1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
package uk.ac.bristol.star.cdf;
import java.lang.reflect.Array;
import java.util.Arrays;
/**
* Takes care of turning raw variable record values into shaped
* record values. The raw values are those stored in the CDF data stream,
* and the shaped ones are those notionally corresponding to record values.
*
* @author Mark Taylor
* @since 20 Jun 2013
*/
public abstract class Shaper {
private final int[] dimSizes_;
private final boolean[] dimVarys_;
/**
* Constructor.
*
* @param dimSizes dimensionality of shaped array
* @param dimVarys for each dimension, true for varying, false for fixed
*/
protected Shaper( int[] dimSizes, boolean[] dimVarys ) {
dimSizes_ = dimSizes;
dimVarys_ = dimVarys;
}
/**
* Returns the number of array elements in the raw value array.
*
* @return raw value array size
*/
public abstract int getRawItemCount();
/**
* Returns the number of array elements in the shaped value array.
*
* @return shaped value array size
*/
public abstract int getShapedItemCount();
/**
* Returns the dimensions of the notional array.
*
* @return dimension sizes array
*/
public int[] getDimSizes() {
return dimSizes_;
}
/**
* Returns the dimension variances of the array.
*
* @return for each dimension, true if the data varies, false if fixed
*/
public boolean[] getDimVarys() {
return dimVarys_;
}
/**
* Returns the data type of the result of the {@link #shape shape} method.
*
* @return shaped value class
*/
public abstract Class<?> getShapeClass();
/**
* Takes a raw value array and turns it into an object of
* the notional shape for this shaper.
* The returned object is new; it is not rawValue.
*
* @param rawValue input raw value array
* @return rowMajor required majority for result;
* true for row major, false for column major
*/
public abstract Object shape( Object rawValue, boolean rowMajor );
/**
* Returns the index into the raw value array at which the value for
* the given element of the notional array can be found.
*
* @param coords coordinate array, same length as dimensionality
* @return index into raw value array
*/
public abstract int getArrayIndex( int[] coords );
/**
* Returns an appropriate shaper instance.
*
* @param dataType data type
* @param dimSizes dimensions of notional shaped array
* @param dimVarys variances of shaped array
* @param rowMajor majority of raw data array;
* true for row major, false for column major
*/
public static Shaper createShaper( DataType dataType,
int[] dimSizes, boolean[] dimVarys,
boolean rowMajor ) {
int rawItemCount = 1;
int shapedItemCount = 1;
int nDimVary = 0;
int ndim = dimSizes.length;
for ( int idim = 0; idim < dimSizes.length; idim++ ) {
int dimSize = dimSizes[ idim ];
shapedItemCount *= dimSize;
if ( dimVarys[ idim ] ) {
nDimVary++;
rawItemCount *= dimSize;
}
}
if ( shapedItemCount == 1 ) {
return new ScalarShaper( dataType );
}
else if ( ndim == 1 && nDimVary == 1 ) {
assert Arrays.equals( dimVarys, new boolean[] { true } );
assert Arrays.equals( dimSizes, new int[] { rawItemCount } );
return new VectorShaper( dataType, rawItemCount );
}
else if ( nDimVary == ndim ) {
return new SimpleArrayShaper( dataType, dimSizes, rowMajor );
}
else {
return new GeneralShaper( dataType, dimSizes, dimVarys, rowMajor );
}
}
/**
* Shaper implementation for scalar values. Easy.
*/
private static class ScalarShaper extends Shaper {
private final DataType dataType_;
/**
* Constructor.
*
* @param dataType data type
*/
ScalarShaper( DataType dataType ) {
super( new int[ 0 ], new boolean[ 0 ] );
dataType_ = dataType;
}
public int getRawItemCount() {
return 1;
}
public int getShapedItemCount() {
return 1;
}
public Class<?> getShapeClass() {
return dataType_.getScalarClass();
}
public Object shape( Object rawValue, boolean rowMajor ) {
return dataType_.getScalar( rawValue, 0 );
}
public int getArrayIndex( int[] coords ) {
for ( int i = 0; i < coords.length; i++ ) {
if ( coords[ i ] != 0 ) {
throw new IllegalArgumentException( "Out of bounds" );
}
}
return 0;
}
}
/**
* Shaper implementation for 1-dimensional arrays with true dimension
* variance along the single dimension.
* No need to worry about majority, since the question doesn't arise
* in one dimension.
*/
private static class VectorShaper extends Shaper {
private final DataType dataType_;
private final int itemCount_;
private final int step_;
private final Class<?> shapeClass_;
/**
* Constructor.
*
* @param dataType data type
* @param itemCount number of elements in raw and shaped arrays
*/
VectorShaper( DataType dataType, int itemCount ) {
super( new int[] { itemCount }, new boolean[] { true } );
dataType_ = dataType;
itemCount_ = itemCount;
step_ = dataType.getGroupSize();
shapeClass_ = getArrayClass( dataType.getArrayElementClass() );
}
public int getRawItemCount() {
return itemCount_;
}
public int getShapedItemCount() {
return itemCount_;
}
public Class<?> getShapeClass() {
return shapeClass_;
}
public Object shape( Object rawValue, boolean rowMajor ) {
Object out = Array.newInstance( dataType_.getArrayElementClass(),
itemCount_ );
// Contract requires that we return a new object.
System.arraycopy( rawValue, 0, out, 0, itemCount_ );
return out;
}
public int getArrayIndex( int[] coords ) {
return coords[ 0 ] * step_;
}
}
/**
* Shaper implementation that can deal with multiple dimensions,
* majority switching, and dimension variances,
*/
private static class GeneralShaper extends Shaper {
private final DataType dataType_;
private final int[] dimSizes_;
private final boolean rowMajor_;
private final int ndim_;
private final int rawItemCount_;
private final int shapedItemCount_;
private final int[] strides_;
private final int itemSize_;
private final Class<?> shapeClass_;
/**
* Constructor.
*
* @param dataType data type
* @param dimSizes dimensionality of shaped array
* @param dimVarys variances of shaped array
* @param rowMajor majority of raw data array;
* true for row major, false for column major
*/
GeneralShaper( DataType dataType, int[] dimSizes, boolean[] dimVarys,
boolean rowMajor ) {
super( dimSizes, dimVarys );
dataType_ = dataType;
dimSizes_ = dimSizes;
rowMajor_ = rowMajor;
ndim_ = dimSizes.length;
int rawItemCount = 1;
int shapedItemCount = 1;
int nDimVary = 0;
int ndim = dimSizes.length;
strides_ = new int[ ndim_ ];
for ( int idim = 0; idim < ndim_; idim++ ) {
int jdim = rowMajor ? ndim_ - idim - 1 : idim;
int dimSize = dimSizes[ jdim ];
shapedItemCount *= dimSize;
if ( dimVarys[ jdim ] ) {
nDimVary++;
strides_[ jdim ] = rawItemCount;
rawItemCount *= dimSize;
}
}
rawItemCount_ = rawItemCount;
shapedItemCount_ = shapedItemCount;
itemSize_ = dataType_.getGroupSize();
shapeClass_ = getArrayClass( dataType.getArrayElementClass() );
}
public int getRawItemCount() {
return rawItemCount_;
}
public int getShapedItemCount() {
return shapedItemCount_;
}
public int getArrayIndex( int[] coords ) {
int index = 0;
for ( int idim = 0; idim < ndim_; idim++ ) {
index += coords[ idim ] * strides_[ idim ];
}
return index * itemSize_;
}
public Class<?> getShapeClass() {
return shapeClass_;
}
public Object shape( Object rawValue, boolean rowMajor ) {
Object out = Array.newInstance( dataType_.getArrayElementClass(),
shapedItemCount_ * itemSize_ );
int[] coords = new int[ ndim_ ];
Arrays.fill( coords, -1 );
for ( int ix = 0; ix < shapedItemCount_; ix++ ) {
for ( int idim = 0; idim < ndim_; idim++ ) {
int jdim = rowMajor ? ndim_ - idim - 1 : idim;
coords[ jdim ] = ( coords[ jdim ] + 1 ) % dimSizes_[ jdim ];
if ( coords[ jdim ] != 0 ) {
break;
}
}
System.arraycopy( rawValue, getArrayIndex( coords ),
out, ix * itemSize_, itemSize_ );
}
return out;
}
}
/**
* Shaper implementation that can deal with multiple dimensions and
* majority switching, but not false dimension variances.
*/
private static class SimpleArrayShaper extends GeneralShaper {
private final DataType dataType_;
private final boolean rowMajor_;
/**
* Constructor.
*
* @param dataType data type
* @param dimSizes dimensionality of shaped array
* @param rowMajor majority of raw data array;
* true for row major, false for column major
*/
public SimpleArrayShaper( DataType dataType, int[] dimSizes,
boolean rowMajor ) {
super( dataType, dimSizes, trueArray( dimSizes.length ),
rowMajor );
dataType_ = dataType;
rowMajor_ = rowMajor;
}
public Object shape( Object rawValue, boolean rowMajor ) {
if ( rowMajor == rowMajor_ ) {
int count = Array.getLength( rawValue );
Object out =
Array.newInstance( dataType_.getArrayElementClass(),
count );
System.arraycopy( rawValue, 0, out, 0, count );
return out;
}
else {
// Probably there's a more efficient way to do this -
// it's an n-dimensional generalisation of transposing
// a matrix (though don't forget to keep units of
// groupSize intact).
return super.shape( rawValue, rowMajor );
}
}
/**
* Utility method that returns a boolean array of a given size
* populated with true values.
*
* @param n size
* @return n-element array filled with true
*/
private static boolean[] trueArray( int n ) {
boolean[] a = new boolean[ n ];
Arrays.fill( a, true );
return a;
}
}
/**
* Returns the array class corresponding to a given scalar class.
*
* @param elementClass scalar class
* @return array class
*/
private static Class<?> getArrayClass( Class elementClass ) {
return Array.newInstance( elementClass, 0 ).getClass();
}
}
|