File: test_large_hash_array.cc

package info (click to toggle)
jellyfish 2.3.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,276 kB
  • sloc: cpp: 35,703; sh: 995; ruby: 578; makefile: 397; python: 165; perl: 36
file content (348 lines) | stat: -rw-r--r-- 11,314 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#include <sys/types.h>
#include <signal.h>
#include <unistd.h>

#include <map>
#include <vector>
#include <limits>

#include <gtest/gtest.h>
#include <unit_tests/test_main.hpp>

#include <jellyfish/large_hash_array.hpp>
#include <jellyfish/mer_dna.hpp>
#include <jellyfish/atomic_gcc.hpp>
#include <jellyfish/allocators_mmap.hpp>

void PrintTo(jellyfish::mer_dna& m, ::std::ostream* os) {
  *os << m.to_str();
}

namespace {
typedef jellyfish::large_hash::unbounded_array<jellyfish::mer_dna> large_array;
typedef std::map<jellyfish::mer_dna, uint64_t> mer_map;
typedef std::set<jellyfish::mer_dna> mer_set;

using jellyfish::RectangularBinaryMatrix;
using jellyfish::mer_dna;
using std::numeric_limits;

typedef large_array::iterator stl_iterator;
typedef large_array::eager_iterator eager_iterator;
typedef large_array::lazy_iterator lazy_iterator;
typedef large_array::region_iterator region_iterator;

// Tuple is {key_len, val_len, reprobe_len}.
class HashArray : public ::testing::TestWithParam< ::std::tuple<int,int, int> >
{
public:
  static const size_t ary_lsize = 10;
  static const size_t ary_size = (size_t)1 << ary_lsize;
  static const size_t ary_size_mask = ary_size - 1;
  const int           key_len, val_len, reprobe_len, reprobe_limit;
  large_array         ary;

  HashArray() :
    key_len(::std::get<0>(GetParam())),
    val_len(::std::get<1>(GetParam())),
    reprobe_len(::std::get<2>(GetParam())),
    reprobe_limit((1 << reprobe_len) - 2),
    ary(ary_size, key_len, val_len, reprobe_limit)
  { }

  void SetUp() {
    jellyfish::mer_dna::k(key_len / 2);
  }

  ~HashArray() { }
};

TEST_P(HashArray, OneElement) {
  mer_dna m, m2, get_mer;

  SCOPED_TRACE(::testing::Message() << "key_len:" << key_len << " val_len:" << val_len << " reprobe:" << reprobe_limit);

  EXPECT_EQ((unsigned int)ary_lsize, ary.matrix().r());
  EXPECT_EQ((unsigned int)key_len, ary.matrix().c());

  size_t start_pos = random() % (ary_size - bsizeof(uint64_t));
  size_t mask = (size_t)key_len >= bsizeof(size_t) ? (size_t)-1 : ((size_t)1 << key_len) - 1;
  for(uint64_t i = start_pos; i < start_pos + bsizeof(uint64_t); ++i) {
    SCOPED_TRACE(::testing::Message() << "i:" << i);
    // Create mer m so that it will hash to position i
    m.randomize();
    m2 = m;
    m2.set_bits(0, ary.matrix().r(), (uint64_t)i);
    m.set_bits(0, ary.matrix().r(), ary.inverse_matrix().times(m2));

    // Add this one element to the hash
    ary.clear();
    bool     is_new      = false;
    size_t   id          = (size_t)-1;
    uint64_t carry_shift = 0;
    EXPECT_TRUE(ary.add(m, i, &carry_shift, &is_new, &id));
    EXPECT_TRUE(is_new);
    EXPECT_EQ((uint64_t)0, carry_shift);
    // Only expected to agree on the length of the key. Applies only
    // if key_len < lsize. The bits above key_len are pseudo-random
    EXPECT_EQ((size_t)i & mask, id & mask);

    // Every position but i in the hash should be empty
    uint64_t val;
    for(ssize_t j = -bsizeof(uint64_t); j <= (ssize_t)bsizeof(uint64_t); ++j) {
      SCOPED_TRACE(::testing::Message() << "j:" << j);
      val = (uint64_t)-1;
      size_t jd = (start_pos + j) & ary_size_mask;
      ASSERT_EQ(jd == id, ary.get_key_val_at_id(jd, get_mer, val) == large_array::FILLED);
      if(jd == id) {
        ASSERT_EQ(m2, get_mer);
        ASSERT_EQ((uint64_t)i, val);
      }
    }
  }
}

TEST_P(HashArray, Collisions) {
  static const int nb_collisions = 4;
  std::vector<mer_dna> mers(nb_collisions);
  std::vector<mer_dna> mers2(nb_collisions);
  std::map<mer_dna, uint64_t> map;
  ASSERT_EQ((unsigned int)key_len / 2, mer_dna::k());

  SCOPED_TRACE(::testing::Message() << "key_len:" << key_len << " val_len:" << val_len << " reprobe:" << reprobe_limit);

  mers[0].polyA(); mers2[0].polyA();
  mers[1].polyC(); mers2[1].polyC();
  mers[2].polyG(); mers2[2].polyG();
  mers[3].polyT(); mers2[3].polyT();

  size_t start_pos = random() % (ary_size - bsizeof(uint64_t));
  for(uint64_t i = start_pos; i < start_pos + bsizeof(uint64_t); ++i) {
    SCOPED_TRACE(::testing::Message() << "i:" << i);
    ary.clear();
    map.clear();

    // Add mers that it will all hash to position i
    for(int j = 0; j < nb_collisions; ++j) {
      mers2[j].set_bits(0, ary.matrix().r(), (uint64_t)i);
      mers[j].set_bits(0, ary.matrix().r(), ary.inverse_matrix().times(mers2[j]));
      ary.add(mers[j], j);
      map[mers[j]] += j;
    }

    lazy_iterator it    = ary.iterator_all<lazy_iterator>();
    size_t        count = 0;
    while(it.next()) {
      SCOPED_TRACE(::testing::Message() << "it.key():" << it.key());
      ASSERT_FALSE(map.end() == map.find(it.key()));
      EXPECT_EQ(map[it.key()], it.val());
      ++count;
    }
    EXPECT_EQ(map.size(), count);
  }
}

struct arrays_type {
  large_array array;
  mer_map     map;
  arrays_type(size_t size, uint16_t key_len, uint16_t val_len, uint16_t reprobe_limit) :
    array(size, key_len, val_len, reprobe_limit), map()
  { }
};

typedef std::unique_ptr<arrays_type> arrays_ptr;
arrays_ptr fill_array(size_t nb_elts, size_t size, int key_len, int val_len, int reprobe_limit) {
  arrays_ptr arrays(new arrays_type(size, key_len, val_len, reprobe_limit));
  large_array& ary = arrays->array;
  mer_map&     map = arrays->map;

  mer_dna mer;
  for(size_t i = 0; i < nb_elts; ++i) {
    SCOPED_TRACE(::testing::Message() << "i:" << i);
    mer.randomize();
    map[mer] += i;
    // If get false, hash array filled up: double size
    bool res = ary.add(mer, i);
    if(!res) {
      const bool no_reprobe = ary.max_reprobe() == 0;
      arrays.reset();
      if(no_reprobe)
        return fill_array(nb_elts, size, key_len, val_len + 1, reprobe_limit);
      else
        return fill_array(nb_elts, 2 * size, key_len, val_len, reprobe_limit);
    }
  }
  return arrays;
}

TEST_P(HashArray, Iterator) {
  static const int nb_elts = 1 << (ary_lsize - 1 - (val_len == 1));
  SCOPED_TRACE(::testing::Message() << "key_len:" << key_len << " val_len:" << val_len << " reprobe:" << reprobe_limit);

  arrays_ptr   res = fill_array(nb_elts, ary_size, key_len, val_len, reprobe_limit);
  large_array& ary = res->array;
  mer_map &    map = res->map;

  eager_iterator it     = ary.iterator_all<eager_iterator>();
  lazy_iterator  lit    = ary.iterator_all<lazy_iterator>();
  stl_iterator   stl_it = ary.iterator_all<stl_iterator>();
  int count = 0;
  for( ; it.next(); ++stl_it) {
    ASSERT_TRUE(lit.next());
    ASSERT_NE(ary.end(), stl_it);
    mer_map::const_iterator mit = map.find(it.key());
    SCOPED_TRACE(::testing::Message() << "key:" << it.key());
    ASSERT_NE(map.end(), mit);
    EXPECT_EQ(mit->first, it.key());
    EXPECT_EQ(mit->second, it.val());
    EXPECT_EQ(mit->first, lit.key());
    EXPECT_EQ(mit->second, lit.val());
    EXPECT_EQ(mit->first, stl_it->first);
    EXPECT_EQ(mit->second, stl_it->second);
    EXPECT_EQ(it.id(), lit.id());
    EXPECT_EQ(it.id(), stl_it.id());
    ++count;
  }
  EXPECT_FALSE(lit.next());
  EXPECT_EQ(ary.end(), stl_it);
  EXPECT_EQ(map.size(), (size_t)count);

  count               = 0;
  const int nb_slices = 1;
  for(int i = 0; i < nb_slices; ++i) {
    SCOPED_TRACE(::testing::Message() << "slice:" << i << " nb_slices:" << nb_slices);
    region_iterator rit = ary.iterator_slice<region_iterator>(i, nb_slices);
    while(rit.next()) {
      ASSERT_GE(rit.oid(), rit.start());
      ASSERT_LT(rit.oid(), rit.end());
      mer_map::const_iterator mit = map.find(rit.key());
      ASSERT_NE(map.end(), mit);
      EXPECT_EQ(mit->first, rit.key());
      EXPECT_EQ(mit->second, rit.val());
      ++count;
    }
  }
  EXPECT_EQ(map.size(), (size_t)count);

  int i = 0;
  for(mer_map::const_iterator it = map.begin(); it != map.end(); ++it, ++i) {
    SCOPED_TRACE(::testing::Message() << "i:" << i << " key:" << it->first);
    uint64_t val;
    size_t   id;
    EXPECT_TRUE(ary.get_key_id(it->first, &id));
    ASSERT_TRUE(ary.get_val_for_key(it->first, &val));
    EXPECT_EQ(it->second, val);
  }
}

TEST_P(HashArray, LargeValue) {
  mer_dna mer;
  mer.randomize();
  ary.add(mer, numeric_limits<uint64_t>::max());

  uint64_t val = 0;
  ASSERT_TRUE(ary.get_val_for_key(mer, &val));
  ASSERT_EQ(numeric_limits<uint64_t>::max(), val);
}

INSTANTIATE_TEST_CASE_P(HashArrayTest, HashArray, ::testing::Combine(::testing::Range(4, 4 * 64, 2), // Key lengths
                                                                     ::testing::Range(1, 10),    // Val lengths
                                                                     ::testing::Range(6, 8)      // Reprobe lengths
                                                                     ));

TEST(Hash, Set) {
  static const int lsize = 16;
  static const int size = 1 << lsize;
  static const int nb_elts = 2 * size / 3;

  large_array ary(size, 100, 0, 126);
  mer_set     set;
  mer_dna::k(50);
  mer_dna     mer;

  for(int i = 0; i < nb_elts; ++i) {
    mer.randomize();
    bool   is_new;
    size_t id;
    ASSERT_TRUE(ary.set(mer, &is_new, &id));
    ASSERT_EQ(set.insert(mer).second, is_new);
  }

  mer_dna tmp_mer;
  for(mer_set::const_iterator it = set.begin(); it != set.end(); ++it) {
    SCOPED_TRACE(::testing::Message() << "key:" << *it);
    size_t   id;
    EXPECT_TRUE(ary.get_key_id(*it, &id, tmp_mer));
  }

  for(int i = 0; i < nb_elts; ++i) {
    mer.randomize();
    size_t id;
    EXPECT_EQ(set.find(mer) != set.end(), ary.get_key_id(mer, &id));
  }
}

TEST(Hash, Update) {
  static const int lsize = 16;
  static const int size = 1 << lsize;
  static const int nb_elts = 2 * size / 3;

  large_array ary(size, 100, 4, 126);
  mer_map     in_ary;
  mer_dna::k(50);
  mer_dna     mer;

  for(int i = 0; i < nb_elts; ++i) {
    mer.randomize();
    bool is_new;
    size_t id;
    ASSERT_TRUE(ary.set(mer, &is_new, &id));
    auto res = in_ary.insert(std::make_pair(mer, (uint64_t)0));
    ASSERT_EQ(res.second, is_new);
  }

  for(auto it = in_ary.begin(); it != in_ary.end(); ++it) {
    uint64_t val = random_bits(4);
    EXPECT_TRUE(ary.update_add(it->first, val));
    it->second = val;
  }

  for(int i = 0; i < nb_elts; ++i) {
    mer.randomize();
    uint64_t val = random_bits(4);
    auto it = in_ary.find(mer);
    if(it == in_ary.end()) {
      EXPECT_FALSE(ary.update_add(mer, val));
    } else {
      it->second += val;
      EXPECT_TRUE(ary.update_add(mer, val));
    }
  }

  lazy_iterator it = ary.iterator_all<lazy_iterator>();
  size_t count = 0;
  while(it.next()) {
    ASSERT_NE(in_ary.end(), in_ary.find(it.key()));
    EXPECT_EQ(in_ary[it.key()], it.val());
    ++count;
  }
  EXPECT_EQ(in_ary.size(), count);
}

TEST(Hash, Info) {
  for(int iteration = 0; iteration < 100; ++iteration) {
    size_t                  mem     = random_bits(48);
    uint16_t                key_len = random_bits(7) + 1;
    uint16_t                val_len = random_bits(4) + 1;
    large_array::usage_info info(key_len, val_len, 126);

    SCOPED_TRACE(::testing::Message() << "iteration:" << iteration << " mem:" << mem
                 << " key_len:" << key_len << " val_len:" << val_len);
    uint16_t size_bits = info.size_bits(mem);
    uint16_t size2_bits = info.size_bits_linear(mem);
    ASSERT_EQ(size2_bits, size_bits);
    ASSERT_LE(info.mem((size_t)1 << size_bits), mem);
    ASSERT_GT(info.mem((size_t)1 << (size_bits + 1)), mem);
  }
}
}