File: control

package info (click to toggle)
joblib 0.10.3%2Bgit55-g660fe5d-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,080 kB
  • ctags: 904
  • sloc: python: 7,479; sh: 130; makefile: 27
file content (50 lines) | stat: -rw-r--r-- 1,904 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Source: joblib
Section: python
Priority: optional
Maintainer: Yaroslav Halchenko <debian@onerussian.com>
Build-Depends: debhelper (>= 7.0.50~),
               python-all (>= 2.5), python-setuptools(>= 0.6), python-pytest, python-numpy,
               python3-all (>= 2.5), python3-setuptools(>= 0.6), python3-pytest, python3-numpy,
Standards-Version: 3.9.8
Homepage: http://packages.python.org/joblib/
X-Python-Version: >=2.6
X-Python3-Version: >=3.3
Vcs-Git: git://github.com/yarikoptic/joblib.git
Vcs-Browser: http://github.com/yarikoptic/joblib


Package: python-joblib
Architecture: all
Depends: ${python:Depends}, ${misc:Depends}
Recommends: python-numpy, python-pytest, python-simplejson
Description: tools to provide lightweight pipelining in Python
 Joblib is a set of tools to provide lightweight pipelining in
 Python. In particular, joblib offers:
 .
  - transparent disk-caching of the output values and lazy
    re-evaluation (memoize pattern)
  - easy simple parallel computing
  - logging and tracing of the execution
 .
 Joblib is optimized to be fast and robust in particular on large,
 long-running functions and has specific optimizations for numpy arrays.
 .
 This package contains the Python 2 version.

Package: python3-joblib
Architecture: all
Depends: ${python3:Depends}, ${misc:Depends}
Recommends: python3-numpy, python3-pytest, python3-simplejson
Description: tools to provide lightweight pipelining in Python
 Joblib is a set of tools to provide lightweight pipelining in
 Python. In particular, joblib offers:
 .
  - transparent disk-caching of the output values and lazy
    re-evaluation (memoize pattern)
  - easy simple parallel computing
  - logging and tracing of the execution
 .
 Joblib is optimized to be fast and robust in particular on large,
 long-running functions and has specific optimizations for numpy arrays.
 .
 This package contains the Python 3 version.