndex);
T* returnedPtr = nullptr;
if (found) {
returnedPtr = &nodes_[bucketIndex].value;
}
return returnedPtr;
}
/*! \note Prefer this method if copying `T` is expensive, but always check the validity of returned pointer. */
template<class K, class T, std::uint32_t Capacity, class HashFunc>
const T* StaticHashMap<K, T, Capacity, HashFunc>::find(const K& key) const
{
std::uint32_t bucketIndex = 0;
const bool found = findBucketIndex(key, bucketIndex);
const T* returnedPtr = nullptr;
if (found) {
returnedPtr = &nodes_[bucketIndex].value;
}
return returnedPtr;
}
/*! \return True if the element has been found and removed */
template<class K, class T, std::uint32_t Capacity, class HashFunc>
bool StaticHashMap<K, T, Capacity, HashFunc>::remove(const K& key)
{
std::uint32_t foundBucketIndex = 0;
std::uint32_t prevFoundBucketIndex = 0;
const bool found = findBucketIndex(key, foundBucketIndex, prevFoundBucketIndex);
std::uint32_t bucketIndex = foundBucketIndex;
if (found) {
// The found bucket is the last of the chain, previous one needs a delta fix
if (foundBucketIndex != hashes_[foundBucketIndex] % Capacity && delta2_[foundBucketIndex] == 0) {
if (addDelta1(prevFoundBucketIndex) == foundBucketIndex) {
delta1_[prevFoundBucketIndex] = 0;
} else if (addDelta2(prevFoundBucketIndex) == foundBucketIndex) {
delta2_[prevFoundBucketIndex] = 0;
}
}
while (delta1_[bucketIndex] != 0 || delta2_[bucketIndex] != 0) {
std::uint32_t lastBucketIndex = bucketIndex;
if (delta1_[lastBucketIndex] != 0) {
lastBucketIndex = addDelta1(lastBucketIndex);
}
if (delta2_[lastBucketIndex] != 0) {
std::uint32_t secondLastBucketIndex = lastBucketIndex;
while (delta2_[lastBucketIndex] != 0) {
secondLastBucketIndex = lastBucketIndex;
lastBucketIndex = addDelta2(lastBucketIndex);
}
delta2_[secondLastBucketIndex] = 0;
} else {
delta1_[bucketIndex] = 0;
}
if (bucketIndex != lastBucketIndex) {
nodes_[bucketIndex].key = std::move(nodes_[lastBucketIndex].key);
nodes_[bucketIndex].value = std::move(nodes_[lastBucketIndex].value);
hashes_[bucketIndex] = hashes_[lastBucketIndex];
}
bucketIndex = lastBucketIndex;
}
hashes_[bucketIndex] = NullHash;
destructObject(nodes_ + bucketIndex);
size_--;
}
return found;
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
void StaticHashMap<K, T, Capacity, HashFunc>::init()
{
for (std::uint32_t i = 0; i < Capacity; i++) {
delta1_[i] = 0;
}
for (std::uint32_t i = 0; i < Capacity; i++) {
delta2_[i] = 0;
}
for (std::uint32_t i = 0; i < Capacity; i++) {
hashes_[i] = NullHash;
}
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
void StaticHashMap<K, T, Capacity, HashFunc>::destructNodes()
{
for (std::uint32_t i = 0; i < Capacity; i++) {
if (hashes_[i] != NullHash) {
destructObject(nodes_ + i);
hashes_[i] = NullHash;
}
}
size_ = 0;
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
bool StaticHashMap<K, T, Capacity, HashFunc>::findBucketIndex(const K& key, std::uint32_t& foundIndex, std::uint32_t& prevFoundIndex) const
{
if (size_ == 0)
return false;
bool found = false;
const hash_t hash = hashFunc_(key);
foundIndex = hash % Capacity;
prevFoundIndex = foundIndex;
if (bucketFoundOrEmpty(foundIndex, hash, key) == false) {
if (delta1_[foundIndex] != 0) {
prevFoundIndex = foundIndex;
foundIndex = addDelta1(foundIndex);
if (bucketFound(foundIndex, hash, key) == false) {
while (delta2_[foundIndex] != 0) {
prevFoundIndex = foundIndex;
foundIndex = addDelta2(foundIndex);
if (bucketFound(foundIndex, hash, key)) {
// Found at ideal index + delta1 + (n * delta2)
found = true;
break;
}
}
} else {
// Found at ideal index + delta1
found = true;
}
}
} else {
if (hashes_[foundIndex] != NullHash) {
// Found at ideal bucket index
found = true;
}
}
return found;
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
bool StaticHashMap<K, T, Capacity, HashFunc>::findBucketIndex(const K& key, std::uint32_t& foundIndex) const
{
std::uint32_t prevFoundIndex = 0;
return findBucketIndex(key, foundIndex, prevFoundIndex);
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
std::uint32_t StaticHashMap<K, T, Capacity, HashFunc>::addDelta1(std::uint32_t bucketIndex) const
{
std::uint32_t newIndex = bucketIndex + delta1_[bucketIndex];
if (newIndex > Capacity - 1) {
newIndex -= Capacity;
}
return newIndex;
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
std::uint32_t StaticHashMap<K, T, Capacity, HashFunc>::addDelta2(std::uint32_t bucketIndex) const
{
std::uint32_t newIndex = bucketIndex + delta2_[bucketIndex];
if (newIndex > Capacity - 1) {
newIndex -= Capacity;
}
return newIndex;
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
std::uint32_t StaticHashMap<K, T, Capacity, HashFunc>::calcNewDelta(std::uint32_t bucketIndex, std::uint32_t newIndex) const
{
std::uint32_t delta = 0;
if (newIndex >= bucketIndex) {
delta = newIndex - bucketIndex;
} else {
delta = Capacity - bucketIndex + newIndex;
}
FATAL_ASSERT(delta < 256); // deltas are uint8_t
return delta;
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
std::uint32_t StaticHashMap<K, T, Capacity, HashFunc>::linearSearch(std::uint32_t index, hash_t hash, const K& key) const
{
for (std::uint32_t i = index; i < Capacity; i++) {
if (bucketFoundOrEmpty(i, hash, key)) {
return i;
}
}
for (std::uint32_t i = 0; i < index; i++) {
if (bucketFoundOrEmpty(i, hash, key)) {
return i;
}
}
return index;
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
bool StaticHashMap<K, T, Capacity, HashFunc>::bucketFoundOrEmpty(std::uint32_t index, hash_t hash, const K& key) const
{
return (hashes_[index] == NullHash || (hashes_[index] == hash && nodes_[index].key == key));
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
bool StaticHashMap<K, T, Capacity, HashFunc>::bucketFound(std::uint32_t index, hash_t hash, const K& key) const
{
return (hashes_[index] == hash && nodes_[index].key == key);
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
T& StaticHashMap<K, T, Capacity, HashFunc>::addNode(std::uint32_t index, hash_t hash, const K& key)
{
FATAL_ASSERT(size_ < Capacity);
FATAL_ASSERT(hashes_[index] == NullHash);
size_++;
hashes_[index] = hash;
new (nodes_ + index) Node(key);
return nodes_[index].value;
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
void StaticHashMap<K, T, Capacity, HashFunc>::insertNode(std::uint32_t index, hash_t hash, const K& key, const T& value)
{
FATAL_ASSERT(size_ < Capacity);
FATAL_ASSERT(hashes_[index] == NullHash);
size_++;
hashes_[index] = hash;
new (nodes_ + index) Node(key, value);
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
void StaticHashMap<K, T, Capacity, HashFunc>::insertNode(std::uint32_t index, hash_t hash, const K& key, T&& value)
{
FATAL_ASSERT(size_ < Capacity);
FATAL_ASSERT(hashes_[index] == NullHash);
size_++;
hashes_[index] = hash;
new (nodes_ + index) Node(key, std::move(value));
}
template<class K, class T, std::uint32_t Capacity, class HashFunc>
template<typename... Args>
void StaticHashMap<K, T, Capacity, HashFunc>::emplaceNode(std::uint32_t index, hash_t hash, const K& key, Args &&... args)
{
FATAL_ASSERT(size_ < Capacity);
FATAL_ASSERT(hashes_[index] == NullHash);
size_++;
hashes_[index] = hash;
new (nodes_ + index) Node(key, std::forward<Args>(args)...);
}
}
|