1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/*
* Copyright (c) International Business Machines Corp., 2000-2002
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <config.h>
#include "jfs_types.h"
#include "jfs_dmap.h"
#include "diskmap.h"
/*
* budtab[]
*
* used to determine the maximum free string in a character
* of a wmap word. the actual bit values of the character
* serve as the index into this array and the value of the
* array at that index is the max free string.
*
*/
static int8_t budtab[256] = {
3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
};
/*
* NAME: ujfs_maxbuddy
*
* FUNCTION: Determines the maximum string of free blocks within a word of the
* wmap or pmap consistent with binary buddy.
*
* PRE CONDITIONS:
*
* POST CONDITIONS:
*
* PARAMETERS:
* cp - Pointer to wmap or pmap word.
*
* NOTES:
*
* DATA STRUCTURES:
*
* RETURNS: Maximum string of free blocks within word.
*/
int8_t ujfs_maxbuddy(unsigned char *cp)
{
/*
* Check if the wmap or pmap word is all free. If so, the free buddy size is
* BUDMIN.
*/
if (*((uint32_t *) cp) == 0) {
return (BUDMIN);
}
/*
* Check if the wmap or pmap word is half free. If so, the free buddy size
* is BUDMIN-1.
*/
if (*((uint16_t *) cp) == 0 || *((uint16_t *) cp + 1) == 0) {
return (BUDMIN - 1);
}
/*
* Not all free or half free. Determine the free buddy size through table
* lookup using quarters of the wmap or pmap word.
*/
return (MAX(MAX(budtab[*cp], budtab[*(cp + 1)]),
MAX(budtab[*(cp + 2)], budtab[*(cp + 3)])));
}
/*
* NAME: ujfs_adjtree
*
* FUNCTION: Calculate the tree of a dmap or dmapctl.
*
* PRE CONDITIONS:
*
* POST CONDITIONS:
*
* PARAMETERS:
* cp - Pointer to the top of the tree
* l2leaves- Number of leaf nodes as a power of 2
* l2min - Number of disk blocks actually covered by a leaf of the tree;
* specified as a power of 2
*
* NOTES: This routine first works against the leaves of the tree to calculate
* the maximum free string for leaf buddys. Once this is accomplished the
* values of the leaf nodes are bubbled up the tree.
*
* DATA STRUCTURES:
*
* RETURNS:
*/
int8_t ujfs_adjtree(int8_t * treep, int32_t l2leaves, int32_t l2min)
{
int32_t nleaves, leaf_index, l2max, nextb, bsize, index;
int32_t l2free, leaf, num_this_level, nextp;
int8_t *cp0, *cp1, *cp = treep;
/*
* Determine the number of leaves of the tree and the
* index of the first leaf.
* Note: I don't know why the leaf_index calculation works, but it does.
*/
nleaves = (1 << l2leaves);
leaf_index = (nleaves - 1) / 3;
/*
* Determine the maximum free string possible for the leaves.
*/
l2max = l2min + l2leaves;
/*
* Try to combine buddies starting with a buddy size of 1 (i.e. two leaves).
* At a buddy size of 1 two buddy leaves can be combined if both buddies
* have a maximum free of l2min; the combination will result in the
* left-most buddy leaf having a maximum free of l2min+1. After processing
* all buddies for a certain size, process buddies at the next higher buddy
* size (i.e. current size * 2) and the next maximum free
* (current free + 1). This continues until the maximum possible buddy
* combination yields maximum free.
*/
for (l2free = l2min, bsize = 1; l2free < l2max; l2free++, bsize = nextb) {
nextb = bsize << 1;
for (cp0 = cp + leaf_index, index = 0; index < nleaves;
index += nextb, cp0 += nextb) {
if (*cp0 == l2free && *(cp0 + bsize) == l2free) {
*cp0 = l2free + 1;
*(cp0 + bsize) = -1;
}
}
}
/*
* With the leaves reflecting maximum free values bubble this information up
* the tree. Starting at the leaf node level, the four nodes described by
* the higher level parent node are compared for a maximum free and this
* maximum becomes the value of the parent node. All lower level nodes are
* processed in this fashion then we move up to the next level (parent
* becomes a lower level node) and continue the process for that level.
*/
for (leaf = leaf_index, num_this_level = nleaves >> 2; num_this_level > 0;
num_this_level >>= 2, leaf = nextp) {
nextp = (leaf - 1) >> 2;
/*
* Process all lower level nodes at this level setting the value of the
* parent node as the maximum of the four lower level nodes.
*/
for (cp0 = cp + leaf, cp1 = cp + nextp, index = 0;
index < num_this_level; index++, cp0 += 4, cp1++) {
*cp1 = TREEMAX(cp0);
}
}
return (*cp);
}
/*
* NAME: ujfs_complete_dmap
*
* FUNCTION: Fill in rest of dmap fields from wmap/pmap already initialized.
*
* PARAMETERS:
* dmap_page - dmap to complete
* blkno - starting block number for this dmap
* treemax - will be filled in with max free for this dmap
*
* RETURNS: NONE
*/
void ujfs_complete_dmap(struct dmap *dmap_page, int64_t blkno, int8_t *treemax)
{
struct dmaptree *tp;
int8_t *cp;
int32_t index;
dmap_page->start = blkno;
tp = &dmap_page->tree;
tp->height = 4;
tp->leafidx = LEAFIND;
tp->nleafs = LPERDMAP;
tp->l2nleafs = L2LPERDMAP;
tp->budmin = BUDMIN;
/*
* Pick up the pointer to the first leaf of the dmap tree.
*/
cp = tp->stree + tp->leafidx;
/*
* Set the initial state for the leaves of the dmap tree. They will reflect
* the current allocation state of the wmap words.
*/
for (index = 0; index < LPERDMAP; index++) {
*(cp + index) = ujfs_maxbuddy((unsigned char *) &dmap_page->wmap[index]);
}
/*
* With the leaves of the dmap initialized adjust (initialize) the dmap's
* tree.
*/
*treemax = ujfs_adjtree(tp->stree, L2LPERDMAP, BUDMIN);
}
/*
* NAME: ujfs_idmap_page
*
* FUNCTION: Initialize one dmap page
*
* POST CONDITIONS: Blocks which don't actually exist in the aggregate will be
* marked as allocated in the dmap page. The total number of blocks will
* only account for the actually existing blocks.
*
* PARAMETERS:
* map_page - pointer to page of map
* nblocks - number of blocks this page
*
* RETURNS: NONE
*/
void ujfs_idmap_page(struct dmap *map_page, uint32_t nblocks)
{
uint32_t index, nwords, bit;
map_page->nblocks = map_page->nfree = nblocks;
/*
* Partial dmap page?
* If there are not enough blocks to cover an entire dmap page the ones
* which represent blocks which don't exist will be marked as allocated.
*
* nwords will indicate the first word beyond the end of existing blocks
* bit will indicate if this block does not fall on a 32-bit boundary
*/
nwords = nblocks / DBWORD;
bit = nblocks % DBWORD;
if (bit) {
/*
* Need to mark a partial word allocated
*/
map_page->wmap[nwords] = map_page->pmap[nwords] = ONES >> bit;
nwords++;
}
/*
* Set the rest of the words in the page to ONES.
*/
for (index = nwords; index < LPERDMAP; index++) {
map_page->pmap[index] = map_page->wmap[index] = ONES;
}
}
/*
* NAME: ujfs_getagl2size
*
* FUNCTION: Determine log2(allocation group size) based on size of aggregate
*
* PARAMETERS:
* size - Number of blocks in aggregate
* aggr_block_size - Aggregate block size
*
* RETURNS: log2(allocation group size) in aggregate blocks
*/
int32_t ujfs_getagl2size(int64_t size, int32_t aggr_block_size)
{
int64_t sz;
int64_t m;
int32_t l2sz;
if (size < BPERDMAP * MAXAG) {
return (L2BPERDMAP);
}
m = ((uint64_t) 1 << (64 - 1));
for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
if (m & size) {
break;
}
}
sz = (int64_t) 1 << l2sz;
if (sz < size) {
l2sz += 1;
}
return (l2sz - L2MAXAG);
}
|