File: initmap.c

package info (click to toggle)
jfsutils 1.1.15-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 2,780 kB
  • sloc: ansic: 35,077; sh: 1,032; makefile: 82
file content (1281 lines) | stat: -rw-r--r-- 36,622 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
/*
 *   Copyright (C) International Business Machines Corp., 2000-2005
 *
 *   This program is free software;  you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
 *   the GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program;  if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */
#define _GNU_SOURCE	/* FOR O_DIRECT */
#include <config.h>
#include "jfs_types.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include "jfs_endian.h"
#include "jfs_filsys.h"
#include "jfs_dinode.h"
#include "devices.h"
#include "inodes.h"
#include "jfs_dmap.h"
#include "diskmap.h"
#include "inode.h"
#include "initmap.h"
#include "message.h"
#include "utilsubs.h"

extern unsigned type_jfs;

#define UZWORD  (0x80000000u)
#define DBBYTE          8	/* number of bits per byte */
#define L2DBBYTE        3	/* log2 of number of bits per byte */
#define CHAR_ONES       (0xffu)

static struct dmap **block_map_array;
static unsigned sz_block_map_array;
static unsigned cur_dmap_index;
static struct dbmap *control_page;
static int64_t last_allocated;
static struct dmap *empty_page;

struct xtree_buf {
	struct xtree_buf *down;	/* next rightmost child */
	struct xtree_buf *up;	/* parent */
	xtpage_t *page;
};

static struct xtree_buf *badblock_pages;

static int xtAppend(FILE *, struct dinode *, int64_t, int64_t, int,
		    struct xtree_buf *, int);

/*--------------------------------------------------------------------
 * NAME:        initdmap()
 *
 * FUNCTION:    Initialize a dmap for the specified block range
 *              (blkno thru blkno+nblocks-1).
 *
 * PARAMETERS:
 *      dev_ptr - device to write map page to
 *      blkno   - Starting disk block number to be covered by this dmap.
 *      nblocks - Number of blocks covered by this dmap.
 *      treemax - Return value set as maximum free string found in this dmap
 *      start   - Logical block address of where this dmap should live on disk.
 *
 * NOTES: The wmap and pmap words along the leaves of the dmap tree are
 *      initialized, with the leaves initialized to the maximum free string of
 *      the wmap word they describe.  With this complete ujfs_adjtree() is
 *      called to combine all appropriate buddies and update the higher level of
 *      the tree to reflect the result of the buddy combination.  The maximum
 *      free string of the dmap (i.e. the root value of the tree) is returned
 *      in treemax.
 *
 * RETURNS: NONE
 */
static int initdmap(FILE *dev_ptr, int64_t blkno, int64_t nblocks,
		    int8_t * treemax, int64_t start)
{
	int rc = 0;

	/*
	 * Determine if the dmap already exists
	 */
	if (block_map_array[cur_dmap_index] == NULL) {
		if (nblocks == BPERDMAP) {
			/*
			 * alloc/init a template empty full page buffer
			 */
			if (empty_page == NULL) {
				empty_page = malloc(sizeof (struct dmap));
				if (empty_page == NULL) {
					message_user(MSG_OSO_INSUFF_MEMORY,
						     NULL, 0, OSO_MSG);
					return (ENOMEM);
				}
				memset(empty_page, 0, sizeof (struct dmap));
				ujfs_idmap_page(empty_page, nblocks);
				ujfs_complete_dmap(empty_page, blkno, treemax);
			} else {
				/*
				 * customize/reuse the template empty page
				 */
				empty_page->start = blkno;
				*treemax = empty_page->tree.stree[0];
			}
			block_map_array[cur_dmap_index] = empty_page;
		} else {
			/*
			 * alloc/init a special dmap page with the correct size
			 */
			block_map_array[cur_dmap_index] =
			    malloc(sizeof (struct dmap));
			if (block_map_array[cur_dmap_index] == NULL) {
				message_user(MSG_OSO_INSUFF_MEMORY, NULL, 0,
					     OSO_MSG);
				return (ENOMEM);
			}
			memset(block_map_array[cur_dmap_index], 0,
			       sizeof (struct dmap));
			ujfs_idmap_page(block_map_array[cur_dmap_index],
					nblocks);
			ujfs_complete_dmap(block_map_array[cur_dmap_index],
					   blkno, treemax);
		}
	} else {
		/*
		 * Fill in rest of fields of special existing dmap page
		 */
		ujfs_complete_dmap(block_map_array[cur_dmap_index], blkno,
				   treemax);
	}

	/*
	 * Write the dmap page and free if special buffer
	 */

	/* swap if on big endian machine */
	ujfs_swap_dmap(block_map_array[cur_dmap_index]);
	rc = ujfs_rw_diskblocks(dev_ptr, start, PSIZE,
				block_map_array[cur_dmap_index], PUT);
	ujfs_swap_dmap(block_map_array[cur_dmap_index]);

	if (rc != 0)
		return rc;

	if (block_map_array[cur_dmap_index] != empty_page) {
		free(block_map_array[cur_dmap_index]);
	}

	cur_dmap_index++;

	return (rc);
}

/*--------------------------------------------------------------------
 * NAME:        initctl()
 *
 * FUNCTION:    Initialize a dmapctl for the specified block range
 *              (blkno thru blkno+nblocks-1) and
 *              level and initialize all dmapctls and dmaps under this dmapctl.
 *
 * PARAMETERS:
 *      dev_ptr - device to write page to
 *      blkno   - Starting disk block number to be covered by this dmapctl.
 *      nblocks - Number of blocks covered by this dmapctl.
 *      level   - The level of this dmapctl.
 *      treemax - Return value set as the maximum free string found in this
 *                dmapctl.
 *      start   - Logical block address of where this page should live on disk.
 *
 * NOTES: This routine is called recursively. On first invocation it is called
 *      for the top level dmapctl of the tree.  For each leaf of the dmapctl,
 *      the lower level dmap (level == 0) or dmapctl (level > 0) is created for
 *      the block range covered by the leaf and the leaf is set to the maximum
 *      free string found in the lower level object.  If the lower level object
 *      is a dmap, initdmap() is called to handle it's initialization.
 *      Otherwise, initctl() is called recursively to initialize the lower level
 *      dmapctl with the level specified as the current level - 1; once all
 *      leaves have been initialized ujfs_adjtree() is called to combine all
 *      appropriate buddies and update the higher level of the tree to reflect
 *      the result of the buddy combination.  The maximum free string of the
 *      dmapctl (i.e. the root value of the tree) is returned in treemax.
 *
 * RETURNS: None.
 */
static int initctl(FILE *dev_ptr,
		   int64_t blkno,
		   int64_t nblocks,
		   int level,
		   int8_t * treemax,
		   int64_t * start)
{
	int index, rc = 0, l2cblks, nchild;
	int8_t *cp, max;
	struct dmapctl *dcp;
	int64_t nb, cblks;
	int64_t next_page;

	/*
	 * alloc/init current level dmapctl page buffer
	 */
	dcp = malloc(sizeof (struct dmapctl));
	if (dcp == NULL) {
		message_user(MSG_OSO_INSUFF_MEMORY, NULL, 0, OSO_MSG);
		return (ENOMEM);
	}
	memset(dcp, 0, sizeof (struct dmapctl));

	dcp->height = 5;
	dcp->leafidx = CTLLEAFIND;
	dcp->nleafs = LPERCTL;
	dcp->l2nleafs = L2LPERCTL;
	dcp->budmin = L2BPERDMAP + level * L2LPERCTL;

	/* Pick up the pointer to the first leaf of the dmapctl tree */
	cp = dcp->stree + dcp->leafidx;

	/*
	 * Determine how many lower level dmapctls or dmaps will be described by
	 * this dmapctl based upon the number of blocks covered by this dmapctl.
	 */
	l2cblks = L2BPERDMAP + level * L2LPERCTL;
	cblks = (1LL << l2cblks);
	nchild = nblocks >> l2cblks;
	nchild = (nblocks & (cblks - 1)) ? nchild + 1 : nchild;
	next_page = *start + PSIZE;
	for (index = 0; index < nchild; index++, nblocks -= nb, blkno += nb) {
		/*
		 * Determine how many blocks the lower level dmapctl or dmap will cover.
		 */
		nb = MIN(cblks, nblocks);

		/*
		 * If this is a level 0 dmapctl, initialize the dmap for the
		 * block range (i.e. blkno thru blkno+nb-1).  Otherwise,
		 * initialize the lower level dmapctl for this block range.
		 * In either case, the pointer to the leaf covering this block
		 * range is passed down and will be set to the length of the
		 * maximum free string of blocks found at the lower level.
		 */
		if (level == 0) {
			rc += initdmap(dev_ptr, blkno, nb, cp + index, next_page);
			next_page += PSIZE;
		} else {
			rc += initctl(dev_ptr, blkno, nb, level - 1, cp + index,
				    &next_page);
		}
	}

	/*
	 * Initialize the leaves for this dmapctl that were not covered by the
	 * specified input block range (i.e. the leaves have no low level
	 * dmapctl or dmap.
	 */
	for (; index < LPERCTL; index++) {
		*(cp + index) = NOFREE;
	}

	/*
	 * With the leaves initialized, adjust the tree for this dmapctl.
	 */
	max = ujfs_adjtree(dcp->stree, L2LPERCTL, l2cblks);

	/*
	 * Write and release the dmapctl page
	 */

	/* swap if on big endian machine */
	ujfs_swap_dmapctl(dcp);

	rc += ujfs_rw_diskblocks(dev_ptr, *start, PSIZE, dcp, PUT);

	free(dcp);

	/*
	 * Set the treemax return value with the maximum free described by
	 * this dmapctl.
	 */
	*treemax = max;
	*start = next_page;

	return (rc);
}

/*--------------------------------------------------------------------
 * NAME:        initbmap()
 *
 * FUNCTION:    Initialize the disk block allocation map for an aggregate.
 *
 * PARAMETERS:
 *      dev_ptr - device to write page to
 *      nblocks - Number of blocks within the aggregate.
 *
 * NOTES: The bmap control page is created.  Next, the number dmapctl level
 *      required to described the aggregate size (number of blocks within the
 *      aggregate) is determined. initctl() is then called to initialize the
 *      appropriate dmapctl levels and corresponding dmaps.
 *
 * RETURNS:
 */
static int initbmap(FILE *dev_ptr, int64_t nblocks)
{
	int level, rc = 0;
	int64_t next_page;

	/*
	 * get the level for the actual top dmapctl for the aggregate and
	 * its physical address (N.B. map file has been allocated
	 * to cover full control level hierarchy);
	 */
	level = BMAPSZTOLEV(nblocks);
	next_page = BMAP_OFF + PSIZE + PSIZE * (2 - level);

	/*
	 * initialize only the dmapctls and the dmaps they describe
	 * that covers the actual aggregate size.
	 */
	rc = initctl(dev_ptr, 0, nblocks, level, &control_page->dn_maxfreebud,
		     &next_page);
	if (rc != 0)
		return (rc);

	/*
	 * Write the control page to disk.
	 */

	/* swap if on big endian machine */
	ujfs_swap_dbmap(control_page);
	rc = ujfs_rw_diskblocks(dev_ptr, BMAP_OFF, PSIZE, control_page, PUT);
	ujfs_swap_dbmap(control_page);

	return (rc);
}

/*--------------------------------------------------------------------
 * NAME:        alloc_map()
 *
 * FUNCTION:    Allocate and initialize to zero the memory for dmap pages
 *              and the control page of block map.
 *
 * PARAMETERS:
 *      num_dmaps       - Indicates number of dmaps to allocate
 *
 * DATA STRUCTURES: Initializes file static variable block_map
 *
 * RETURNS:     0 for success
 */
static int alloc_map(int num_dmaps)
{
	if (num_dmaps <= 0)
		return EINVAL;

	/* alloc/init dmap page pointer array */
	block_map_array = malloc(num_dmaps * sizeof (struct dmap *));
	if (block_map_array == NULL) {
		message_user(MSG_OSO_INSUFF_MEMORY, NULL, 0, OSO_MSG);
		return ENOMEM;
	}
	sz_block_map_array = num_dmaps;

	memset(block_map_array, 0, num_dmaps * sizeof (struct dmap *));

	/* alloc/init control page */
	control_page = malloc(sizeof (struct dbmap));
	if (control_page == NULL) {
		message_user(MSG_OSO_INSUFF_MEMORY, NULL, 0, OSO_MSG);
		return ENOMEM;
	}

	memset(control_page, 0, sizeof (struct dbmap));

	return 0;
}

/*--------------------------------------------------------------------
 * NAME:        initmap()
 *
 * FUNCTION:    Initialize control page
 *
 * PARAMETERS:
 *      nblocks - Number of blocks covered by this map
 *      ag_size - Will be filled in with AG size in blocks
 *      aggr_block_size         - Aggregate block size
 *
 * RETURNS: NONE
 */
static void initmap(int64_t nblocks, int *ag_size, int aggr_block_size)
{
	int index, l2nl, n;
	int64_t nb;

	/*
	 * Initialize base information
	 */
	control_page->dn_l2nbperpage = log2shift(PSIZE / aggr_block_size);
	control_page->dn_mapsize = control_page->dn_nfree = nblocks;
	control_page->dn_maxlevel = BMAPSZTOLEV(nblocks);
	/* control_page->dn_maxfreebud is computed at finalization */

	/*
	 * Initialize allocation group information.
	 */
	control_page->dn_agl2size = ujfs_getagl2size(nblocks, aggr_block_size);
	*ag_size = control_page->dn_agsize =
	    (int64_t) 1 << control_page->dn_agl2size;
	control_page->dn_numag = nblocks / control_page->dn_agsize;
	control_page->dn_numag += (nblocks % control_page->dn_agsize) ? 1 : 0;

	for (index = 0, nb = nblocks; index < control_page->dn_numag;
	     index++, nb -= *ag_size) {
		control_page->dn_agfree[index] = MIN(nb, *ag_size);
	}

	control_page->dn_aglevel = BMAPSZTOLEV(control_page->dn_agsize);
	l2nl =
	    control_page->dn_agl2size - (L2BPERDMAP +
					 control_page->dn_aglevel * L2LPERCTL);
	control_page->dn_agheigth = l2nl >> 1;
	control_page->dn_agwidth =
	    1 << (l2nl - (control_page->dn_agheigth << 1));
	for (index = 5 - control_page->dn_agheigth, control_page->dn_agstart =
	     0, n = 1; index > 0; index--) {
		control_page->dn_agstart += n;
		n <<= 2;
	}

	/* control_page->dn_maxag is computed at finalization */

	control_page->dn_agpref = 0;
}

/*--------------------------------------------------------------------
 * NAME:        calc_map_size()
 *
 * FUNCTION:    Calculates the size of a block map and
 *              initializes memory for dmap pages of map.
 *              Later when we are ready to write the map to disk
 *              we will initialize the rest of the map pages.
 *
 *              N.B. map file is ALLOCATED as a single extent
 *              of physical pages covering full control level (L2)
 *              tree control pages for the dmap pages required:
 *              the tree will be INITIALIZED to cover only the
 *              the dmap pages required;
 *
 * PARAMETERS:
 *      number_of_blocks        - Number of blocks in aggregate
 *      aggr_inodes             - Array of aggregate inodes
 *      aggr_block_size         - Aggregate block size
 *      ag_size                 - Will be filled in with AG size in blocks
 *      inostamp                - Inode stamp value to be used.
 *
 * RETURNS:     0 for success
 */
int calc_map_size(int64_t number_of_blocks,
		  struct dinode *aggr_inodes,
		  int aggr_block_size, int *ag_size, unsigned inostamp)
{
	int rc = 0;
	int64_t npages, ndmaps, nl0pages;
	int64_t nb_diskmap;
	int64_t size_of_map;
	int64_t location;

	/*
	 * compute the number dmap pages required to cover number_of_blocks;
	 * add one extra dmap page for extendfs(): this is added before
	 * we figure out how many control pages are needed, so we get
	 * the correct number of control pages.
	 */
	npages = ndmaps = ((number_of_blocks + BPERDMAP - 1) >> L2BPERDMAP) + 1;

	/*
	 * Make sure the number of dmaps needed is within the supported range
	 */
	if ((((int64_t) ndmaps) << L2BPERDMAP) > MAXMAPSIZE)
		return (EINVAL);

	/*
	 * compute number of (logical) control pages at each level of the map
	 */
	/* account for L0 pages to cover dmap pages */
	nl0pages = (ndmaps + LPERCTL - 1) >> L2LPERCTL;
	npages += nl0pages;

	if (nl0pages > 1) {
		/* account for one L2 and actual L1 pages to cover L0 pages */
		npages += 1 + ((nl0pages + LPERCTL - 1) >> L2LPERCTL);
	} else {
		/* account for one logical L2 and one logical L1 pages */
		npages += 2;
	}

	/* account for global control page of map */
	npages++;

	/*
	 * init the block allocation map inode
	 */
	size_of_map = npages << L2PSIZE;
	nb_diskmap = size_of_map / aggr_block_size;
	location = BMAP_OFF / aggr_block_size;

	init_inode(&(aggr_inodes[BMAP_I]), AGGREGATE_I,	/* di_fileset */
		   BMAP_I,	/* di_number */
		   nb_diskmap,	/* di_nblocks */
		   size_of_map,	/* di_size */
		   location, IFJOURNAL | IFREG,	/* di_mode */
		   max_extent_data, AITBL_OFF / aggr_block_size,
		   aggr_block_size, inostamp);

	/*
	 *  Allocate dmap pages and initialize them for the aggregate blocks
	 */
	if ((rc = alloc_map(ndmaps)) != 0)
		return rc;
	initmap(number_of_blocks, ag_size, aggr_block_size);

	/*
	 * reset last_allocated to ignore the fsck working space
	 */
	last_allocated = 0;

	return 0;
}

/*--------------------------------------------------------------------
 * NAME:        markit()
 *
 * FUNCTION:    Mark specified block allocated/unallocated in block map
 *
 * PARAMETERS:
 *      block   - Map object to set or clear
 *      flag    - Indicates ALLOCATE or FREE of block.  Indicates if block is
 *                bad.
 *
 * RETURNS: NONE
 */
int markit(int64_t block, unsigned flag)
{
	int page, rem, word, bit;
	struct dmap *p1;
	int agno;
	int64_t num_blocks_left, nb;

	/*
	 * Keep track of the last allocated block to be filled into block map
	 * inode.  Don't update last allocated for bad blocks.
	 */
	if (block > last_allocated && !(flag & BADBLOCK)) {
		last_allocated = block;
	}

	/*
	 *  calculate page number in map, and word and bit number in word.
	 */
	page = block / BPERDMAP;
	rem = block - page * BPERDMAP;
	word = rem >> L2DBWORD;
	bit = rem - (word << L2DBWORD);

	if (page > sz_block_map_array) {
		fprintf(stderr,
			"Internal error: %s(%d): Trying to mark block which doesn't exist.\n",
			__FILE__, __LINE__);
		return (-1);
	}

	/*
	 * Determine if this dmap page has been allocated yet
	 */
	if (block_map_array[page] == NULL) {
		num_blocks_left = control_page->dn_mapsize - (page * BPERDMAP);
		nb = MIN(BPERDMAP, num_blocks_left);
		block_map_array[page] = malloc(sizeof (struct dmap));
		if (block_map_array[page] == NULL) {
			message_user(MSG_OSO_INSUFF_MEMORY, NULL, 0, OSO_MSG);
			return (ENOMEM);
		}
		memset(block_map_array[page], 0, sizeof (struct dmap));
		ujfs_idmap_page(block_map_array[page], nb);
	}

	p1 = block_map_array[page];

	agno = block >> control_page->dn_agl2size;

	/*
	 *  now we process the first word.
	 */
	if (flag & ALLOC) {
		p1->pmap[word] |= (UZWORD >> bit);
		p1->wmap[word] |= (UZWORD >> bit);

		/*
		 * Update the stats
		 */
		p1->nfree--;
		control_page->dn_nfree--;
		control_page->dn_agfree[agno]--;
	} else {
		p1->pmap[word] &= ~(UZWORD >> bit);
		p1->wmap[word] &= ~(UZWORD >> bit);

		/*
		 * Update the stats
		 */
		p1->nfree++;
		control_page->dn_nfree++;
		control_page->dn_agfree[agno]++;
	}
	return (0);
}

/*--------------------------------------------------------------------
 * NAME:        write_block_map()
 *
 * FUNCTION:    Update tree part of block map to match rest of map and
 *              then write the block map to disk.
 *              Also write the block map inode to disk.
 *
 * PARAMETERS:
 *      dev_ptr         - open port of device to write map to
 *      size_of_map     - size of map
 *      aggr_block_size - size of an aggregate block in bytes
 *
 * RETURNS: 0 for success
 */
int write_block_map(FILE *dev_ptr, int64_t number_of_blocks, int aggr_block_size)
{
	int rc = 0;

	/*
	 * At this point all of the dmaps have been initialized except for their
	 * trees.  Now we need to build the other levels of the map and adjust
	 * the tree for each of the dmaps.
	 */
	cur_dmap_index = 0;
	control_page->dn_maxag = last_allocated / control_page->dn_agsize;
	rc = initbmap(dev_ptr, number_of_blocks);

	return rc;
}

/*--------------------------------------------------------------------
 * NAME: dbAlloc
 *
 * FUNCTION: Allocate the specified number of blocks
 *
 * PARAMETERS:
 *      xlen    - Number of blocks to allocate
 *      xaddr   - On return, filled in with starting block number of allocated
 *                blocks
 *
 * NOTES:
 *	This function is only called when adding blocks to the Bad Block Inode
 *	required a page for an xtree node.  LVM Bad Block processing must
 *	be in effect during this allocation.  This will not be the case if format
 *	is processing /L.  So, at entry to this routine, we check to see whether
 *	the LVM Bad Block processing is enabled and, if not, we enable it.
 *	At exit from this routine the LVM Bad Block processing will be as it
 *	was (i.e., enabled or disabled) on entry.
 *
 * RETURNS: 0 for success; Other indicates failure
 */
static int dbAlloc(FILE *dev_ptr, int64_t xlen, int64_t * xaddr)
{
	int rc = 0;
	int page, word;
	struct dmap *p1;
	int64_t last_block, index;
	unsigned mask, cmap;
	int bitno;
	int l2nb;
	int8_t leafw;

	/*
	 * Start looking at last block allocated for a contiguous extent of xlen
	 * blocks.  Since we may have bad blocks intermixed we can't just
	 * take blocks starting at the last block allocated.  However,
	 * last_allocated won't be updated with bad blocks, so it will be the
	 * start of the real last place to start looking.  Once found, mark them
	 * allocated and return the starting address in xaddr
	 */
	l2nb = log2shift(xlen);

	for (page = last_allocated / BPERDMAP,
	     word = (last_allocated & (BPERDMAP - 1)) >> L2DBWORD;
	     page < sz_block_map_array; page++, word = 0) {
		/*
		 * Determine if this dmap page has been allocated yet; if not we
		 * can take the first blocks from it for our allocation since we
		 * know all the blocks in it are free.  (markit will handle
		 * allocating the page for us, so we don't have to do that here.)
		 */
		if (block_map_array[page] == NULL) {
			*xaddr = page << L2BPERDMAP;
			last_block = *xaddr + xlen;
			for (index = *xaddr;
			     ((index < last_block) && (rc == 0)); index++) {
				rc = markit(index, ALLOC);
			}
			if (rc != 0) {
				return rc;
			}
			return 0;
		}

		/*
		 * We have a dmap page which has had allocations before, we need
		 * to check for free blocks starting with <word> to the end of
		 * this dmap page.  If we don't find it in this page we will go
		 * on to the next page.
		 */
		p1 = block_map_array[page];

		for (; word < LPERDMAP; word++) {
			/*
			 * Determine if the leaf describes sufficient free space.
			 * Since we have not yet completed the block map
			 * initialization we will have to compute this on the-fly.
			 */
			leafw = ujfs_maxbuddy((char *) &p1->wmap[word]);
			if (leafw < l2nb)
				continue;

			/*
			 * We know this word has sufficient free space, find it
			 * and allocate it
			 */
			*xaddr = (page << L2BPERDMAP) + (word << L2DBWORD);

			if (leafw < BUDMIN) {
				mask = ONES << (DBWORD - xlen);
				cmap = ~(p1->wmap[word]);

				/* scan the word for xlen free bits */
				for (bitno = 0; mask != 0; bitno++, mask >>= 1) {
					if ((mask & cmap) == mask)
						break;
				}

				*xaddr += bitno;
			}

			/* Allocate the blocks */
			last_block = *xaddr + xlen;
			for (index = *xaddr;
			     ((index < last_block) && (rc == 0)); index++) {
				rc = markit(index, ALLOC);
			}
			if (rc != 0) {
				return (rc);
			}
			return 0;
		}
	}
	return 1;
}

/*--------------------------------------------------------------------
 * NAME: xtSplitRoot
 *
 * FUNCTION: Split full root of xtree
 *
 * PARAMETERS:
 *      dev_ptr - Device handle
 *      ip      - Inode of xtree
 *      xroot   - Root of xtree
 *      offset  - Offset of extent to add
 *      nblocks - number of blocks for extent to add
 *      blkno   - starting block of extent to add
 *
 * RETURNS: 0 for success; Other indicates failure
 */
static int xtSplitRoot(FILE *dev_ptr,
		       struct dinode *ip,
		       struct xtree_buf *xroot,
		       int64_t offset, int nblocks, int64_t blkno)
{
	xtpage_t *rootpage;
	xtpage_t *newpage;
	int64_t xaddr;
	int nextindex;
	xad_t *xad;
	int rc = 0;
	struct xtree_buf *newbuf;
	int xlen;

	/* Allocate and initialize buffer for new page to accomodate the split */
	newbuf = malloc(sizeof (struct xtree_buf));
	if (newbuf == NULL) {
		message_user(MSG_OSO_INSUFF_MEMORY, NULL, 0, OSO_MSG);
		return (ENOMEM);
	}
	newbuf->up = xroot;
	if (xroot->down == NULL) {
		badblock_pages = newbuf;
	} else {
		xroot->down->up = newbuf;
	}
	newbuf->down = xroot->down;
	xroot->down = newbuf;
	newpage = newbuf->page = malloc(PSIZE);
	if (newpage == NULL) {
		message_user(MSG_OSO_INSUFF_MEMORY, NULL, 0, OSO_MSG);
		return (ENOMEM);
	}

	/* Allocate disk blocks for new page */
	xlen = 1 << control_page->dn_l2nbperpage;
	if ((rc = dbAlloc(dev_ptr, xlen, &xaddr)))
		return rc;

	rootpage = xroot->page;

	/* Initialize new page */
	newpage->header.flag =
	    (rootpage->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
	PXDlength(&(newpage->header.self), xlen);
	PXDaddress(&(newpage->header.self), xaddr);
	newpage->header.nextindex = XTENTRYSTART;
	newpage->header.maxentry = PSIZE >> L2XTSLOTSIZE;

	/* initialize sibling pointers */
	newpage->header.next = 0;
	newpage->header.prev = 0;

	/* copy the in-line root page into new right page extent */
	nextindex = rootpage->header.maxentry;
	memcpy(&newpage->xad[XTENTRYSTART], &rootpage->xad[XTENTRYSTART],
	       (nextindex - XTENTRYSTART) << L2XTSLOTSIZE);

	/* insert the new entry into the new right/child page */
	xad = &newpage->xad[nextindex];
	XADoffset(xad, offset);
	XADlength(xad, nblocks);
	XADaddress(xad, blkno);

	/* update page header */
	newpage->header.nextindex = nextindex + 1;

	/* init root with the single entry for the new right page */
	xad = &rootpage->xad[XTENTRYSTART];
	XADoffset(xad, 0);
	XADlength(xad, xlen);
	XADaddress(xad, xaddr);

	/* update page header of root */
	rootpage->header.flag &= ~BT_LEAF;
	rootpage->header.flag |= BT_INTERNAL;

	rootpage->header.nextindex = XTENTRYSTART + 1;

	/* Update nblocks for inode to account for new page */
	ip->di_nblocks += xlen;

	return 0;
}

/*--------------------------------------------------------------------
 * NAME: xtSplitPage
 *
 * FUNCTION: Split non-root page of xtree
 *
 * PARAMETERS:
 *      ip      - Inode of xtree splitting
 *      xpage   - page to split
 *      offset  - offset of new extent to add
 *      nblocks - number of blocks of new extent to add
 *      blkno   - starting block number of new extent to add
 *      dev_ptr - Device handle
 *      aggr_block_size - aggregate block size
 *
 * RETURNS: 0 for success; Other indicates failure
 */
static int xtSplitPage(struct dinode *ip,
		       struct xtree_buf *xpage,
		       int64_t offset,
		       int nblocks,
		       int64_t blkno, FILE *dev_ptr, int aggr_block_size)
{
	int rc = 0;
	int64_t xaddr;		/* new right page block number */
	xad_t *xad;
	int xlen;
	xtpage_t *lastpage, *newpage;
	int64_t leftbn;

	/* Allocate disk space for the new xtree page */
	xlen = 1 << control_page->dn_l2nbperpage;
	if ((rc = dbAlloc(dev_ptr, xlen, &xaddr)))
		return rc;

	/*
	 * Modify xpage's next entry to point to the new disk space,
	 * write the xpage to disk since we won't be needing it anymore.
	 */
	lastpage = xpage->page;
	lastpage->header.next = xaddr;

	leftbn = addressPXD(&(lastpage->header.self));

	/* swap if on big endian machine */
	ujfs_swap_xtpage_t(lastpage);
	rc = ujfs_rw_diskblocks(dev_ptr, leftbn * aggr_block_size, PSIZE,
				lastpage, PUT);
	ujfs_swap_xtpage_t(lastpage);

	if (rc != 0)
		return rc;

	/*
	 * We are now done with the xpage as-is.  We can now re-use this buffer
	 * for our new buffer.
	 */
	newpage = xpage->page;

	PXDlength(&(newpage->header.self), xlen);
	PXDaddress(&(newpage->header.self), xaddr);
	newpage->header.flag = newpage->header.flag & BT_TYPE;

	/* initialize sibling pointers of newpage */
	newpage->header.next = 0;
	newpage->header.prev = leftbn;

	/* insert entry at the first entry of the new right page */
	xad = &newpage->xad[XTENTRYSTART];
	XADoffset(xad, offset);
	XADlength(xad, nblocks);
	XADaddress(xad, blkno);

	newpage->header.nextindex = XTENTRYSTART + 1;

	/* Now append new page to parent page */
	rc = xtAppend(dev_ptr, ip, offset, xaddr, xlen, xpage->up,
		      aggr_block_size);

	/* Update inode to account for new page */
	ip->di_nblocks += xlen;

	return rc;
}

/*--------------------------------------------------------------------
 * NAME: xtAppend
 *
 * FUNCTION: Append an extent to the specified file
 *
 * PARAMETERS:
 *      dev_ptr - Device handle
 *      di      - Inode to add extent to
 *      offset  - offset of extent to add
 *      blkno   - block number of start of extent to add
 *      nblocks - number of blocks in extent to add
 *      xpage   - xtree page to add extent to
 *      aggr_block_size - aggregate block size in bytes
 *
 * NOTES: xpage points to its parent in the xtree and its rightmost child (if it
 *      has one).  It also points to the buffer for the page.
 *
 * RETURNS: 0 for success; Other indicates failure
 */
static int xtAppend(FILE *dev_ptr,
		    struct dinode *di,
		    int64_t offset,
		    int64_t blkno,
		    int nblocks, struct xtree_buf *xpage, int aggr_block_size)
{
	int rc = 0;
	int index;
	xad_t *xad;
	xtpage_t *cur_page;

	cur_page = xpage->page;
	index = cur_page->header.nextindex;

	/* insert entry for new extent */
	if (index == cur_page->header.maxentry) {
		/*
		 * There is not room in this page to add the entry; Need to
		 * create a new page
		 */
		if (cur_page->header.flag & BT_ROOT) {
			/* This is the root of the xtree; need to split root */
			rc = xtSplitRoot(dev_ptr, di, xpage, offset, nblocks,
					 blkno);
		} else {
			/*
			 * Non-root page: add new page at this level, xtSplitPage()
			 * calls xtAppend again to propogate up the new page entry
			 */
			rc = xtSplitPage(di, xpage, offset, nblocks, blkno,
					 dev_ptr, aggr_block_size);
		}
	} else {
		/* There is room to add the entry to this page */
		xad = &cur_page->xad[index];
		XADoffset(xad, offset);
		XADlength(xad, nblocks);
		XADaddress(xad, blkno);

		/* advance next available entry index */
		++cur_page->header.nextindex;

		rc = 0;
	}

	return rc;
}

/*--------------------------------------------------------------------
 * NAME: add_bad_block
 *
 * FUNCTION: Add an extent of <thisblk> to the <bb_inode> inode
 *
 * PRE CONDITIONS: badblock_pages has been initialized
 *
 * PARAMETERS:
 *      dev_ptr - Device handle
 *      thisblk - block number of bad block to add
 *      aggr_block_size - Size of an aggregate block
 *      bb_inode        - Inode to add bad block to
 *
 * RETURNS: 0 for success; Other indicates failure
 */
static int add_bad_block(FILE *dev_ptr, int64_t thisblk, int aggr_block_size,
			 struct dinode *bb_inode)
{
	int rc = 0;

	/* Mark block allocated in map */
	rc = markit(thisblk, ALLOC | BADBLOCK);
	if (rc != 0) {
		return (rc);
	}
	/* Add to inode: add an extent for this block to the inode's tree */
	rc = xtAppend(dev_ptr, bb_inode, bb_inode->di_size / aggr_block_size,
		      thisblk, 1, badblock_pages, aggr_block_size);

	if (!rc) {		/* append was successful */
		bb_inode->di_size += aggr_block_size;
		bb_inode->di_nblocks++;
	}

	return rc;
}

/*--------------------------------------------------------------------
 * NAME: verify_last_blocks
 *
 * FUNCTION: Verify blocks in aggregate not initialized
 *
 * PARAMETERS:
 *      dev_ptr - Device handle
 *      aggr_block_size - aggregate block size in bytes
 *      bb_inode        - Inode for bad blocks
 *
 * NOTES: Any bad blocks found will be added to the bad block inode
 *
 * RETURNS: 0 for success; Other indicates failure
 */
#define L2MEGABYTE      20
#define MEGABYTE        (1 << L2MEGABYTE)

/* Define a parameter array for messages */
#define MAXPARMS        1
#define MAXSTR          128
static char *msg_parms[MAXPARMS];
static char msgstr[MAXSTR];

int verify_last_blocks(FILE *dev_ptr, int aggr_block_size,
		       struct dinode *bb_inode)
{
	int rc = 0;
	int error;
	void *buffer = NULL;
	int bufsize = PSIZE << 5;
	int nbufblks;
	int64_t nblocks, nb;
	int64_t blkno, thisblk;
	int percent, section, index;
	bool write_inode = false;
	struct xtree_buf *curpage;
	long flags;

	if (badblock_pages == NULL) {
		/*
		 * Initialize list of xtree append buffers
		 */
		badblock_pages = malloc(sizeof (struct xtree_buf));
		if (badblock_pages == NULL) {
			message_user(MSG_OSO_INSUFF_MEMORY, NULL, 0, OSO_MSG);
			return (ENOMEM);
		}
		badblock_pages->down = badblock_pages->up = NULL;
		badblock_pages->page = (xtpage_t *) & bb_inode->di_btroot;
	}

	/* Allocate and clear a buffer */
	while ((bufsize >= aggr_block_size) &&
#ifdef HAVE_POSIX_MEMALIGN
	       posix_memalign(&buffer, aggr_block_size, bufsize))
#else
#ifdef HAVE_MEMALIGN
			(buffer = memalign(aggr_block_size, bufsize)) == NULL)
#else
			(buffer = valloc(bufsize)) == NULL)
#endif
#endif
		bufsize >>= 1;

	if (buffer == NULL) {
		message_user(MSG_OSO_INSUFF_MEMORY, NULL, 0, OSO_MSG);
		return (ENOMEM);
	}
	memset(buffer, 0, bufsize);
	nbufblks = bufsize / aggr_block_size;

#ifdef O_DIRECT
	/*
	 * Must do direct-io to avoid the page cache
	 */
	flags = fcntl(fileno(dev_ptr), F_GETFL);
	fcntl(fileno(dev_ptr), F_SETFL, flags | O_DIRECT);
#endif

	/*
	 * Starting from the last allocated block to the end of the aggregate
	 * write the empty buffer to disk.
	 */
	blkno = last_allocated + 1;
	nblocks = control_page->dn_mapsize - blkno;
	section =
	    MAX(control_page->dn_mapsize >> 7, MEGABYTE / aggr_block_size);
	for (index = section; nblocks > 0; index += nb) {
		if (index > section) {
			percent = blkno * 100 / control_page->dn_mapsize;
			sprintf(msgstr, "%d", percent);
			msg_parms[0] = msgstr;
			message_user(MSG_OSO_PERCENT_FORMAT, msg_parms, 1,
				     OSO_MSG);
			fprintf(stdout, "\r");
			fflush(stdout);
			index = 0;
		}
		nb = MIN(nblocks, nbufblks);
		error = ujfs_rw_diskblocks(dev_ptr, blkno * aggr_block_size,
					   nb * aggr_block_size, buffer, PUT);
		/*
		 * most devices don't report an error on write, so we have to
		 * verify explicitly to be sure.
		 */
		if (error == 0) {
			error =
			    ujfs_rw_diskblocks(dev_ptr, blkno * aggr_block_size,
					       nb * aggr_block_size, buffer,
					       GET);
		}

		if (error != 0) {
			/*
			 * At least one of the blocks we just tried to write was
			 * bad.  To narrow down the problem, we will write each
			 * block individually and add any bad ones to our bad
			 * block inode.
			 */
			for (thisblk = blkno; thisblk < blkno + nb; thisblk++) {
				error =
				    ujfs_rw_diskblocks(dev_ptr,
						       thisblk *
						       aggr_block_size,
						       aggr_block_size, buffer,
						       PUT);

				/*
				 * most devices don't report an error on write,
				 * so we have to verify explicitly to be sure.
				 */
				if (error == 0) {
					error =
					    ujfs_rw_diskblocks(dev_ptr,
							       thisblk *
							       aggr_block_size,
							       aggr_block_size,
							       buffer, GET);
				}

				if (error != 0) {
					/* add_bad_block may do unaligned I/O */
#ifdef O_DIRECT
					fcntl(fileno(dev_ptr), F_SETFL, flags);
#endif

					/* Add this block to bad list */
					if ((rc =
					     add_bad_block(dev_ptr, thisblk,
							   aggr_block_size,
							   bb_inode)))
						continue;
					write_inode = true;
#ifdef O_DIRECT
					fcntl(fileno(dev_ptr), F_SETFL,
					      flags | O_DIRECT);
#endif

					/*
					 * In case we allocated blocks for our
					 * addressing structure after our current
					 * bad block, we need to move our block
					 * number up so we don't overwrite any
					 * changes we have just done.
					 */
					thisblk = MAX(last_allocated, thisblk);
				}
			}

			/*
			 * In case we allocated blocks for the bad block map
			 * inode's addressing structure, skip past them so we
			 * don't wipe out our work.
			 */
			blkno += nb;
			if (blkno != thisblk) {
				blkno = thisblk;
				nblocks = control_page->dn_mapsize - blkno;
			} else {
				nblocks -= nb;
			}
		} else {
			blkno += nb;
			nblocks -= nb;
		}
	}
#ifdef O_DIRECT
	fcntl(fileno(dev_ptr), F_SETFL, flags);
#endif
	msg_parms[0] = "100";
	message_user(MSG_OSO_PERCENT_FORMAT, msg_parms, 1, OSO_MSG);
	fprintf(stdout, "\n");

	free(buffer);

	if (write_inode == true) {
		/* We added bad blocks, flush pages to disk */
		curpage = badblock_pages;

		while (!(curpage->page->header.flag & BT_ROOT)) {
			blkno = addressPXD(&(curpage->page->header.self));

			/* swap if on big endian machine */
			ujfs_swap_xtpage_t(curpage->page);
			rc = ujfs_rw_diskblocks(dev_ptr,
						blkno * aggr_block_size, PSIZE,
						curpage->page, PUT);
			ujfs_swap_xtpage_t(curpage->page);

			if (rc != 0)
				return rc;

			curpage = curpage->up;
		}

		/* Write the bad block inode itself */
		rc = ujfs_rwinode(dev_ptr, bb_inode, BADBLOCK_I, PUT,
				  aggr_block_size, AGGREGATE_I, type_jfs);
	}
	return rc;
}