1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
"""
===============================
Improving I/O using compressors
===============================
This example compares the compressors available in Joblib. In the example,
Zlib, LZMA and LZ4 compression only are used but Joblib also supports BZ2 and
GZip compression methods.
For each compared compression method, this example dumps and reloads a
dataset fetched from an online machine-learning database. This gives 3
information: the size on disk of the compressed data, the time spent to dump
and the time spent to reload the data from disk.
"""
import os
import os.path
import time
###############################################################################
# Get some data from real-world use cases
# ---------------------------------------
#
# First fetch the benchmark dataset from an online machine-learning database
# and load it in a pandas dataframe.
import pandas as pd
if int(os.getenv('DEBIAN_POLICY_SECTION_4_9_NO_NETWORK_ACCESS', '0')) > 0:
raise IOError('Debian Policy Section 4.9 prohibits network access during build')
url = "https://github.com/joblib/dataset/raw/main/kddcup.data.gz"
names = ("duration, protocol_type, service, flag, src_bytes, "
"dst_bytes, land, wrong_fragment, urgent, hot, "
"num_failed_logins, logged_in, num_compromised, "
"root_shell, su_attempted, num_root, "
"num_file_creations, ").split(', ')
data = pd.read_csv(url, names=names, nrows=1e6)
###############################################################################
# Dump and load the dataset without compression
# ---------------------------------------------
#
# This gives reference values for later comparison.
from joblib import dump, load
pickle_file = './pickle_data.joblib'
###############################################################################
# Start by measuring the time spent for dumping the raw data:
start = time.time()
with open(pickle_file, 'wb') as f:
dump(data, f)
raw_dump_duration = time.time() - start
print("Raw dump duration: %0.3fs" % raw_dump_duration)
###############################################################################
# Then measure the size of the raw dumped data on disk:
raw_file_size = os.stat(pickle_file).st_size / 1e6
print("Raw dump file size: %0.3fMB" % raw_file_size)
###############################################################################
# Finally measure the time spent for loading the raw data:
start = time.time()
with open(pickle_file, 'rb') as f:
load(f)
raw_load_duration = time.time() - start
print("Raw load duration: %0.3fs" % raw_load_duration)
###############################################################################
# Dump and load the dataset using the Zlib compression method
# -----------------------------------------------------------
#
# The compression level is using the default value, 3, which is, in general, a
# good compromise between compression and speed.
###############################################################################
# Start by measuring the time spent for dumping of the zlib data:
start = time.time()
with open(pickle_file, 'wb') as f:
dump(data, f, compress='zlib')
zlib_dump_duration = time.time() - start
print("Zlib dump duration: %0.3fs" % zlib_dump_duration)
###############################################################################
# Then measure the size of the zlib dump data on disk:
zlib_file_size = os.stat(pickle_file).st_size / 1e6
print("Zlib file size: %0.3fMB" % zlib_file_size)
###############################################################################
# Finally measure the time spent for loading the compressed dataset:
start = time.time()
with open(pickle_file, 'rb') as f:
load(f)
zlib_load_duration = time.time() - start
print("Zlib load duration: %0.3fs" % zlib_load_duration)
###############################################################################
# .. note:: The compression format is detected automatically by Joblib.
# The compression format is identified by the standard magic number present
# at the beginning of the file. Joblib uses this information to determine
# the compression method used.
# This is the case for all compression methods supported by Joblib.
###############################################################################
# Dump and load the dataset using the LZMA compression method
# -----------------------------------------------------------
#
# LZMA compression method has a very good compression rate but at the cost
# of being very slow.
# In this example, a light compression level, e.g. 3, is used to speed up a
# bit the dump/load cycle.
###############################################################################
# Start by measuring the time spent for dumping the lzma data:
start = time.time()
with open(pickle_file, 'wb') as f:
dump(data, f, compress=('lzma', 3))
lzma_dump_duration = time.time() - start
print("LZMA dump duration: %0.3fs" % lzma_dump_duration)
###############################################################################
# Then measure the size of the lzma dump data on disk:
lzma_file_size = os.stat(pickle_file).st_size / 1e6
print("LZMA file size: %0.3fMB" % lzma_file_size)
###############################################################################
# Finally measure the time spent for loading the lzma data:
start = time.time()
with open(pickle_file, 'rb') as f:
load(f)
lzma_load_duration = time.time() - start
print("LZMA load duration: %0.3fs" % lzma_load_duration)
###############################################################################
# Dump and load the dataset using the LZ4 compression method
# ----------------------------------------------------------
#
# LZ4 compression method is known to be one of the fastest available
# compression method but with a compression rate a bit lower than Zlib. In
# most of the cases, this method is a good choice.
###############################################################################
# .. note:: In order to use LZ4 compression with Joblib, the
# `lz4 <https://pypi.python.org/pypi/lz4>`_ package must be installed
# on the system.
###############################################################################
# Start by measuring the time spent for dumping the lz4 data:
start = time.time()
with open(pickle_file, 'wb') as f:
dump(data, f, compress='lz4')
lz4_dump_duration = time.time() - start
print("LZ4 dump duration: %0.3fs" % lz4_dump_duration)
###############################################################################
# Then measure the size of the lz4 dump data on disk:
lz4_file_size = os.stat(pickle_file).st_size / 1e6
print("LZ4 file size: %0.3fMB" % lz4_file_size)
###############################################################################
# Finally measure the time spent for loading the lz4 data:
start = time.time()
with open(pickle_file, 'rb') as f:
load(f)
lz4_load_duration = time.time() - start
print("LZ4 load duration: %0.3fs" % lz4_load_duration)
###############################################################################
# Comparing the results
# ---------------------
import numpy as np
import matplotlib.pyplot as plt
N = 4
load_durations = (raw_load_duration, lz4_load_duration, zlib_load_duration,
lzma_load_duration)
dump_durations = (raw_dump_duration, lz4_dump_duration, zlib_dump_duration,
lzma_dump_duration)
file_sizes = (raw_file_size, lz4_file_size, zlib_file_size, lzma_file_size)
ind = np.arange(N)
width = 0.5
plt.figure(1, figsize=(5, 4))
p1 = plt.bar(ind, dump_durations, width)
p2 = plt.bar(ind, load_durations, width, bottom=dump_durations)
plt.ylabel('Time in seconds')
plt.title('Dump and load durations')
plt.xticks(ind, ('Raw', 'LZ4', 'Zlib', 'LZMA'))
plt.yticks(np.arange(0, lzma_load_duration + lzma_dump_duration))
plt.legend((p1[0], p2[0]), ('Dump duration', 'Load duration'))
###############################################################################
# Compared with other compressors, LZ4 is clearly the fastest, especially for
# dumping compressed data on disk. In this particular case, it can even be
# faster than the raw dump.
# Also note that dump and load durations depend on the I/O speed of the
# underlying storage: for example, with SSD hard drives the LZ4 compression
# will be slightly slower than raw dump/load, whereas with spinning hard disk
# drives (HDD) or remote storage (NFS), LZ4 is faster in general.
#
# LZMA and Zlib, even if always slower for dumping data, are quite fast when
# re-loading compressed data from disk.
plt.figure(2, figsize=(5, 4))
plt.bar(ind, file_sizes, width, log=True)
plt.ylabel('File size in MB')
plt.xticks(ind, ('Raw', 'LZ4', 'Zlib', 'LZMA'))
###############################################################################
# Compressed data obviously takes a lot less space on disk than raw data. LZMA
# is the best compression method in terms of compression rate. Zlib also has a
# better compression rate than LZ4.
plt.show()
###############################################################################
# Clear the pickle file
# ---------------------
import os
os.remove(pickle_file)
|