File: tag-dev.txt

package info (click to toggle)
jinja 0.9-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 412 kB
  • ctags: 485
  • sloc: python: 2,551; makefile: 40
file content (216 lines) | stat: -rw-r--r-- 5,913 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
=========
Tag Howto
=========

Tags are much more complex than filters_, because with tags you can do
everything.

While filters only extend the behavior of tags like ``print`` and ``filter``,
the whole Jinja core uses tags to handle loops, conditions...

When Jinja compiles a template, it splits the raw template text into
''nodes''. Each node is an instance of ``jinja.nodes.Node`` and has a
``render(context)`` method. A compiled template is, simply, a list of ``Node``
objects. When you call ``render()`` on a compiled template object, the template
calls ``render()`` on each ``Node`` in its node list, with the given context.
The results are all concatenated together to form the output of the template.

When Jinja encounters a ``BlockToken`` in the template it looks at the defined
library and let it parse the token content (e.g. ``for item in sequence``).

When no library is defined it uses the standard library ``stdlib``.

Diving In
=========

Each Tag object has to look at least like this::

    from jinja.lib import stdlib
    from jinja.nodes import *
    
    class MyTag(Node):
        rules = {}

        def __init__(self, parser, matched_tag, handler_args, stack):
            pass

        def render(self, context):
            return ''

    stdlib.register_tag(MyTag)

``rules`` is a dict of parser instructions::

    rules = {
        'default': [KeywordNode('mytag')],
        'witharg': [KeywordNode('mytag'), ChoiceNode()]
    }

This rule definition would match all ``{% mytag %}`` and ``{% mytag arg %}``
tags.

The ``__init__`` method gets called on tag creation. When you're using a cached
loader it will save the tag in the state of leaving the ``__init__`` method.

The arguments are these:

* **parser** - a template parser instance which can be used to parse parts
  of the template.

* **matched_tag** - a string containing the name of the matched rule.
  (e.g. ``witharg`` or ``default`` in the example above)

* **handler_args** - the list of argument nodes.

* **stack** - list of piped filters

Example
=======

To understand this here is the defintion of the ``print`` tag::

    class VariableTag(Node):
        rules = {
            'default': [KeywordNode('print'), ChoiceNode()]
        }

        def __init__(self, parser, matched_tag, handler_args, stack):
            self._variable = handler_args[1]
            self._filters = [(f, args[1:][0]) for f, _, args in stack]
            
        def findnodes(self):
            yield self._variable
            
        def render(self, context):
            if not self._filters:
                return self._variable.render(context)
            var = self._variable.resolve(context)
            for f, args in self._filters:
                var = f(var, *[arg.resolve(context) for arg in args])
            return var
            
    stdlib.register_tag(VariableTag)

The ``rules`` dict defines a rule matching all ``{% print variable %}``.

A ``ChoiceNode`` matches per default all variables and string/integer
constants.

The ``__init__`` methods saves the variable node and the list of filters
in the Tag.

The ``findnodes`` method has to return a iterable of all nodes defined
in the ``Tag``.

In the render method the ``VariableTag`` returns a parsed content of the
variable by applying all filters.

Nodes
=====

Jinja shipps a number of nodes the parser can match. All this nodes are
defined in the ``jinja.nodes`` module.

KeywordNode
~~~~~~~~~~~

A keyword node matches against a constant keyword value. You can compare
Keywords with strings which simplyfies the postprocessing::

    if my_keyword_node == "foo":
        ...
    else:
        ...

It isn't possible to resolve or render keyworde nodes.

VariableNode
~~~~~~~~~~~~

A variable node matches all possible variables by saving the name.
Variable nodes provide a ``define`` method for updating their value::

    varnode.define(context, 'new value')

You can get the value of a ``VariableNode`` using resolve::

    value = varnode.resolve(context)

variable nodes do also provide a render method which acts like the resolve
method but returns a string.

ValueNode
~~~~~~~~~

Value nodes behaves like variable nodes but match strings, integers, boolean
values and "none".

It provides the same functionallity like the ``VariableNode``, but resolve
can also get called without the context which allows you to fetch the constant
value inside the ``__init__`` method of a tag.

ChoiceNode
~~~~~~~~~~

A choice node matches more than one one nodetype::

    ChoiceNode(Node1(), Node2())

When not given any arguments it will match eigther one ``VariableNode`` or
``ValueNode``.

CollectionNode
~~~~~~~~~~~~~~

A collection node matches an unlimited number of Nodes::

    CollectionNode(Node1(), Node2())

When not given any arguments it will match all variable and/or value nodes.


One-Way Parsing
===============

One way parsing is very basic::

    {% mynode %}  
        ...
    {% endmynode %}

You can fetch the ``body`` between those two tags inside the ``__init__``
method of you ``MyTag`` class::

    self._body = parser.subparse('endmynode')

This will store all the nodes from ``mynode`` to ``endmynode`` which you can
render using ``self._body.render(context)``.

Two-Way Parsing
===============

Two way parsing is a bit more complicated::

    {% mynode %}
        ...
    {% switchmynode %}
        ...
    {% endmynode %}

But it would also match::

    {% mynode %}
        ...
    {% endmynode %}

Parsing this would result in two bodies::

    self._body_one, self._body_two = parser.forkparse('switchmynode', 'endmynode')

When the parser doesn't find the ``switchmynode`` tag it will returns an
empty ``NodeList`` for ``self._body_two``.

For more informations have a look at the Tags_ module in the jinja source.

.. _filters: filter-dev.txt
.. _Tags: http://wsgiarea.pocoo.org/trac/browser/jinja/trunk/jinja/tags.py