1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
[](https://pypi.org/project/jello/)
>Built on `jello`:
>- [Jello Explorer](https://github.com/kellyjonbrazil/jellex) (aka `jellex`) interactive TUI
>- `jello` [web demo](https://jello-web.onrender.com)
# jello
Filter JSON and JSON Lines data with Python syntax
`jello` is similar to `jq` in that it processes JSON and JSON Lines data except `jello` uses standard python dict and list syntax.
JSON or JSON Lines can be piped into `jello` via STDIN or can be loaded from a JSON file or JSON Lines files (JSON Lines are automatically slurped into a list of dictionaries). Once loaded, the data is available as a python list or dictionary object named '`_`'. Processed data can be output as JSON, JSON Lines, bash array lines, or a grep-able schema.
For more information on the motivations for this project, see my [blog post](https://blog.kellybrazil.com/2020/03/25/jello-the-jq-alternative-for-pythonistas/).
## Install
You can install `jello` via `pip`, via OS Package Repository, MSI installer for Windows, or by downloading the correct binary for your architecture and running it anywhere on your filesystem.
### Pip (macOS, linux, unix, Windows)
For the most up-to-date version and the most cross-platform option, use `pip` or `pip3` to download and install `jello` directly from [PyPi](https://pypi.org/project/jello/):
[](https://pypi.org/project/jello/)
```bash
pip3 install jello
```
### Packages and Binaries
| OS | Command |
|-----------------------|--------------------------|
| Debian/Ubuntu linux | `apt-get install jello` |
| Fedora linux | `dnf install jello` |
| Arch linux | `pacman -S jello` |
| macOS | `brew install jello` |
> For more OS packages, see https://repology.org/project/jello/versions.
See [Releases](https://github.com/kellyjonbrazil/jello/releases) on Github for MSI packages and binaries.
### Usage
```
cat data.json | jello [OPTIONS] [QUERY | -q <query_file>]
jello [OPTIONS] [QUERY | -q <query_file>] [-f <input_files>]
```
`QUERY` is optional and can be most any valid python code. Alternatively, a
query file can be specified with `-q` to load the query from a file. Within the query, `_` is the sanitized JSON from STDIN presented as a python dict or list of dicts. If `QUERY` is omitted then the original JSON input will simply be pretty printed. You can use dot notation or traditional python bracket notation to access key names.
> Note: Reserved key names that cannot be accessed using dot notation can be accessed via standard python dictionary notation. (e.g. `_.foo["get"]` instead of `_.foo.get`)
A simple query:
```bash
cat data.json | jello _.foo
```
or
```bash
jello _.foo -f data.json
```
or
```bash
jello '_["foo"]' -f data.json
```
#### Options
- `-c` compact print JSON output instead of pretty printing
- `-C` force color output even when using pipes (overrides `-m` and the `NO_COLOR` env variable)
- `-e` empty data (don't process data from STDIN or file)
- `-f` load input data from JSON file or JSON Lines files (must be the final option, if used)
- `-i` initialize environment with a custom config file
- `-l` lines output (suitable for bash array assignment)
- `-m` monochrome output
- `-n` print selected `null` values
- `-q` load query from a file
- `-r` raw output of selected strings (no quotes)
- `-R` raw string input (don't auto convert input to dict/list)
- `-s` print the JSON schema in grep-able format
- `-t` print type annotations in schema view
- `-h` help
- `-v` version info
#### Simple Examples
`jello` simply pretty prints the JSON if there are no options or query passed:
```bash
echo '{"foo":"bar","baz":[1,2,3]}' | jello
{
"foo": "bar",
"baz": [
1,
2,
3
]
}
```
If you prefer compact output, use the `-c` option:
```bash
echo '{"foo":"bar","baz":[1,2,3]}' | jello -c
{"foo":"bar","baz":[1,2,3]}
```
Use the `-l` option to convert lists/arrays into lines:
```bash
echo '{"foo":"bar","baz":[1,2,3]}' | jello -l _.baz
1
2
3
```
The `-l` option also allows you to create [JSON Lines](https://jsonlines.org/):
```bash
echo '[{"foo":"bar","baz":[1,2,3]},{"fiz":"boo","buz":[4,5,6]}]' | jello -l
{"foo":"bar","baz":[1,2,3]}
{"fiz":"boo","buz":[4,5,6]}
```
You can print a grep-able schema by using the `-s` option:
```bash
echo '{"foo":"bar","baz":[1,2,3]}' | jello -s
_ = {};
_.foo = "bar";
_.baz = [];
_.baz[0] = 1;
_.baz[1] = 2;
_.baz[2] = 3;
```
#### Assigning Results to a Bash Array
Use the `-l` option to print JSON array output in a manner suitable to be assigned to a bash array. The `-r` option can be used to remove quotation marks around strings. If you want `null` values to be printed as `null`, use the `-n` option, otherwise they are printed as blank lines.
Bash variable:
```
variable=($(cat data.json | jello -rl _.foo))
```
Bash array variable (Bash 4+):
```
mapfile -t variable < <(cat data.json | jello -rl _.foo)
```
Bash array variable (older versions of Bash):
```
variable=()
while read -r value; do
variable+=("$value")
done < <(cat data.json | jello -rl _.foo)
```
### Non-JSON Data Input (YAML, CSV, etc.)
You can work with other types of data with the `-R` (raw string input) option. For example,
if you would like to read in YAML data you can load the data as a raw string, import
the `yaml` library, and load the string data into `_` with the `yaml` library:
```bash
$ cat values.yaml
var1: value1
var2: value2
var3: value3
$ jello -Rr '
import yaml
_ = yaml.safe_load(_)
_["var2"]
' -f values.yaml
value2
```
> Note: Dot notation is not supported with the `-R` option unless the library used to
> convert the raw string supports this. (e.g. `python-benedict`)
### Setting Custom Colors via Environment Variable
Custom colors can be set via the `JELLO_COLORS` environment variable. Any colors set in the environment variable will take precedence over any colors set in the initialization file. (see [Advanced Usage](https://github.com/kellyjonbrazil/jello/blob/master/ADVANCED_USAGE.md))
The `JELLO_COLORS` environment variable takes four comma separated string values in the following format:
```
JELLO_COLORS=<keyname_color>,<keyword_color>,<number_color>,<string_color>
```
Where colors are: `black`, `red`, `green`, `yellow`, `blue`, `magenta`, `cyan`, `gray`, `brightblack`, `brightred`, `brightgreen`, `brightyellow`, `brightblue`, `brightmagenta`, `brightcyan`, `white`, or `default`
For example, to set to the default colors:
```
JELLO_COLORS=blue,brightblack,magenta,green
```
or
```
JELLO_COLORS=default,default,default,default
```
### Disable Colors via Environment Variable
You can set the [`NO_COLOR`](http://no-color.org/) environment variable to any value to disable color output in `jello`. Note that using the `-C` option to force color output will override both the `NO_COLOR` environment variable and the `-m` option.
### Advanced Usage
Here is more [Advanced Usage](https://github.com/kellyjonbrazil/jello/blob/master/ADVANCED_USAGE.md) information.
> To accelerate filter development and testing, try [`jellex`](https://github.com/kellyjonbrazil/jellex). `jellex` is an interactive front-end TUI built on `jello` that allows you to see your filter results in real-time along with any errors.
## Examples:
### Printing the Grep-able Schema
```bash
$ jc -a | jello -s
_ = {};
_.name = "jc";
_.version = "1.17.2";
_.description = "JSON CLI output utility";
_.author = "Kelly Brazil";
_.author_email = "kellyjonbrazil@gmail.com";
_.website = "https://github.com/kellyjonbrazil/jc";
_.copyright = "© 2019-2021 Kelly Brazil";
_.license = "MIT License";
_.parser_count = 80;
_.parsers = [];
_.parsers[0] = {};
_.parsers[0].name = "acpi";
_.parsers[0].argument = "--acpi";
_.parsers[0].version = "1.2";
_.parsers[0].description = "`acpi` command parser";
_.parsers[0].author = "Kelly Brazil";
_.parsers[0].author_email = "kellyjonbrazil@gmail.com";
_.parsers[0].compatible = [];
_.parsers[0].compatible[0] = "linux";
_.parsers[0].magic_commands = [];
_.parsers[0].magic_commands[0] = "acpi";
_.parsers[1] = {};
_.parsers[1].name = "airport";
_.parsers[1].argument = "--airport";
_.parsers[1].version = "1.3";
...
```
### Printing the Grep-able Schema with type annotations (useful for grepping types)
```bash
jc dig example.com | jello -st
_ = []; // (array)
_[0] = {}; // (object)
_[0].id = 23819; // (number)
_[0].opcode = "QUERY"; // (string)
_[0].status = "NOERROR"; // (string)
_[0].flags = []; // (array)
_[0].flags[0] = "qr"; // (string)
_[0].flags[1] = "rd"; // (string)
_[0].flags[2] = "ra"; // (string)
_[0].query_num = 1; // (number)
_[0].answer_num = 1; // (number)
_[0].authority_num = 0; // (number)
_[0].additional_num = 1; // (number)
_[0].opt_pseudosection = {}; // (object)
_[0].opt_pseudosection.edns = {}; // (object)
_[0].opt_pseudosection.edns.version = 0; // (number)
_[0].opt_pseudosection.edns.flags = []; // (array)
_[0].opt_pseudosection.edns.udp = 4096; // (number)
_[0].question = {}; // (object)
_[0].question.name = "example.com."; // (string)
_[0].question.class = "IN"; // (string)
_[0].question.type = "A"; // (string)
_[0].answer = []; // (array)
_[0].answer[0] = {}; // (object)
_[0].answer[0].name = "example.com."; // (string)
_[0].answer[0].class = "IN"; // (string)
_[0].answer[0].type = "A"; // (string)
_[0].answer[0].ttl = 48358; // (number)
_[0].answer[0].data = "93.184.216.34"; // (string)
_[0].query_time = 46; // (number)
_[0].server = "2600:1700:bab0:d40::1#53(2600:1700:bab0:d40::1)"; // (string)
_[0].when = "Mon Nov 29 09:41:11 PST 2021"; // (string)
_[0].rcvd = 56; // (number)
_[0].when_epoch = 1638207671; // (number)
_[0].when_epoch_utc = null; // (null)
```
### Printing the Structure of the JSON
```bash
jc dig example.com | jello -st | grep '(object)\|(array)'
_ = []; // (array)
_[0] = {}; // (object)
_[0].flags = []; // (array)
_[0].opt_pseudosection = {}; // (object)
_[0].opt_pseudosection.edns = {}; // (object)
_[0].opt_pseudosection.edns.flags = []; // (array)
_[0].question = {}; // (object)
_[0].answer = []; // (array)
_[0].answer[0] = {}; // (object)
```
### Lambda Functions and Math
```bash
echo '{"t1":-30, "t2":-20, "t3":-10, "t4":0}' | jello '\
keys = _.keys()
vals = _.values()
cel = list(map(lambda x: (float(5)/9)*(x-32), vals))
dict(zip(keys, cel))'
{
"t1": -34.44444444444444,
"t2": -28.88888888888889,
"t3": -23.333333333333336,
"t4": -17.77777777777778
}
```
```bash
jc -a | jello 'len([entry for entry in _.parsers if "darwin" in entry.compatible])'
45
```
### For Loops
Output as JSON array
```bash
jc -a | jello '\
result = []
for entry in _.parsers:
if "darwin" in entry.compatible:
result.append(entry.name)
result'
[
"airport",
"airport_s",
"arp",
"crontab",
"crontab_u",
...
]
```
Output as bash array
```bash
jc -a | jello -rl '\
result = []
for entry in _.parsers:
if "darwin" in entry.compatible:
result.append(entry.name)
result'
airport
airport_s
arp
crontab
crontab_u
...
```
### List and Dictionary Comprehension
Output as JSON array
```bash
jc -a | jello '[entry.name for entry in _.parsers if "darwin" in entry.compatible]'
[
"airport",
"airport_s",
"arp",
"crontab",
"crontab_u",
...
]
```
Output as bash array
```bash
jc -a | jello -rl '[entry.name for entry in _.parsers if "darwin" in entry.compatible]'
airport
airport_s
arp
crontab
crontab_u
...
```
### Expressions and Environment Variables
```bash
echo '{"login_name": "joeuser"}' | jello 'os.getenv("LOGNAME") == _.login_name'
true
```
### Using 3rd Party Modules
You can import and use your favorite modules to manipulate the data. For example, using `glom`:
```bash
jc -a | jello '\
from glom import *
glom(_, ("parsers", ["name"]))'
[
"airport",
"airport_s",
"arp",
"blkid",
"crontab",
"crontab_u",
"csv",
...
]
```
### Advanced JSON Manipulation
The data from this example comes from https://programminghistorian.org/assets/jq_twitter.json
Under **Grouping and Counting**, Matthew describes an advanced `jq` filter against a sample Twitter dataset that includes JSON Lines data. There he describes the following query:
> "We can now create a table of users. Let’s create a table with columns for the user id, user name, followers count, and a column of their tweet ids separated by a semicolon."
https://programminghistorian.org/en/lessons/json-and-jq
Here is a simple solution using `jello`:
```bash
cat jq_twitter.json | jello -l '\
user_ids = set()
for tweet in _:
user_ids.add(tweet.user.id)
result = []
for user in user_ids:
user_profile = {}
tweet_ids = []
for tweet in _:
if tweet.user.id == user:
user_profile.update({
"user_id": user,
"user_name": tweet.user.screen_name,
"user_followers": tweet.user.followers_count})
tweet_ids.append(str(tweet.id))
user_profile["tweet_ids"] = ";".join(tweet_ids)
result.append(user_profile)
result'
...
{"user_id": 2696111005, "user_name": "EGEVER142", "user_followers": 1433, "tweet_ids": "619172303654518784"}
{"user_id": 42226593, "user_name": "shirleycolleen", "user_followers": 2114, "tweet_ids": "619172281294655488;619172179960328192"}
{"user_id": 106948003, "user_name": "MrKneeGrow", "user_followers": 172, "tweet_ids": "501064228627705857"}
{"user_id": 18270633, "user_name": "ahhthatswhy", "user_followers": 559, "tweet_ids": "501064204661850113"}
{"user_id": 14331818, "user_name": "edsu", "user_followers": 4220, "tweet_ids": "615973042443956225;618602288781860864"}
{"user_id": 2569107372, "user_name": "SlavinOleg", "user_followers": 35, "tweet_ids": "501064198973960192;501064202794971136;501064214467731457;501064215759568897;501064220121632768"}
{"user_id": 22668719, "user_name": "nodehyena", "user_followers": 294, "tweet_ids": "501064222772445187"}
...
```
|