1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
/* This file is part of Jellyfish.
This work is dual-licensed under 3-Clause BSD License or GPL 3.0.
You can choose between one of them if you use this work.
`SPDX-License-Identifier: BSD-3-Clause OR GPL-3.0`
*/
#include <cstdlib>
#include <new>
#include <stdexcept>
#include <vector>
#include <sstream>
#include <assert.h>
#include <jellyfish/rectangular_binary_matrix.hpp>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef HAVE_POSIX_MEMALIGN
inline int __mem_align(void** memptr, size_t alignement, size_t size) {
return posix_memalign(memptr, alignement, size);
}
#elif HAVE_ALIGNED_ALLOC
inline int __mem_align(void** memptr, size_t alignment, size_t size) {
*memptr = aligned_alloc(alignment, size);
return memptr == NULL;
}
#else
#error No function to allocate aligned memory
#endif
uint64_t *jellyfish::RectangularBinaryMatrix::alloc(unsigned int r, unsigned int c) {
if(r > (sizeof(uint64_t) * 8) || r == 0 || c == 0) {
std::ostringstream err;
err << "Invalid matrix size " << r << "x" << c;
throw std::out_of_range(err.str());
}
void *mem;
// Make sure the number of words allocated is a multiple of
// 8. Necessary for loop unrolling of vector multiplication
size_t alloc_columns = (c / 8 + (c % 8 != 0)) * 8;
if(__mem_align(&mem, sizeof(uint64_t) * 2, alloc_columns * sizeof(uint64_t)))
throw std::bad_alloc();
memset(mem, '\0', sizeof(uint64_t) * alloc_columns);
return (uint64_t *)mem;
}
void jellyfish::RectangularBinaryMatrix::init_low_identity(bool simplify) {
if(!_columns) return;
if(_c == _r && simplify) {
free(_columns);
_columns = NULL;
return;
}
memset(_columns, '\0', sizeof(uint64_t) * _c);
unsigned int row = std::min(_c, _r);
unsigned int col = _c - row;
_columns[col] = (uint64_t)1 << (row - 1);
for(unsigned int i = col + 1; i < _c; ++i)
_columns[i] = _columns[i - 1] >> 1;
}
bool jellyfish::RectangularBinaryMatrix::is_low_identity() const {
if(!_columns) return true;
unsigned int row = std::min(_c, _r);
unsigned int col = _c - row;
for(unsigned int i = 0; i < col; ++i)
if(_columns[i])
return false;
if(_columns[col] != (uint64_t)1 << (row - 1))
return false;
for(unsigned int i = col + 1; i < _c; ++i)
if(_columns[i] != _columns[i - 1] >> 1)
return false;
return true;
}
jellyfish::RectangularBinaryMatrix jellyfish::RectangularBinaryMatrix::pseudo_multiplication(const jellyfish::RectangularBinaryMatrix &rhs) const {
if(_r != rhs._r || _c != rhs._c)
throw std::domain_error("Matrices of different size");
if(!_columns) return rhs;
if(!rhs._columns) return *this;
RectangularBinaryMatrix res(_r, _c);
// v is a vector. The lower part is equal to the given column of rhs
// and the high part is the identity matrix.
// uint64_t v[nb_words()];
uint64_t *v = new uint64_t[nb_words()];
memset(v, '\0', sizeof(uint64_t) * nb_words());
unsigned int j = nb_words() - 1;
v[j] = msb();
const unsigned int row = std::min(_c, _r);
const unsigned int col = _c - row;
unsigned int i;
for(i = 0; i < col; ++i) {
// Set the lower part to rhs and do vector multiplication
v[0] ^= rhs[i];
res.get(i) = this->times(&v[0]);
//res.get(i) = this->times_loop(v);
// Zero the lower part and shift the one down the diagonal.
v[0] ^= rhs[i];
v[j] >>= 1;
if(!v[j])
v[--j] = (uint64_t)1 << (sizeof(uint64_t) * 8 - 1);
}
// No more identity part to deal with
memset(v, '\0', sizeof(uint64_t) * nb_words());
for( ; i < _c; ++i) {
v[0] = rhs[i];
res.get(i) = this->times(v);
//res.get(i) = this->times_loop(v);
}
delete[] v;
return res;
}
unsigned int jellyfish::RectangularBinaryMatrix::pseudo_rank() const {
if(!_columns) return _c;
unsigned int rank = _c;
RectangularBinaryMatrix pivot(*this);
// Make the matrix lower triangular.
unsigned int srow = std::min(_r, _c);
unsigned int scol = _c - srow;
uint64_t mask = (uint64_t)1 << (srow - 1);
for(unsigned int i = scol; i < _c; ++i, mask >>= 1) {
if(!(pivot.get(i) & mask)) {
// current column has a 0 in the diagonal. XOR it with another
// column to get a 1.
unsigned int j;
for(j = i + 1; j < _c; ++j)
if(pivot.get(j) & mask)
break;
if(j == _c) {
// Did not find one, the matrix is not full rank.
rank = i;
break;
}
pivot.get(i) ^= pivot.get(j);
}
// Zero out every ones on the ith row in the upper part of the
// matrix.
for(unsigned int j = i + 1; j < _c; ++j)
if(pivot.get(j) & mask)
pivot.get(j) ^= pivot.get(i);
}
return rank;
}
jellyfish::RectangularBinaryMatrix jellyfish::RectangularBinaryMatrix::pseudo_inverse() const {
if(!_columns) return *this;
RectangularBinaryMatrix pivot(*this);
RectangularBinaryMatrix res(_r, _c); res.init_low_identity(false);
unsigned int i, j;
uint64_t mask;
// Do gaussian elimination on the columns and apply the same
// operation to res.
// Make pivot lower triangular.
unsigned int srow = std::min(_r, _c);
unsigned int scol = _c - srow;
mask = (uint64_t)1 << (srow - 1);
for(i = scol; i < _c; ++i, mask >>= 1) {
if(!(pivot.get(i) & mask)) {
// current column has a 0 in the diagonal. XOR it with another
// column to get a 1.
unsigned int j;
for(j = i + 1; j < _c; ++j)
if(pivot.get(j) & mask)
break;
if(j == _c)
throw std::domain_error("Matrix is singular");
pivot.get(i) ^= pivot.get(j);
res.get(i) ^= res.get(j);
}
// Zero out every ones on the ith row in the upper part of the
// matrix.
for(j = i + 1; j < _c; ++j) {
if(pivot.get(j) & mask) {
pivot.get(j) ^= pivot.get(i);
res.get(j) ^= res.get(i);
}
}
}
// Make pivot the lower identity
mask = (uint64_t)1 << (srow - 1);
for(i = scol; i < _c; ++i, mask >>= 1) {
for(j = 0; j < i; ++j) {
if(pivot.get(j) & mask) {
pivot.get(j) ^= pivot.get(i);
res.get(j) ^= res.get(i);
}
}
}
return res;
}
void jellyfish::RectangularBinaryMatrix::print(std::ostream &os) const {
if(!_columns) {
for(unsigned int i = 0; i < _c; ++i) {
for(unsigned int j = 0; j < _c; ++j)
os << (i == j ? '1' : '0');
os << '\n';
}
} else {
uint64_t mask = (uint64_t)1 << (_r - 1);
for( ; mask; mask >>= 1) {
for(unsigned int j = 0; j < _c; ++j)
os << (mask & _columns[j] ? '1' : '0');
os << '\n';
}
}
}
template<typename T>
void jellyfish::RectangularBinaryMatrix::print_vector(std::ostream &os, const T &v) const {
uint64_t mask = msb();
for(int i = nb_words() - 1; i >= 0; --i) {
for( ; mask; mask >>= 1)
os << (v[i] & mask ? "1" : "0");
mask = (uint64_t)1 << (sizeof(uint64_t) * 8 - 1);
}
os << "\n";
}
jellyfish::RectangularBinaryMatrix jellyfish::RectangularBinaryMatrix::randomize_pseudo_inverse(uint64_t (*rng)()) {
while(true) {
randomize(rng);
try {
return pseudo_inverse();
} catch(std::domain_error &e) { }
}
}
|