1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
#include <sys/types.h>
#include <signal.h>
#include <unistd.h>
#include <map>
#include <vector>
#include <limits>
#include <gtest/gtest.h>
#include <unit_tests/test_main.hpp>
#include <jellyfish/large_hash_array.hpp>
#include <jellyfish/mer_dna.hpp>
#include <jellyfish/atomic_gcc.hpp>
#include <jellyfish/allocators_mmap.hpp>
void PrintTo(jellyfish::mer_dna& m, ::std::ostream* os) {
*os << m.to_str();
}
namespace {
typedef jellyfish::large_hash::unbounded_array<jellyfish::mer_dna> large_array;
typedef std::map<jellyfish::mer_dna, uint64_t> mer_map;
typedef std::set<jellyfish::mer_dna> mer_set;
using jellyfish::RectangularBinaryMatrix;
using jellyfish::mer_dna;
using std::numeric_limits;
typedef large_array::iterator stl_iterator;
typedef large_array::eager_iterator eager_iterator;
typedef large_array::lazy_iterator lazy_iterator;
typedef large_array::region_iterator region_iterator;
// Tuple is {key_len, val_len, reprobe_len}.
class HashArray : public ::testing::TestWithParam< ::std::tuple<int,int, int> >
{
public:
static const size_t ary_lsize = 10;
static const size_t ary_size = (size_t)1 << ary_lsize;
static const size_t ary_size_mask = ary_size - 1;
const int key_len, val_len, reprobe_len, reprobe_limit;
large_array ary;
HashArray() :
key_len(::std::get<0>(GetParam())),
val_len(::std::get<1>(GetParam())),
reprobe_len(::std::get<2>(GetParam())),
reprobe_limit((1 << reprobe_len) - 2),
ary(ary_size, key_len, val_len, reprobe_limit)
{ }
void SetUp() {
jellyfish::mer_dna::k(key_len / 2);
}
~HashArray() { }
};
TEST_P(HashArray, OneElement) {
mer_dna m, m2, get_mer;
SCOPED_TRACE(::testing::Message() << "key_len:" << key_len << " val_len:" << val_len << " reprobe:" << reprobe_limit);
EXPECT_EQ((unsigned int)ary_lsize, ary.matrix().r());
EXPECT_EQ((unsigned int)key_len, ary.matrix().c());
size_t start_pos = random() % (ary_size - bsizeof(uint64_t));
size_t mask = (size_t)key_len >= bsizeof(size_t) ? (size_t)-1 : ((size_t)1 << key_len) - 1;
for(uint64_t i = start_pos; i < start_pos + bsizeof(uint64_t); ++i) {
SCOPED_TRACE(::testing::Message() << "i:" << i);
// Create mer m so that it will hash to position i
m.randomize();
m2 = m;
m2.set_bits(0, ary.matrix().r(), (uint64_t)i);
m.set_bits(0, ary.matrix().r(), ary.inverse_matrix().times(m2));
// Add this one element to the hash
ary.clear();
bool is_new = false;
size_t id = (size_t)-1;
uint64_t carry_shift = 0;
EXPECT_TRUE(ary.add(m, i, &carry_shift, &is_new, &id));
EXPECT_TRUE(is_new);
EXPECT_EQ((uint64_t)0, carry_shift);
// Only expected to agree on the length of the key. Applies only
// if key_len < lsize. The bits above key_len are pseudo-random
EXPECT_EQ((size_t)i & mask, id & mask);
// Every position but i in the hash should be empty
uint64_t val;
for(ssize_t j = -bsizeof(uint64_t); j <= (ssize_t)bsizeof(uint64_t); ++j) {
SCOPED_TRACE(::testing::Message() << "j:" << j);
val = (uint64_t)-1;
size_t jd = (start_pos + j) & ary_size_mask;
ASSERT_EQ(jd == id, ary.get_key_val_at_id(jd, get_mer, val) == large_array::FILLED);
if(jd == id) {
ASSERT_EQ(m2, get_mer);
ASSERT_EQ((uint64_t)i, val);
}
}
}
}
TEST_P(HashArray, Collisions) {
static const int nb_collisions = 4;
std::vector<mer_dna> mers(nb_collisions);
std::vector<mer_dna> mers2(nb_collisions);
std::map<mer_dna, uint64_t> map;
ASSERT_EQ((unsigned int)key_len / 2, mer_dna::k());
SCOPED_TRACE(::testing::Message() << "key_len:" << key_len << " val_len:" << val_len << " reprobe:" << reprobe_limit);
mers[0].polyA(); mers2[0].polyA();
mers[1].polyC(); mers2[1].polyC();
mers[2].polyG(); mers2[2].polyG();
mers[3].polyT(); mers2[3].polyT();
size_t start_pos = random() % (ary_size - bsizeof(uint64_t));
for(uint64_t i = start_pos; i < start_pos + bsizeof(uint64_t); ++i) {
SCOPED_TRACE(::testing::Message() << "i:" << i);
ary.clear();
map.clear();
// Add mers that it will all hash to position i
for(int j = 0; j < nb_collisions; ++j) {
mers2[j].set_bits(0, ary.matrix().r(), (uint64_t)i);
mers[j].set_bits(0, ary.matrix().r(), ary.inverse_matrix().times(mers2[j]));
ary.add(mers[j], j);
map[mers[j]] += j;
}
lazy_iterator it = ary.iterator_all<lazy_iterator>();
size_t count = 0;
while(it.next()) {
SCOPED_TRACE(::testing::Message() << "it.key():" << it.key());
ASSERT_FALSE(map.end() == map.find(it.key()));
EXPECT_EQ(map[it.key()], it.val());
++count;
}
EXPECT_EQ(map.size(), count);
}
}
struct arrays_type {
large_array array;
mer_map map;
arrays_type(size_t size, uint16_t key_len, uint16_t val_len, uint16_t reprobe_limit) :
array(size, key_len, val_len, reprobe_limit), map()
{ }
};
typedef std::unique_ptr<arrays_type> arrays_ptr;
arrays_ptr fill_array(size_t nb_elts, size_t size, int key_len, int val_len, int reprobe_limit) {
arrays_ptr arrays(new arrays_type(size, key_len, val_len, reprobe_limit));
large_array& ary = arrays->array;
mer_map& map = arrays->map;
mer_dna mer;
for(size_t i = 0; i < nb_elts; ++i) {
SCOPED_TRACE(::testing::Message() << "i:" << i);
mer.randomize();
map[mer] += i;
// If get false, hash array filled up: double size
bool res = ary.add(mer, i);
if(!res) {
const bool no_reprobe = ary.max_reprobe() == 0;
arrays.reset();
if(no_reprobe)
return fill_array(nb_elts, size, key_len, val_len + 1, reprobe_limit);
else
return fill_array(nb_elts, 2 * size, key_len, val_len, reprobe_limit);
}
}
return arrays;
}
TEST_P(HashArray, Iterator) {
static const int nb_elts = 1 << (ary_lsize - 1 - (val_len == 1));
SCOPED_TRACE(::testing::Message() << "key_len:" << key_len << " val_len:" << val_len << " reprobe:" << reprobe_limit);
arrays_ptr res = fill_array(nb_elts, ary_size, key_len, val_len, reprobe_limit);
large_array& ary = res->array;
mer_map & map = res->map;
eager_iterator it = ary.iterator_all<eager_iterator>();
lazy_iterator lit = ary.iterator_all<lazy_iterator>();
stl_iterator stl_it = ary.iterator_all<stl_iterator>();
int count = 0;
for( ; it.next(); ++stl_it) {
ASSERT_TRUE(lit.next());
ASSERT_NE(ary.end(), stl_it);
mer_map::const_iterator mit = map.find(it.key());
SCOPED_TRACE(::testing::Message() << "key:" << it.key());
ASSERT_NE(map.end(), mit);
EXPECT_EQ(mit->first, it.key());
EXPECT_EQ(mit->second, it.val());
EXPECT_EQ(mit->first, lit.key());
EXPECT_EQ(mit->second, lit.val());
EXPECT_EQ(mit->first, stl_it->first);
EXPECT_EQ(mit->second, stl_it->second);
EXPECT_EQ(it.id(), lit.id());
EXPECT_EQ(it.id(), stl_it.id());
++count;
}
EXPECT_FALSE(lit.next());
EXPECT_EQ(ary.end(), stl_it);
EXPECT_EQ(map.size(), (size_t)count);
count = 0;
const int nb_slices = 1;
for(int i = 0; i < nb_slices; ++i) {
SCOPED_TRACE(::testing::Message() << "slice:" << i << " nb_slices:" << nb_slices);
region_iterator rit = ary.iterator_slice<region_iterator>(i, nb_slices);
while(rit.next()) {
ASSERT_GE(rit.oid(), rit.start());
ASSERT_LT(rit.oid(), rit.end());
mer_map::const_iterator mit = map.find(rit.key());
ASSERT_NE(map.end(), mit);
EXPECT_EQ(mit->first, rit.key());
EXPECT_EQ(mit->second, rit.val());
++count;
}
}
EXPECT_EQ(map.size(), (size_t)count);
int i = 0;
for(mer_map::const_iterator it = map.begin(); it != map.end(); ++it, ++i) {
SCOPED_TRACE(::testing::Message() << "i:" << i << " key:" << it->first);
uint64_t val;
size_t id;
EXPECT_TRUE(ary.get_key_id(it->first, &id));
ASSERT_TRUE(ary.get_val_for_key(it->first, &val));
EXPECT_EQ(it->second, val);
}
}
TEST_P(HashArray, LargeValue) {
mer_dna mer;
mer.randomize();
ary.add(mer, numeric_limits<uint64_t>::max());
uint64_t val = 0;
ASSERT_TRUE(ary.get_val_for_key(mer, &val));
ASSERT_EQ(numeric_limits<uint64_t>::max(), val);
}
INSTANTIATE_TEST_CASE_P(HashArrayTest, HashArray, ::testing::Combine(::testing::Range(4, 4 * 64, 2), // Key lengths
::testing::Range(1, 10), // Val lengths
::testing::Range(6, 8) // Reprobe lengths
));
TEST(Hash, Set) {
static const int lsize = 16;
static const int size = 1 << lsize;
static const int nb_elts = 2 * size / 3;
large_array ary(size, 100, 0, 126);
mer_set set;
mer_dna::k(50);
mer_dna mer;
for(int i = 0; i < nb_elts; ++i) {
mer.randomize();
bool is_new;
size_t id;
ASSERT_TRUE(ary.set(mer, &is_new, &id));
ASSERT_EQ(set.insert(mer).second, is_new);
}
mer_dna tmp_mer;
for(mer_set::const_iterator it = set.begin(); it != set.end(); ++it) {
SCOPED_TRACE(::testing::Message() << "key:" << *it);
size_t id;
EXPECT_TRUE(ary.get_key_id(*it, &id, tmp_mer));
}
for(int i = 0; i < nb_elts; ++i) {
mer.randomize();
size_t id;
EXPECT_EQ(set.find(mer) != set.end(), ary.get_key_id(mer, &id));
}
}
TEST(Hash, Update) {
static const int lsize = 16;
static const int size = 1 << lsize;
static const int nb_elts = 2 * size / 3;
large_array ary(size, 100, 4, 126);
mer_map in_ary;
mer_dna::k(50);
mer_dna mer;
for(int i = 0; i < nb_elts; ++i) {
mer.randomize();
bool is_new;
size_t id;
ASSERT_TRUE(ary.set(mer, &is_new, &id));
auto res = in_ary.insert(std::make_pair(mer, (uint64_t)0));
ASSERT_EQ(res.second, is_new);
}
for(auto it = in_ary.begin(); it != in_ary.end(); ++it) {
uint64_t val = random_bits(4);
EXPECT_TRUE(ary.update_add(it->first, val));
it->second = val;
}
for(int i = 0; i < nb_elts; ++i) {
mer.randomize();
uint64_t val = random_bits(4);
auto it = in_ary.find(mer);
if(it == in_ary.end()) {
EXPECT_FALSE(ary.update_add(mer, val));
} else {
it->second += val;
EXPECT_TRUE(ary.update_add(mer, val));
}
}
lazy_iterator it = ary.iterator_all<lazy_iterator>();
size_t count = 0;
while(it.next()) {
ASSERT_NE(in_ary.end(), in_ary.find(it.key()));
EXPECT_EQ(in_ary[it.key()], it.val());
++count;
}
EXPECT_EQ(in_ary.size(), count);
}
TEST(Hash, Info) {
for(int iteration = 0; iteration < 100; ++iteration) {
size_t mem = random_bits(48);
uint16_t key_len = random_bits(7) + 1;
uint16_t val_len = random_bits(4) + 1;
large_array::usage_info info(key_len, val_len, 126);
SCOPED_TRACE(::testing::Message() << "iteration:" << iteration << " mem:" << mem
<< " key_len:" << key_len << " val_len:" << val_len);
uint16_t size_bits = info.size_bits(mem);
uint16_t size2_bits = info.size_bits_linear(mem);
ASSERT_EQ(size2_bits, size_bits);
ASSERT_LE(info.mem((size_t)1 << size_bits), mem);
ASSERT_GT(info.mem((size_t)1 << (size_bits + 1)), mem);
}
}
}
|