1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
#include <string.h>
#include <jim.h>
/* Provides the [pack] and [unpack] commands to pack and unpack
* a binary string to/from arbitrary width integers and strings.
*
* This may be used to implement the [binary] command.
*/
/**
* Big endian bit test.
*
* Considers 'bitvect' as a big endian bit stream and returns
* bit 'b' as zero or non-zero.
*/
static int JimTestBitBigEndian(const unsigned char *bitvec, int b)
{
div_t pos = div(b, 8);
return bitvec[pos.quot] & (1 << (7 - pos.rem));
}
/**
* Little endian bit test.
*
* Considers 'bitvect' as a little endian bit stream and returns
* bit 'b' as zero or non-zero.
*/
static int JimTestBitLittleEndian(const unsigned char *bitvec, int b)
{
div_t pos = div(b, 8);
return bitvec[pos.quot] & (1 << pos.rem);
}
/**
* Sign extends the given value, 'n' of width 'width' bits.
*
* For example, sign extending 0x80 with a width of 8, produces -128
*/
static jim_wide JimSignExtend(jim_wide n, int width)
{
if (width == sizeof(jim_wide) * 8) {
/* Can't sign extend the maximum size integer */
return n;
}
if (n & ((jim_wide)1 << (width - 1))) {
/* Need to extend */
n -= ((jim_wide)1 << width);
}
return n;
}
/**
* Big endian integer extraction.
*
* Considers 'bitvect' as a big endian bit stream.
* Returns an integer of the given width (in bits)
* starting at the given position (in bits).
*
* The pos/width must represent bits inside bitvec,
* and the width be no more than the width of jim_wide.
*/
static jim_wide JimBitIntBigEndian(const unsigned char *bitvec, int pos, int width)
{
jim_wide result = 0;
int i;
/* Aligned, byte extraction */
if (pos % 8 == 0 && width % 8 == 0) {
for (i = 0; i < width; i += 8) {
result = (result << 8) + bitvec[(pos + i) / 8];
}
return result;
}
/* Unaligned */
for (i = 0; i < width; i++) {
if (JimTestBitBigEndian(bitvec, pos + width - i - 1)) {
result |= ((jim_wide)1 << i);
}
}
return result;
}
/**
* Little endian integer extraction.
*
* Like JimBitIntBigEndian() but considers 'bitvect' as a little endian bit stream.
*/
static jim_wide JimBitIntLittleEndian(const unsigned char *bitvec, int pos, int width)
{
jim_wide result = 0;
int i;
/* Aligned, byte extraction */
if (pos % 8 == 0 && width % 8 == 0) {
for (i = 0; i < width; i += 8) {
result += (jim_wide)bitvec[(pos + i) / 8] << i;
}
return result;
}
/* Unaligned */
for (i = 0; i < width; i++) {
if (JimTestBitLittleEndian(bitvec, pos + i)) {
result |= ((jim_wide)1 << i);
}
}
return result;
}
/**
* Big endian bit set.
*
* Considers 'bitvect' as a big endian bit stream and sets
* bit 'b' to 'bit'
*/
static void JimSetBitBigEndian(unsigned char *bitvec, int b, int bit)
{
div_t pos = div(b, 8);
if (bit) {
bitvec[pos.quot] |= (1 << (7 - pos.rem));
}
else {
bitvec[pos.quot] &= ~(1 << (7 - pos.rem));
}
}
/**
* Little endian bit set.
*
* Considers 'bitvect' as a little endian bit stream and sets
* bit 'b' to 'bit'
*/
static void JimSetBitLittleEndian(unsigned char *bitvec, int b, int bit)
{
div_t pos = div(b, 8);
if (bit) {
bitvec[pos.quot] |= (1 << pos.rem);
}
else {
bitvec[pos.quot] &= ~(1 << pos.rem);
}
}
/**
* Big endian integer packing.
*
* Considers 'bitvect' as a big endian bit stream.
* Packs integer 'value' of the given width (in bits)
* starting at the given position (in bits).
*
* The pos/width must represent bits inside bitvec,
* and the width be no more than the width of jim_wide.
*/
static void JimSetBitsIntBigEndian(unsigned char *bitvec, jim_wide value, int pos, int width)
{
int i;
/* Common fast option */
if (pos % 8 == 0 && width == 8) {
bitvec[pos / 8] = value;
return;
}
for (i = 0; i < width; i++) {
int bit = !!(value & ((jim_wide)1 << i));
JimSetBitBigEndian(bitvec, pos + width - i - 1, bit);
}
}
/**
* Little endian version of JimSetBitsIntBigEndian()
*/
static void JimSetBitsIntLittleEndian(unsigned char *bitvec, jim_wide value, int pos, int width)
{
int i;
/* Common fast option */
if (pos % 8 == 0 && width == 8) {
bitvec[pos / 8] = value;
return;
}
for (i = 0; i < width; i++) {
int bit = !!(value & ((jim_wide)1 << i));
JimSetBitLittleEndian(bitvec, pos + i, bit);
}
}
/**
* Binary conversion of jim_wide integer to float
*
* Considers the least significant bits of
* jim_wide 'value' as a IEEE float.
*
* Should work for both little- and big-endian platforms.
*/
static float JimIntToFloat(jim_wide value)
{
int offs;
float val;
/* Skip offs to get to least significant bytes */
offs = Jim_IsBigEndian() ? (sizeof(jim_wide) - sizeof(float)) : 0;
memcpy(&val, (unsigned char *) &value + offs, sizeof(float));
return val;
}
/**
* Binary conversion of jim_wide integer to double
*
* Double precision version of JimIntToFloat
*/
static double JimIntToDouble(jim_wide value)
{
int offs;
double val;
/* Skip offs to get to least significant bytes */
offs = Jim_IsBigEndian() ? (sizeof(jim_wide) - sizeof(double)) : 0;
memcpy(&val, (unsigned char *) &value + offs, sizeof(double));
return val;
}
/**
* Binary conversion of float to jim_wide integer
*
* Considers the bits of IEEE float 'value' as integer.
* The integer is zero-extended to jim_wide.
*
* Should work for both little- and big-endian platforms.
*/
static jim_wide JimFloatToInt(float value)
{
int offs;
jim_wide val = 0;
/* Skip offs to get to least significant bytes */
offs = Jim_IsBigEndian() ? (sizeof(jim_wide) - sizeof(float)) : 0;
memcpy((unsigned char *) &val + offs, &value, sizeof(float));
return val;
}
/**
* Binary conversion of double to jim_wide integer
*
* Double precision version of JimFloatToInt
*/
static jim_wide JimDoubleToInt(double value)
{
int offs;
jim_wide val = 0;
/* Skip offs to get to least significant bytes */
offs = Jim_IsBigEndian() ? (sizeof(jim_wide) - sizeof(double)) : 0;
memcpy((unsigned char *) &val + offs, &value, sizeof(double));
return val;
}
/**
* [unpack]
*
* Usage: unpack binvalue -intbe|-intle|-uintbe|-uintle|-floatbe|-floatle|-str bitpos bitwidth
*
* Unpacks bits from $binvalue at bit position $bitpos and with $bitwidth.
* Interprets the value according to the type and returns it.
*/
static int Jim_UnpackCmd(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
int option;
static const char * const options[] = { "-intbe", "-intle", "-uintbe", "-uintle",
"-floatbe", "-floatle", "-str", NULL };
enum { OPT_INTBE, OPT_INTLE, OPT_UINTBE, OPT_UINTLE, OPT_FLOATBE, OPT_FLOATLE, OPT_STR, };
jim_wide pos;
jim_wide width;
if (argc != 5) {
Jim_WrongNumArgs(interp, 1, argv,
"binvalue -intbe|-intle|-uintbe|-uintle|-floatbe|-floatle|-str bitpos bitwidth");
return JIM_ERR;
}
if (Jim_GetEnum(interp, argv[2], options, &option, NULL, JIM_ERRMSG) != JIM_OK) {
return JIM_ERR;
}
if (Jim_GetWideExpr(interp, argv[3], &pos) != JIM_OK) {
return JIM_ERR;
}
if (pos < 0 || (option == OPT_STR && pos % 8)) {
Jim_SetResultFormatted(interp, "bad bitoffset: %#s", argv[3]);
return JIM_ERR;
}
if (Jim_GetWideExpr(interp, argv[4], &width) != JIM_OK) {
return JIM_ERR;
}
if (width < 0 || (option == OPT_STR && width % 8) || (option != OPT_STR && width > sizeof(jim_wide) * 8) ||
((option == OPT_FLOATLE || option == OPT_FLOATBE) && width != 32 && width != 64)) {
Jim_SetResultFormatted(interp, "bad bitwidth: %#s", argv[4]);
return JIM_ERR;
}
if (option == OPT_STR) {
int len;
const char *str = Jim_GetString(argv[1], &len);
if (pos < len * 8) {
if (pos + width > len * 8) {
width = len * 8 - pos;
}
Jim_SetResultString(interp, str + pos / 8, width / 8);
}
return JIM_OK;
}
else {
int len;
const unsigned char *str = (const unsigned char *)Jim_GetString(argv[1], &len);
jim_wide result = 0;
if (pos < len * 8) {
if (pos + width > len * 8) {
width = len * 8 - pos;
}
if (option == OPT_INTBE || option == OPT_UINTBE || option == OPT_FLOATBE) {
result = JimBitIntBigEndian(str, pos, width);
}
else {
result = JimBitIntLittleEndian(str, pos, width);
}
if (option == OPT_INTBE || option == OPT_INTLE) {
result = JimSignExtend(result, width);
}
}
if (option == OPT_FLOATBE || option == OPT_FLOATLE) {
double fresult;
if (width == 32) {
fresult = (double) JimIntToFloat(result);
} else {
fresult = JimIntToDouble(result);
}
Jim_SetResult(interp, Jim_NewDoubleObj(interp, fresult));
} else {
Jim_SetResultInt(interp, result);
}
return JIM_OK;
}
}
/**
* [pack]
*
* Usage: pack varname value -intbe|-intle|-floatle|-floatbe|-str width ?bitoffset?
*
* Packs the binary representation of 'value' into the variable of the given name.
* The value is packed according to the given type, width and bitoffset.
* The variable is created if necessary (like [append])
* The variable is expanded if necessary
*/
static int Jim_PackCmd(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
int option;
static const char * const options[] = { "-intle", "-intbe", "-floatle", "-floatbe",
"-str", NULL };
enum { OPT_LE, OPT_BE, OPT_FLOATLE, OPT_FLOATBE, OPT_STR };
jim_wide pos = 0;
jim_wide width;
jim_wide value;
double fvalue;
Jim_Obj *stringObjPtr;
int len;
int freeobj = 0;
if (argc != 5 && argc != 6) {
Jim_WrongNumArgs(interp, 1, argv,
"varName value -intle|-intbe|-floatle|-floatbe|-str bitwidth ?bitoffset?");
return JIM_ERR;
}
if (Jim_GetEnum(interp, argv[3], options, &option, NULL, JIM_ERRMSG) != JIM_OK) {
return JIM_ERR;
}
if ((option == OPT_LE || option == OPT_BE) &&
Jim_GetWideExpr(interp, argv[2], &value) != JIM_OK) {
return JIM_ERR;
}
if ((option == OPT_FLOATLE || option == OPT_FLOATBE) &&
Jim_GetDouble(interp, argv[2], &fvalue) != JIM_OK) {
return JIM_ERR;
}
if (Jim_GetWideExpr(interp, argv[4], &width) != JIM_OK) {
return JIM_ERR;
}
if (width <= 0 || (option == OPT_STR && width % 8) || (option != OPT_STR && width > sizeof(jim_wide) * 8) ||
((option == OPT_FLOATLE || option == OPT_FLOATBE) && width != 32 && width != 64)) {
Jim_SetResultFormatted(interp, "bad bitwidth: %#s", argv[4]);
return JIM_ERR;
}
if (argc == 6) {
if (Jim_GetWideExpr(interp, argv[5], &pos) != JIM_OK) {
return JIM_ERR;
}
if (pos < 0 || (option == OPT_STR && pos % 8)) {
Jim_SetResultFormatted(interp, "bad bitoffset: %#s", argv[5]);
return JIM_ERR;
}
}
stringObjPtr = Jim_GetVariable(interp, argv[1], JIM_UNSHARED);
if (!stringObjPtr) {
/* Create the string if it doesn't exist */
stringObjPtr = Jim_NewEmptyStringObj(interp);
freeobj = 1;
}
else if (Jim_IsShared(stringObjPtr)) {
freeobj = 1;
stringObjPtr = Jim_DuplicateObj(interp, stringObjPtr);
}
len = Jim_Length(stringObjPtr) * 8;
/* Extend the string as necessary first */
while (len < pos + width) {
Jim_AppendString(interp, stringObjPtr, "", 1);
len += 8;
}
Jim_SetResultInt(interp, pos + width);
/* Now set the bits. Note that the the string *must* have no non-string rep
* since we are writing the bytes directly.
*/
Jim_AppendString(interp, stringObjPtr, "", 0);
/* Convert floating point to integer if necessary */
if (option == OPT_FLOATLE || option == OPT_FLOATBE) {
/* Note that the following is slightly incompatible with Tcl behaviour.
* In Tcl floating overflow gives FLT_MAX (cf. test binary-13.13).
* In Jim Tcl it gives Infinity. This behavior may change.
*/
value = (width == 32) ? JimFloatToInt((float)fvalue) : JimDoubleToInt(fvalue);
}
if (option == OPT_BE || option == OPT_FLOATBE) {
JimSetBitsIntBigEndian((unsigned char *)stringObjPtr->bytes, value, pos, width);
}
else if (option == OPT_LE || option == OPT_FLOATLE) {
JimSetBitsIntLittleEndian((unsigned char *)stringObjPtr->bytes, value, pos, width);
}
else {
pos /= 8;
width /= 8;
if (width > Jim_Length(argv[2])) {
width = Jim_Length(argv[2]);
}
memcpy(stringObjPtr->bytes + pos, Jim_String(argv[2]), width);
/* No padding is needed since the string is already extended */
}
if (Jim_SetVariable(interp, argv[1], stringObjPtr) != JIM_OK) {
if (freeobj) {
Jim_FreeNewObj(interp, stringObjPtr);
return JIM_ERR;
}
}
return JIM_OK;
}
int Jim_packInit(Jim_Interp *interp)
{
Jim_PackageProvideCheck(interp, "pack");
Jim_CreateCommand(interp, "unpack", Jim_UnpackCmd, NULL, NULL);
Jim_CreateCommand(interp, "pack", Jim_PackCmd, NULL, NULL);
return JIM_OK;
}
|