1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
|
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id: cmmgen.ml 11113 2011-07-07 14:32:00Z maranget $ *)
(* Translation from closed lambda to C-- *)
open Misc
open Arch
open Asttypes
open Primitive
open Types
open Lambda
open Clambda
open Cmm
open Cmx_format
(* Local binding of complex expressions *)
let bind name arg fn =
match arg with
Cvar _ | Cconst_int _ | Cconst_natint _ | Cconst_symbol _
| Cconst_pointer _ | Cconst_natpointer _ -> fn arg
| _ -> let id = Ident.create name in Clet(id, arg, fn (Cvar id))
let bind_nonvar name arg fn =
match arg with
Cconst_int _ | Cconst_natint _ | Cconst_symbol _
| Cconst_pointer _ | Cconst_natpointer _ -> fn arg
| _ -> let id = Ident.create name in Clet(id, arg, fn (Cvar id))
(* Block headers. Meaning of the tag field: see stdlib/obj.ml *)
let float_tag = Cconst_int Obj.double_tag
let floatarray_tag = Cconst_int Obj.double_array_tag
let block_header tag sz =
Nativeint.add (Nativeint.shift_left (Nativeint.of_int sz) 10)
(Nativeint.of_int tag)
let closure_header sz = block_header Obj.closure_tag sz
let infix_header ofs = block_header Obj.infix_tag ofs
let float_header = block_header Obj.double_tag (size_float / size_addr)
let floatarray_header len =
block_header Obj.double_array_tag (len * size_float / size_addr)
let string_header len =
block_header Obj.string_tag ((len + size_addr) / size_addr)
let boxedint32_header = block_header Obj.custom_tag 2
let boxedint64_header = block_header Obj.custom_tag (1 + 8 / size_addr)
let boxedintnat_header = block_header Obj.custom_tag 2
let alloc_block_header tag sz = Cconst_natint(block_header tag sz)
let alloc_float_header = Cconst_natint(float_header)
let alloc_floatarray_header len = Cconst_natint(floatarray_header len)
let alloc_closure_header sz = Cconst_natint(closure_header sz)
let alloc_infix_header ofs = Cconst_natint(infix_header ofs)
let alloc_boxedint32_header = Cconst_natint(boxedint32_header)
let alloc_boxedint64_header = Cconst_natint(boxedint64_header)
let alloc_boxedintnat_header = Cconst_natint(boxedintnat_header)
(* Integers *)
let max_repr_int = max_int asr 1
let min_repr_int = min_int asr 1
let int_const n =
if n <= max_repr_int && n >= min_repr_int
then Cconst_int((n lsl 1) + 1)
else Cconst_natint
(Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n)
let add_const c n =
if n = 0 then c else Cop(Caddi, [c; Cconst_int n])
let incr_int = function
Cconst_int n when n < max_int -> Cconst_int(n+1)
| Cop(Caddi, [c; Cconst_int n]) when n < max_int -> add_const c (n + 1)
| c -> add_const c 1
let decr_int = function
Cconst_int n when n > min_int -> Cconst_int(n-1)
| Cop(Caddi, [c; Cconst_int n]) when n > min_int -> add_const c (n - 1)
| c -> add_const c (-1)
let add_int c1 c2 =
match (c1, c2) with
(Cop(Caddi, [c1; Cconst_int n1]),
Cop(Caddi, [c2; Cconst_int n2])) when no_overflow_add n1 n2 ->
add_const (Cop(Caddi, [c1; c2])) (n1 + n2)
| (Cop(Caddi, [c1; Cconst_int n1]), c2) ->
add_const (Cop(Caddi, [c1; c2])) n1
| (c1, Cop(Caddi, [c2; Cconst_int n2])) ->
add_const (Cop(Caddi, [c1; c2])) n2
| (Cconst_int _, _) ->
Cop(Caddi, [c2; c1])
| (_, _) ->
Cop(Caddi, [c1; c2])
let sub_int c1 c2 =
match (c1, c2) with
(Cop(Caddi, [c1; Cconst_int n1]),
Cop(Caddi, [c2; Cconst_int n2])) when no_overflow_sub n1 n2 ->
add_const (Cop(Csubi, [c1; c2])) (n1 - n2)
| (Cop(Caddi, [c1; Cconst_int n1]), c2) ->
add_const (Cop(Csubi, [c1; c2])) n1
| (c1, Cop(Caddi, [c2; Cconst_int n2])) when n2 <> min_int ->
add_const (Cop(Csubi, [c1; c2])) (-n2)
| (c1, Cconst_int n) when n <> min_int ->
add_const c1 (-n)
| (c1, c2) ->
Cop(Csubi, [c1; c2])
let mul_int c1 c2 =
match (c1, c2) with
(Cconst_int 0, _) -> c1
| (Cconst_int 1, _) -> c2
| (_, Cconst_int 0) -> c2
| (_, Cconst_int 1) -> c1
| (_, _) -> Cop(Cmuli, [c1; c2])
let tag_int = function
Cconst_int n -> int_const n
| c -> Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1])
let force_tag_int = function
Cconst_int n -> int_const n
| c -> Cop(Cor, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1])
let untag_int = function
Cconst_int n -> Cconst_int(n asr 1)
| Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) -> c
| Cop(Cor, [Cop(Casr, [c; Cconst_int n]); Cconst_int 1])
when n > 0 && n < size_int * 8 ->
Cop(Casr, [c; Cconst_int (n+1)])
| Cop(Cor, [Cop(Clsr, [c; Cconst_int n]); Cconst_int 1])
when n > 0 && n < size_int * 8 ->
Cop(Clsr, [c; Cconst_int (n+1)])
| Cop(Cor, [c; Cconst_int 1]) -> Cop(Casr, [c; Cconst_int 1])
| c -> Cop(Casr, [c; Cconst_int 1])
let lsl_int c1 c2 =
match (c1, c2) with
(Cop(Clsl, [c; Cconst_int n1]), Cconst_int n2)
when n1 > 0 && n2 > 0 && n1 + n2 < size_int * 8 ->
Cop(Clsl, [c; Cconst_int (n1 + n2)])
| (_, _) ->
Cop(Clsl, [c1; c2])
let ignore_low_bit_int = function
Cop(Caddi, [(Cop(Clsl, [_; Cconst_int 1]) as c); Cconst_int 1]) -> c
| Cop(Cor, [c; Cconst_int 1]) -> c
| c -> c
let is_nonzero_constant = function
Cconst_int n -> n <> 0
| Cconst_natint n -> n <> 0n
| _ -> false
let safe_divmod op c1 c2 dbg =
if !Clflags.fast || is_nonzero_constant c2 then
Cop(op, [c1; c2])
else
bind "divisor" c2 (fun c2 ->
Cifthenelse(c2,
Cop(op, [c1; c2]),
Cop(Craise dbg,
[Cconst_symbol "caml_bucket_Division_by_zero"])))
(* Bool *)
let test_bool = function
Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) -> c
| Cop(Clsl, [c; Cconst_int 1]) -> c
| c -> Cop(Ccmpi Cne, [c; Cconst_int 1])
(* Float *)
let box_float c = Cop(Calloc, [alloc_float_header; c])
let rec unbox_float = function
Cop(Calloc, [header; c]) -> c
| Clet(id, exp, body) -> Clet(id, exp, unbox_float body)
| Cifthenelse(cond, e1, e2) ->
Cifthenelse(cond, unbox_float e1, unbox_float e2)
| Csequence(e1, e2) -> Csequence(e1, unbox_float e2)
| Cswitch(e, tbl, el) -> Cswitch(e, tbl, Array.map unbox_float el)
| Ccatch(n, ids, e1, e2) -> Ccatch(n, ids, unbox_float e1, unbox_float e2)
| Ctrywith(e1, id, e2) -> Ctrywith(unbox_float e1, id, unbox_float e2)
| c -> Cop(Cload Double_u, [c])
(* Complex *)
let box_complex c_re c_im =
Cop(Calloc, [alloc_floatarray_header 2; c_re; c_im])
let complex_re c = Cop(Cload Double_u, [c])
let complex_im c = Cop(Cload Double_u,
[Cop(Cadda, [c; Cconst_int size_float])])
(* Unit *)
let return_unit c = Csequence(c, Cconst_pointer 1)
let rec remove_unit = function
Cconst_pointer 1 -> Ctuple []
| Csequence(c, Cconst_pointer 1) -> c
| Csequence(c1, c2) ->
Csequence(c1, remove_unit c2)
| Cifthenelse(cond, ifso, ifnot) ->
Cifthenelse(cond, remove_unit ifso, remove_unit ifnot)
| Cswitch(sel, index, cases) ->
Cswitch(sel, index, Array.map remove_unit cases)
| Ccatch(io, ids, body, handler) ->
Ccatch(io, ids, remove_unit body, remove_unit handler)
| Ctrywith(body, exn, handler) ->
Ctrywith(remove_unit body, exn, remove_unit handler)
| Clet(id, c1, c2) ->
Clet(id, c1, remove_unit c2)
| Cop(Capply (mty, dbg), args) ->
Cop(Capply (typ_void, dbg), args)
| Cop(Cextcall(proc, mty, alloc, dbg), args) ->
Cop(Cextcall(proc, typ_void, alloc, dbg), args)
| Cexit (_,_) as c -> c
| Ctuple [] as c -> c
| c -> Csequence(c, Ctuple [])
(* Access to block fields *)
let field_address ptr n =
if n = 0
then ptr
else Cop(Cadda, [ptr; Cconst_int(n * size_addr)])
let get_field ptr n =
Cop(Cload Word, [field_address ptr n])
let set_field ptr n newval =
Cop(Cstore Word, [field_address ptr n; newval])
let header ptr =
Cop(Cload Word, [Cop(Cadda, [ptr; Cconst_int(-size_int)])])
let tag_offset =
if big_endian then -1 else -size_int
let get_tag ptr =
if Proc.word_addressed then (* If byte loads are slow *)
Cop(Cand, [header ptr; Cconst_int 255])
else (* If byte loads are efficient *)
Cop(Cload Byte_unsigned,
[Cop(Cadda, [ptr; Cconst_int(tag_offset)])])
let get_size ptr =
Cop(Clsr, [header ptr; Cconst_int 10])
(* Array indexing *)
let log2_size_addr = Misc.log2 size_addr
let log2_size_float = Misc.log2 size_float
let wordsize_shift = 9
let numfloat_shift = 9 + log2_size_float - log2_size_addr
let is_addr_array_hdr hdr =
Cop(Ccmpi Cne, [Cop(Cand, [hdr; Cconst_int 255]); floatarray_tag])
let is_addr_array_ptr ptr =
Cop(Ccmpi Cne, [get_tag ptr; floatarray_tag])
let addr_array_length hdr = Cop(Clsr, [hdr; Cconst_int wordsize_shift])
let float_array_length hdr = Cop(Clsr, [hdr; Cconst_int numfloat_shift])
let lsl_const c n =
Cop(Clsl, [c; Cconst_int n])
let array_indexing log2size ptr ofs =
match ofs with
Cconst_int n ->
let i = n asr 1 in
if i = 0 then ptr else Cop(Cadda, [ptr; Cconst_int(i lsl log2size)])
| Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) ->
Cop(Cadda, [ptr; lsl_const c log2size])
| Cop(Caddi, [c; Cconst_int n]) ->
Cop(Cadda, [Cop(Cadda, [ptr; lsl_const c (log2size - 1)]);
Cconst_int((n-1) lsl (log2size - 1))])
| _ ->
Cop(Cadda, [Cop(Cadda, [ptr; lsl_const ofs (log2size - 1)]);
Cconst_int((-1) lsl (log2size - 1))])
let addr_array_ref arr ofs =
Cop(Cload Word, [array_indexing log2_size_addr arr ofs])
let unboxed_float_array_ref arr ofs =
Cop(Cload Double_u, [array_indexing log2_size_float arr ofs])
let float_array_ref arr ofs =
box_float(unboxed_float_array_ref arr ofs)
let addr_array_set arr ofs newval =
Cop(Cextcall("caml_modify", typ_void, false, Debuginfo.none),
[array_indexing log2_size_addr arr ofs; newval])
let int_array_set arr ofs newval =
Cop(Cstore Word, [array_indexing log2_size_addr arr ofs; newval])
let float_array_set arr ofs newval =
Cop(Cstore Double_u, [array_indexing log2_size_float arr ofs; newval])
(* String length *)
let string_length exp =
bind "str" exp (fun str ->
let tmp_var = Ident.create "tmp" in
Clet(tmp_var,
Cop(Csubi,
[Cop(Clsl,
[Cop(Clsr, [header str; Cconst_int 10]);
Cconst_int log2_size_addr]);
Cconst_int 1]),
Cop(Csubi,
[Cvar tmp_var;
Cop(Cload Byte_unsigned,
[Cop(Cadda, [str; Cvar tmp_var])])])))
(* Message sending *)
let lookup_tag obj tag =
bind "tag" tag (fun tag ->
Cop(Cextcall("caml_get_public_method", typ_addr, false, Debuginfo.none),
[obj; tag]))
let lookup_label obj lab =
bind "lab" lab (fun lab ->
let table = Cop (Cload Word, [obj]) in
addr_array_ref table lab)
let call_cached_method obj tag cache pos args dbg =
let arity = List.length args in
let cache = array_indexing log2_size_addr cache pos in
Compilenv.need_send_fun arity;
Cop(Capply (typ_addr, dbg),
Cconst_symbol("caml_send" ^ string_of_int arity) ::
obj :: tag :: cache :: args)
(* Allocation *)
let make_alloc_generic set_fn tag wordsize args =
if wordsize <= Config.max_young_wosize then
Cop(Calloc, Cconst_natint(block_header tag wordsize) :: args)
else begin
let id = Ident.create "alloc" in
let rec fill_fields idx = function
[] -> Cvar id
| e1::el -> Csequence(set_fn (Cvar id) (Cconst_int idx) e1,
fill_fields (idx + 2) el) in
Clet(id,
Cop(Cextcall("caml_alloc", typ_addr, true, Debuginfo.none),
[Cconst_int wordsize; Cconst_int tag]),
fill_fields 1 args)
end
let make_alloc tag args =
make_alloc_generic addr_array_set tag (List.length args) args
let make_float_alloc tag args =
make_alloc_generic float_array_set tag
(List.length args * size_float / size_addr) args
(* To compile "let rec" over values *)
let fundecls_size fundecls =
let sz = ref (-1) in
List.iter
(fun (label, arity, params, body) ->
sz := !sz + 1 + (if arity = 1 then 2 else 3))
fundecls;
!sz
type rhs_kind =
| RHS_block of int
| RHS_nonrec
;;
let rec expr_size = function
| Uclosure(fundecls, clos_vars) ->
RHS_block (fundecls_size fundecls + List.length clos_vars)
| Ulet(id, exp, body) ->
expr_size body
| Uletrec(bindings, body) ->
expr_size body
| Uprim(Pmakeblock(tag, mut), args, _) ->
RHS_block (List.length args)
| Uprim(Pmakearray(Paddrarray | Pintarray), args, _) ->
RHS_block (List.length args)
| Usequence(exp, exp') ->
expr_size exp'
| _ -> RHS_nonrec
(* Record application and currying functions *)
let apply_function n =
Compilenv.need_apply_fun n; "caml_apply" ^ string_of_int n
let curry_function n =
Compilenv.need_curry_fun n;
if n >= 0
then "caml_curry" ^ string_of_int n
else "caml_tuplify" ^ string_of_int (-n)
(* Comparisons *)
let transl_comparison = function
Lambda.Ceq -> Ceq
| Lambda.Cneq -> Cne
| Lambda.Cge -> Cge
| Lambda.Cgt -> Cgt
| Lambda.Cle -> Cle
| Lambda.Clt -> Clt
(* Translate structured constants *)
let const_label = ref 0
let new_const_label () =
incr const_label;
!const_label
let new_const_symbol () =
incr const_label;
Compilenv.make_symbol (Some (string_of_int !const_label))
let structured_constants = ref ([] : (string * structured_constant) list)
let transl_constant = function
Const_base(Const_int n) ->
int_const n
| Const_base(Const_char c) ->
Cconst_int(((Char.code c) lsl 1) + 1)
| Const_pointer n ->
if n <= max_repr_int && n >= min_repr_int
then Cconst_pointer((n lsl 1) + 1)
else Cconst_natpointer
(Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n)
| cst ->
let lbl = new_const_symbol() in
structured_constants := (lbl, cst) :: !structured_constants;
Cconst_symbol lbl
(* Translate constant closures *)
let constant_closures =
ref ([] : (string * (string * int * Ident.t list * ulambda) list) list)
(* Boxed integers *)
let box_int_constant bi n =
match bi with
Pnativeint -> Const_base(Const_nativeint n)
| Pint32 -> Const_base(Const_int32 (Nativeint.to_int32 n))
| Pint64 -> Const_base(Const_int64 (Int64.of_nativeint n))
let operations_boxed_int bi =
match bi with
Pnativeint -> "caml_nativeint_ops"
| Pint32 -> "caml_int32_ops"
| Pint64 -> "caml_int64_ops"
let alloc_header_boxed_int bi =
match bi with
Pnativeint -> alloc_boxedintnat_header
| Pint32 -> alloc_boxedint32_header
| Pint64 -> alloc_boxedint64_header
let box_int bi arg =
match arg with
Cconst_int n ->
transl_constant (box_int_constant bi (Nativeint.of_int n))
| Cconst_natint n ->
transl_constant (box_int_constant bi n)
| _ ->
let arg' =
if bi = Pint32 && size_int = 8 && big_endian
then Cop(Clsl, [arg; Cconst_int 32])
else arg in
Cop(Calloc, [alloc_header_boxed_int bi;
Cconst_symbol(operations_boxed_int bi);
arg'])
let rec unbox_int bi arg =
match arg with
Cop(Calloc, [hdr; ops; Cop(Clsl, [contents; Cconst_int 32])])
when bi = Pint32 && size_int = 8 && big_endian ->
(* Force sign-extension of low 32 bits *)
Cop(Casr, [Cop(Clsl, [contents; Cconst_int 32]); Cconst_int 32])
| Cop(Calloc, [hdr; ops; contents])
when bi = Pint32 && size_int = 8 && not big_endian ->
(* Force sign-extension of low 32 bits *)
Cop(Casr, [Cop(Clsl, [contents; Cconst_int 32]); Cconst_int 32])
| Cop(Calloc, [hdr; ops; contents]) ->
contents
| Clet(id, exp, body) -> Clet(id, exp, unbox_int bi body)
| Cifthenelse(cond, e1, e2) ->
Cifthenelse(cond, unbox_int bi e1, unbox_int bi e2)
| Csequence(e1, e2) -> Csequence(e1, unbox_int bi e2)
| Cswitch(e, tbl, el) -> Cswitch(e, tbl, Array.map (unbox_int bi) el)
| Ccatch(n, ids, e1, e2) -> Ccatch(n, ids, unbox_int bi e1, unbox_int bi e2)
| Ctrywith(e1, id, e2) -> Ctrywith(unbox_int bi e1, id, unbox_int bi e2)
| _ ->
Cop(Cload(if bi = Pint32 then Thirtytwo_signed else Word),
[Cop(Cadda, [arg; Cconst_int size_addr])])
let make_unsigned_int bi arg =
if bi = Pint32 && size_int = 8
then Cop(Cand, [arg; Cconst_natint 0xFFFFFFFFn])
else arg
(* Big arrays *)
let bigarray_elt_size = function
Pbigarray_unknown -> assert false
| Pbigarray_float32 -> 4
| Pbigarray_float64 -> 8
| Pbigarray_sint8 -> 1
| Pbigarray_uint8 -> 1
| Pbigarray_sint16 -> 2
| Pbigarray_uint16 -> 2
| Pbigarray_int32 -> 4
| Pbigarray_int64 -> 8
| Pbigarray_caml_int -> size_int
| Pbigarray_native_int -> size_int
| Pbigarray_complex32 -> 8
| Pbigarray_complex64 -> 16
let bigarray_indexing unsafe elt_kind layout b args dbg =
let check_bound a1 a2 k =
if unsafe then k else Csequence(Cop(Ccheckbound dbg, [a1;a2]), k) in
let rec ba_indexing dim_ofs delta_ofs = function
[] -> assert false
| [arg] ->
bind "idx" (untag_int arg)
(fun idx ->
check_bound (Cop(Cload Word,[field_address b dim_ofs])) idx idx)
| arg1 :: argl ->
let rem = ba_indexing (dim_ofs + delta_ofs) delta_ofs argl in
bind "idx" (untag_int arg1)
(fun idx ->
bind "bound" (Cop(Cload Word, [field_address b dim_ofs]))
(fun bound ->
check_bound bound idx (add_int (mul_int rem bound) idx))) in
let offset =
match layout with
Pbigarray_unknown_layout ->
assert false
| Pbigarray_c_layout ->
ba_indexing (4 + List.length args) (-1) (List.rev args)
| Pbigarray_fortran_layout ->
ba_indexing 5 1 (List.map (fun idx -> sub_int idx (Cconst_int 2)) args)
and elt_size =
bigarray_elt_size elt_kind in
let byte_offset =
if elt_size = 1
then offset
else Cop(Clsl, [offset; Cconst_int(log2 elt_size)]) in
Cop(Cadda, [Cop(Cload Word, [field_address b 1]); byte_offset])
let bigarray_word_kind = function
Pbigarray_unknown -> assert false
| Pbigarray_float32 -> Single
| Pbigarray_float64 -> Double
| Pbigarray_sint8 -> Byte_signed
| Pbigarray_uint8 -> Byte_unsigned
| Pbigarray_sint16 -> Sixteen_signed
| Pbigarray_uint16 -> Sixteen_unsigned
| Pbigarray_int32 -> Thirtytwo_signed
| Pbigarray_int64 -> Word
| Pbigarray_caml_int -> Word
| Pbigarray_native_int -> Word
| Pbigarray_complex32 -> Single
| Pbigarray_complex64 -> Double
let bigarray_get unsafe elt_kind layout b args dbg =
bind "ba" b (fun b ->
match elt_kind with
Pbigarray_complex32 | Pbigarray_complex64 ->
let kind = bigarray_word_kind elt_kind in
let sz = bigarray_elt_size elt_kind / 2 in
bind "addr" (bigarray_indexing unsafe elt_kind layout b args dbg) (fun addr ->
box_complex
(Cop(Cload kind, [addr]))
(Cop(Cload kind, [Cop(Cadda, [addr; Cconst_int sz])])))
| _ ->
Cop(Cload (bigarray_word_kind elt_kind),
[bigarray_indexing unsafe elt_kind layout b args dbg]))
let bigarray_set unsafe elt_kind layout b args newval dbg =
bind "ba" b (fun b ->
match elt_kind with
Pbigarray_complex32 | Pbigarray_complex64 ->
let kind = bigarray_word_kind elt_kind in
let sz = bigarray_elt_size elt_kind / 2 in
bind "newval" newval (fun newv ->
bind "addr" (bigarray_indexing unsafe elt_kind layout b args dbg) (fun addr ->
Csequence(
Cop(Cstore kind, [addr; complex_re newv]),
Cop(Cstore kind,
[Cop(Cadda, [addr; Cconst_int sz]); complex_im newv]))))
| _ ->
Cop(Cstore (bigarray_word_kind elt_kind),
[bigarray_indexing unsafe elt_kind layout b args dbg; newval]))
(* Simplification of some primitives into C calls *)
let default_prim name =
{ prim_name = name; prim_arity = 0 (*ignored*);
prim_alloc = true; prim_native_name = ""; prim_native_float = false }
let simplif_primitive_32bits = function
Pbintofint Pint64 -> Pccall (default_prim "caml_int64_of_int")
| Pintofbint Pint64 -> Pccall (default_prim "caml_int64_to_int")
| Pcvtbint(Pint32, Pint64) -> Pccall (default_prim "caml_int64_of_int32")
| Pcvtbint(Pint64, Pint32) -> Pccall (default_prim "caml_int64_to_int32")
| Pcvtbint(Pnativeint, Pint64) ->
Pccall (default_prim "caml_int64_of_nativeint")
| Pcvtbint(Pint64, Pnativeint) ->
Pccall (default_prim "caml_int64_to_nativeint")
| Pnegbint Pint64 -> Pccall (default_prim "caml_int64_neg")
| Paddbint Pint64 -> Pccall (default_prim "caml_int64_add")
| Psubbint Pint64 -> Pccall (default_prim "caml_int64_sub")
| Pmulbint Pint64 -> Pccall (default_prim "caml_int64_mul")
| Pdivbint Pint64 -> Pccall (default_prim "caml_int64_div")
| Pmodbint Pint64 -> Pccall (default_prim "caml_int64_mod")
| Pandbint Pint64 -> Pccall (default_prim "caml_int64_and")
| Porbint Pint64 -> Pccall (default_prim "caml_int64_or")
| Pxorbint Pint64 -> Pccall (default_prim "caml_int64_xor")
| Plslbint Pint64 -> Pccall (default_prim "caml_int64_shift_left")
| Plsrbint Pint64 -> Pccall (default_prim "caml_int64_shift_right_unsigned")
| Pasrbint Pint64 -> Pccall (default_prim "caml_int64_shift_right")
| Pbintcomp(Pint64, Lambda.Ceq) -> Pccall (default_prim "caml_equal")
| Pbintcomp(Pint64, Lambda.Cneq) -> Pccall (default_prim "caml_notequal")
| Pbintcomp(Pint64, Lambda.Clt) -> Pccall (default_prim "caml_lessthan")
| Pbintcomp(Pint64, Lambda.Cgt) -> Pccall (default_prim "caml_greaterthan")
| Pbintcomp(Pint64, Lambda.Cle) -> Pccall (default_prim "caml_lessequal")
| Pbintcomp(Pint64, Lambda.Cge) -> Pccall (default_prim "caml_greaterequal")
| Pbigarrayref(unsafe, n, Pbigarray_int64, layout) ->
Pccall (default_prim ("caml_ba_get_" ^ string_of_int n))
| Pbigarrayset(unsafe, n, Pbigarray_int64, layout) ->
Pccall (default_prim ("caml_ba_set_" ^ string_of_int n))
| p -> p
let simplif_primitive p =
match p with
| Pduprecord _ ->
Pccall (default_prim "caml_obj_dup")
| Pbigarrayref(unsafe, n, Pbigarray_unknown, layout) ->
Pccall (default_prim ("caml_ba_get_" ^ string_of_int n))
| Pbigarrayset(unsafe, n, Pbigarray_unknown, layout) ->
Pccall (default_prim ("caml_ba_set_" ^ string_of_int n))
| Pbigarrayref(unsafe, n, kind, Pbigarray_unknown_layout) ->
Pccall (default_prim ("caml_ba_get_" ^ string_of_int n))
| Pbigarrayset(unsafe, n, kind, Pbigarray_unknown_layout) ->
Pccall (default_prim ("caml_ba_set_" ^ string_of_int n))
| p ->
if size_int = 8 then p else simplif_primitive_32bits p
(* Build switchers both for constants and blocks *)
(* constants first *)
let transl_isout h arg = tag_int (Cop(Ccmpa Clt, [h ; arg]))
exception Found of int
let make_switch_gen arg cases acts =
let lcases = Array.length cases in
let new_cases = Array.create lcases 0 in
let store = Switch.mk_store (=) in
for i = 0 to Array.length cases-1 do
let act = cases.(i) in
let new_act = store.Switch.act_store act in
new_cases.(i) <- new_act
done ;
Cswitch
(arg, new_cases,
Array.map
(fun n -> acts.(n))
(store.Switch.act_get ()))
(* Then for blocks *)
module SArgBlocks =
struct
type primitive = operation
let eqint = Ccmpi Ceq
let neint = Ccmpi Cne
let leint = Ccmpi Cle
let ltint = Ccmpi Clt
let geint = Ccmpi Cge
let gtint = Ccmpi Cgt
type act = expression
let default = Cexit (0,[])
let make_prim p args = Cop (p,args)
let make_offset arg n = add_const arg n
let make_isout h arg = Cop (Ccmpa Clt, [h ; arg])
let make_isin h arg = Cop (Ccmpa Cge, [h ; arg])
let make_if cond ifso ifnot = Cifthenelse (cond, ifso, ifnot)
let make_switch arg cases actions =
make_switch_gen arg cases actions
let bind arg body = bind "switcher" arg body
end
module SwitcherBlocks = Switch.Make(SArgBlocks)
(* Auxiliary functions for optimizing "let" of boxed numbers (floats and
boxed integers *)
type unboxed_number_kind =
No_unboxing
| Boxed_float
| Boxed_integer of boxed_integer
let is_unboxed_number = function
Uconst(Const_base(Const_float f)) ->
Boxed_float
| Uprim(p, _, _) ->
begin match simplif_primitive p with
Pccall p -> if p.prim_native_float then Boxed_float else No_unboxing
| Pfloatfield _ -> Boxed_float
| Pfloatofint -> Boxed_float
| Pnegfloat -> Boxed_float
| Pabsfloat -> Boxed_float
| Paddfloat -> Boxed_float
| Psubfloat -> Boxed_float
| Pmulfloat -> Boxed_float
| Pdivfloat -> Boxed_float
| Parrayrefu Pfloatarray -> Boxed_float
| Parrayrefs Pfloatarray -> Boxed_float
| Pbintofint bi -> Boxed_integer bi
| Pcvtbint(src, dst) -> Boxed_integer dst
| Pnegbint bi -> Boxed_integer bi
| Paddbint bi -> Boxed_integer bi
| Psubbint bi -> Boxed_integer bi
| Pmulbint bi -> Boxed_integer bi
| Pdivbint bi -> Boxed_integer bi
| Pmodbint bi -> Boxed_integer bi
| Pandbint bi -> Boxed_integer bi
| Porbint bi -> Boxed_integer bi
| Pxorbint bi -> Boxed_integer bi
| Plslbint bi -> Boxed_integer bi
| Plsrbint bi -> Boxed_integer bi
| Pasrbint bi -> Boxed_integer bi
| Pbigarrayref(_, _, (Pbigarray_float32 | Pbigarray_float64), _) ->
Boxed_float
| Pbigarrayref(_, _, Pbigarray_int32, _) -> Boxed_integer Pint32
| Pbigarrayref(_, _, Pbigarray_int64, _) -> Boxed_integer Pint64
| Pbigarrayref(_, _, Pbigarray_native_int, _) -> Boxed_integer Pnativeint
| _ -> No_unboxing
end
| _ -> No_unboxing
let subst_boxed_number unbox_fn boxed_id unboxed_id exp =
let need_boxed = ref false in
let assigned = ref false in
let rec subst = function
Cvar id as e ->
if Ident.same id boxed_id then need_boxed := true; e
| Clet(id, arg, body) -> Clet(id, subst arg, subst body)
| Cassign(id, arg) ->
if Ident.same id boxed_id then begin
assigned := true;
Cassign(unboxed_id, subst(unbox_fn arg))
end else
Cassign(id, subst arg)
| Ctuple argv -> Ctuple(List.map subst argv)
| Cop(Cload _, [Cvar id]) as e ->
if Ident.same id boxed_id then Cvar unboxed_id else e
| Cop(Cload _, [Cop(Cadda, [Cvar id; _])]) as e ->
if Ident.same id boxed_id then Cvar unboxed_id else e
| Cop(op, argv) -> Cop(op, List.map subst argv)
| Csequence(e1, e2) -> Csequence(subst e1, subst e2)
| Cifthenelse(e1, e2, e3) -> Cifthenelse(subst e1, subst e2, subst e3)
| Cswitch(arg, index, cases) ->
Cswitch(subst arg, index, Array.map subst cases)
| Cloop e -> Cloop(subst e)
| Ccatch(nfail, ids, e1, e2) -> Ccatch(nfail, ids, subst e1, subst e2)
| Cexit (nfail, el) -> Cexit (nfail, List.map subst el)
| Ctrywith(e1, id, e2) -> Ctrywith(subst e1, id, subst e2)
| e -> e in
let res = subst exp in
(res, !need_boxed, !assigned)
(* Translate an expression *)
let functions = (Queue.create() : (string * Ident.t list * ulambda) Queue.t)
let rec transl = function
Uvar id ->
Cvar id
| Uconst sc ->
transl_constant sc
| Uclosure(fundecls, []) ->
let lbl = new_const_symbol() in
constant_closures := (lbl, fundecls) :: !constant_closures;
List.iter
(fun (label, arity, params, body) ->
Queue.add (label, params, body) functions)
fundecls;
Cconst_symbol lbl
| Uclosure(fundecls, clos_vars) ->
let block_size =
fundecls_size fundecls + List.length clos_vars in
let rec transl_fundecls pos = function
[] ->
List.map transl clos_vars
| (label, arity, params, body) :: rem ->
Queue.add (label, params, body) functions;
let header =
if pos = 0
then alloc_closure_header block_size
else alloc_infix_header pos in
if arity = 1 then
header ::
Cconst_symbol label ::
int_const 1 ::
transl_fundecls (pos + 3) rem
else
header ::
Cconst_symbol(curry_function arity) ::
int_const arity ::
Cconst_symbol label ::
transl_fundecls (pos + 4) rem in
Cop(Calloc, transl_fundecls 0 fundecls)
| Uoffset(arg, offset) ->
field_address (transl arg) offset
| Udirect_apply(lbl, args, dbg) ->
Cop(Capply(typ_addr, dbg), Cconst_symbol lbl :: List.map transl args)
| Ugeneric_apply(clos, [arg], dbg) ->
bind "fun" (transl clos) (fun clos ->
Cop(Capply(typ_addr, dbg), [get_field clos 0; transl arg; clos]))
| Ugeneric_apply(clos, args, dbg) ->
let arity = List.length args in
let cargs = Cconst_symbol(apply_function arity) ::
List.map transl (args @ [clos]) in
Cop(Capply(typ_addr, dbg), cargs)
| Usend(kind, met, obj, args, dbg) ->
let call_met obj args clos =
if args = [] then
Cop(Capply(typ_addr, dbg), [get_field clos 0;obj;clos])
else
let arity = List.length args + 1 in
let cargs = Cconst_symbol(apply_function arity) :: obj ::
(List.map transl args) @ [clos] in
Cop(Capply(typ_addr, dbg), cargs)
in
bind "obj" (transl obj) (fun obj ->
match kind, args with
Self, _ ->
bind "met" (lookup_label obj (transl met)) (call_met obj args)
| Cached, cache :: pos :: args ->
call_cached_method obj (transl met) (transl cache) (transl pos)
(List.map transl args) dbg
| _ ->
bind "met" (lookup_tag obj (transl met)) (call_met obj args))
| Ulet(id, exp, body) ->
begin match is_unboxed_number exp with
No_unboxing ->
Clet(id, transl exp, transl body)
| Boxed_float ->
transl_unbox_let box_float unbox_float transl_unbox_float
id exp body
| Boxed_integer bi ->
transl_unbox_let (box_int bi) (unbox_int bi) (transl_unbox_int bi)
id exp body
end
| Uletrec(bindings, body) ->
transl_letrec bindings (transl body)
(* Primitives *)
| Uprim(prim, args, dbg) ->
begin match (simplif_primitive prim, args) with
(Pgetglobal id, []) ->
Cconst_symbol (Ident.name id)
| (Pmakeblock(tag, mut), []) ->
transl_constant(Const_block(tag, []))
| (Pmakeblock(tag, mut), args) ->
make_alloc tag (List.map transl args)
| (Pccall prim, args) ->
if prim.prim_native_float then
box_float
(Cop(Cextcall(prim.prim_native_name, typ_float, false, dbg),
List.map transl_unbox_float args))
else
Cop(Cextcall(Primitive.native_name prim, typ_addr, prim.prim_alloc, dbg),
List.map transl args)
| (Pmakearray kind, []) ->
transl_constant(Const_block(0, []))
| (Pmakearray kind, args) ->
begin match kind with
Pgenarray ->
Cop(Cextcall("caml_make_array", typ_addr, true, Debuginfo.none),
[make_alloc 0 (List.map transl args)])
| Paddrarray | Pintarray ->
make_alloc 0 (List.map transl args)
| Pfloatarray ->
make_float_alloc Obj.double_array_tag
(List.map transl_unbox_float args)
end
| (Pbigarrayref(unsafe, num_dims, elt_kind, layout), arg1 :: argl) ->
let elt =
bigarray_get unsafe elt_kind layout
(transl arg1) (List.map transl argl) dbg in
begin match elt_kind with
Pbigarray_float32 | Pbigarray_float64 -> box_float elt
| Pbigarray_complex32 | Pbigarray_complex64 -> elt
| Pbigarray_int32 -> box_int Pint32 elt
| Pbigarray_int64 -> box_int Pint64 elt
| Pbigarray_native_int -> box_int Pnativeint elt
| Pbigarray_caml_int -> force_tag_int elt
| _ -> tag_int elt
end
| (Pbigarrayset(unsafe, num_dims, elt_kind, layout), arg1 :: argl) ->
let (argidx, argnewval) = split_last argl in
return_unit(bigarray_set unsafe elt_kind layout
(transl arg1)
(List.map transl argidx)
(match elt_kind with
Pbigarray_float32 | Pbigarray_float64 ->
transl_unbox_float argnewval
| Pbigarray_complex32 | Pbigarray_complex64 -> transl argnewval
| Pbigarray_int32 -> transl_unbox_int Pint32 argnewval
| Pbigarray_int64 -> transl_unbox_int Pint64 argnewval
| Pbigarray_native_int -> transl_unbox_int Pnativeint argnewval
| _ -> untag_int (transl argnewval))
dbg)
| (p, [arg]) ->
transl_prim_1 p arg dbg
| (p, [arg1; arg2]) ->
transl_prim_2 p arg1 arg2 dbg
| (p, [arg1; arg2; arg3]) ->
transl_prim_3 p arg1 arg2 arg3 dbg
| (_, _) ->
fatal_error "Cmmgen.transl:prim"
end
(* Control structures *)
| Uswitch(arg, s) ->
(* As in the bytecode interpreter, only matching against constants
can be checked *)
if Array.length s.us_index_blocks = 0 then
Cswitch
(untag_int (transl arg),
s.us_index_consts,
Array.map transl s.us_actions_consts)
else if Array.length s.us_index_consts = 0 then
transl_switch (get_tag (transl arg))
s.us_index_blocks s.us_actions_blocks
else
bind "switch" (transl arg) (fun arg ->
Cifthenelse(
Cop(Cand, [arg; Cconst_int 1]),
transl_switch
(untag_int arg) s.us_index_consts s.us_actions_consts,
transl_switch
(get_tag arg) s.us_index_blocks s.us_actions_blocks))
| Ustaticfail (nfail, args) ->
Cexit (nfail, List.map transl args)
| Ucatch(nfail, [], body, handler) ->
make_catch nfail (transl body) (transl handler)
| Ucatch(nfail, ids, body, handler) ->
Ccatch(nfail, ids, transl body, transl handler)
| Utrywith(body, exn, handler) ->
Ctrywith(transl body, exn, transl handler)
| Uifthenelse(Uprim(Pnot, [arg], _), ifso, ifnot) ->
transl (Uifthenelse(arg, ifnot, ifso))
| Uifthenelse(cond, ifso, Ustaticfail (nfail, [])) ->
exit_if_false cond (transl ifso) nfail
| Uifthenelse(cond, Ustaticfail (nfail, []), ifnot) ->
exit_if_true cond nfail (transl ifnot)
| Uifthenelse(Uprim(Psequand, _, _) as cond, ifso, ifnot) ->
let raise_num = next_raise_count () in
make_catch
raise_num
(exit_if_false cond (transl ifso) raise_num)
(transl ifnot)
| Uifthenelse(Uprim(Psequor, _, _) as cond, ifso, ifnot) ->
let raise_num = next_raise_count () in
make_catch
raise_num
(exit_if_true cond raise_num (transl ifnot))
(transl ifso)
| Uifthenelse (Uifthenelse (cond, condso, condnot), ifso, ifnot) ->
let num_true = next_raise_count () in
make_catch
num_true
(make_catch2
(fun shared_false ->
Cifthenelse
(test_bool (transl cond),
exit_if_true condso num_true shared_false,
exit_if_true condnot num_true shared_false))
(transl ifnot))
(transl ifso)
| Uifthenelse(cond, ifso, ifnot) ->
Cifthenelse(test_bool(transl cond), transl ifso, transl ifnot)
| Usequence(exp1, exp2) ->
Csequence(remove_unit(transl exp1), transl exp2)
| Uwhile(cond, body) ->
let raise_num = next_raise_count () in
return_unit
(Ccatch
(raise_num, [],
Cloop(exit_if_false cond (remove_unit(transl body)) raise_num),
Ctuple []))
| Ufor(id, low, high, dir, body) ->
let tst = match dir with Upto -> Cgt | Downto -> Clt in
let inc = match dir with Upto -> Caddi | Downto -> Csubi in
let raise_num = next_raise_count () in
let id_prev = Ident.rename id in
return_unit
(Clet
(id, transl low,
bind_nonvar "bound" (transl high) (fun high ->
Ccatch
(raise_num, [],
Cifthenelse
(Cop(Ccmpi tst, [Cvar id; high]), Cexit (raise_num, []),
Cloop
(Csequence
(remove_unit(transl body),
Clet(id_prev, Cvar id,
Csequence
(Cassign(id,
Cop(inc, [Cvar id; Cconst_int 2])),
Cifthenelse
(Cop(Ccmpi Ceq, [Cvar id_prev; high]),
Cexit (raise_num,[]), Ctuple [])))))),
Ctuple []))))
| Uassign(id, exp) ->
return_unit(Cassign(id, transl exp))
and transl_prim_1 p arg dbg =
match p with
(* Generic operations *)
Pidentity ->
transl arg
| Pignore ->
return_unit(remove_unit (transl arg))
(* Heap operations *)
| Pfield n ->
get_field (transl arg) n
| Pfloatfield n ->
let ptr = transl arg in
box_float(
Cop(Cload Double_u,
[if n = 0 then ptr
else Cop(Cadda, [ptr; Cconst_int(n * size_float)])]))
(* Exceptions *)
| Praise ->
Cop(Craise dbg, [transl arg])
(* Integer operations *)
| Pnegint ->
Cop(Csubi, [Cconst_int 2; transl arg])
| Poffsetint n ->
if no_overflow_lsl n then
add_const (transl arg) (n lsl 1)
else
transl_prim_2 Paddint arg (Uconst (Const_base(Const_int n))) Debuginfo.none
| Poffsetref n ->
return_unit
(bind "ref" (transl arg) (fun arg ->
Cop(Cstore Word,
[arg; add_const (Cop(Cload Word, [arg])) (n lsl 1)])))
(* Floating-point operations *)
| Pfloatofint ->
box_float(Cop(Cfloatofint, [untag_int(transl arg)]))
| Pintoffloat ->
tag_int(Cop(Cintoffloat, [transl_unbox_float arg]))
| Pnegfloat ->
box_float(Cop(Cnegf, [transl_unbox_float arg]))
| Pabsfloat ->
box_float(Cop(Cabsf, [transl_unbox_float arg]))
(* String operations *)
| Pstringlength ->
tag_int(string_length (transl arg))
(* Array operations *)
| Parraylength kind ->
begin match kind with
Pgenarray ->
let len =
if wordsize_shift = numfloat_shift then
Cop(Clsr, [header(transl arg); Cconst_int wordsize_shift])
else
bind "header" (header(transl arg)) (fun hdr ->
Cifthenelse(is_addr_array_hdr hdr,
Cop(Clsr, [hdr; Cconst_int wordsize_shift]),
Cop(Clsr, [hdr; Cconst_int numfloat_shift]))) in
Cop(Cor, [len; Cconst_int 1])
| Paddrarray | Pintarray ->
Cop(Cor, [addr_array_length(header(transl arg)); Cconst_int 1])
| Pfloatarray ->
Cop(Cor, [float_array_length(header(transl arg)); Cconst_int 1])
end
(* Boolean operations *)
| Pnot ->
Cop(Csubi, [Cconst_int 4; transl arg]) (* 1 -> 3, 3 -> 1 *)
(* Test integer/block *)
| Pisint ->
tag_int(Cop(Cand, [transl arg; Cconst_int 1]))
(* Boxed integers *)
| Pbintofint bi ->
box_int bi (untag_int (transl arg))
| Pintofbint bi ->
force_tag_int (transl_unbox_int bi arg)
| Pcvtbint(bi1, bi2) ->
box_int bi2 (transl_unbox_int bi1 arg)
| Pnegbint bi ->
box_int bi (Cop(Csubi, [Cconst_int 0; transl_unbox_int bi arg]))
| _ ->
fatal_error "Cmmgen.transl_prim_1"
and transl_prim_2 p arg1 arg2 dbg =
match p with
(* Heap operations *)
Psetfield(n, ptr) ->
if ptr then
return_unit(Cop(Cextcall("caml_modify", typ_void, false, Debuginfo.none),
[field_address (transl arg1) n; transl arg2]))
else
return_unit(set_field (transl arg1) n (transl arg2))
| Psetfloatfield n ->
let ptr = transl arg1 in
return_unit(
Cop(Cstore Double_u,
[if n = 0 then ptr
else Cop(Cadda, [ptr; Cconst_int(n * size_float)]);
transl_unbox_float arg2]))
(* Boolean operations *)
| Psequand ->
Cifthenelse(test_bool(transl arg1), transl arg2, Cconst_int 1)
(* let id = Ident.create "res1" in
Clet(id, transl arg1,
Cifthenelse(test_bool(Cvar id), transl arg2, Cvar id)) *)
| Psequor ->
Cifthenelse(test_bool(transl arg1), Cconst_int 3, transl arg2)
(* Integer operations *)
| Paddint ->
decr_int(add_int (transl arg1) (transl arg2))
| Psubint ->
incr_int(sub_int (transl arg1) (transl arg2))
| Pmulint ->
incr_int(Cop(Cmuli, [decr_int(transl arg1); untag_int(transl arg2)]))
| Pdivint ->
tag_int(safe_divmod Cdivi (untag_int(transl arg1)) (untag_int(transl arg2)) dbg)
| Pmodint ->
tag_int(safe_divmod Cmodi (untag_int(transl arg1)) (untag_int(transl arg2)) dbg)
| Pandint ->
Cop(Cand, [transl arg1; transl arg2])
| Porint ->
Cop(Cor, [transl arg1; transl arg2])
| Pxorint ->
Cop(Cor, [Cop(Cxor, [ignore_low_bit_int(transl arg1);
ignore_low_bit_int(transl arg2)]);
Cconst_int 1])
| Plslint ->
incr_int(lsl_int (decr_int(transl arg1)) (untag_int(transl arg2)))
| Plsrint ->
Cop(Cor, [Cop(Clsr, [transl arg1; untag_int(transl arg2)]);
Cconst_int 1])
| Pasrint ->
Cop(Cor, [Cop(Casr, [transl arg1; untag_int(transl arg2)]);
Cconst_int 1])
| Pintcomp cmp ->
tag_int(Cop(Ccmpi(transl_comparison cmp), [transl arg1; transl arg2]))
| Pisout ->
transl_isout (transl arg1) (transl arg2)
(* Float operations *)
| Paddfloat ->
box_float(Cop(Caddf,
[transl_unbox_float arg1; transl_unbox_float arg2]))
| Psubfloat ->
box_float(Cop(Csubf,
[transl_unbox_float arg1; transl_unbox_float arg2]))
| Pmulfloat ->
box_float(Cop(Cmulf,
[transl_unbox_float arg1; transl_unbox_float arg2]))
| Pdivfloat ->
box_float(Cop(Cdivf,
[transl_unbox_float arg1; transl_unbox_float arg2]))
| Pfloatcomp cmp ->
tag_int(Cop(Ccmpf(transl_comparison cmp),
[transl_unbox_float arg1; transl_unbox_float arg2]))
(* String operations *)
| Pstringrefu ->
tag_int(Cop(Cload Byte_unsigned,
[add_int (transl arg1) (untag_int(transl arg2))]))
| Pstringrefs ->
tag_int
(bind "str" (transl arg1) (fun str ->
bind "index" (untag_int (transl arg2)) (fun idx ->
Csequence(
Cop(Ccheckbound dbg, [string_length str; idx]),
Cop(Cload Byte_unsigned, [add_int str idx])))))
(* Array operations *)
| Parrayrefu kind ->
begin match kind with
Pgenarray ->
bind "arr" (transl arg1) (fun arr ->
bind "index" (transl arg2) (fun idx ->
Cifthenelse(is_addr_array_ptr arr,
addr_array_ref arr idx,
float_array_ref arr idx)))
| Paddrarray | Pintarray ->
addr_array_ref (transl arg1) (transl arg2)
| Pfloatarray ->
float_array_ref (transl arg1) (transl arg2)
end
| Parrayrefs kind ->
begin match kind with
Pgenarray ->
bind "index" (transl arg2) (fun idx ->
bind "arr" (transl arg1) (fun arr ->
bind "header" (header arr) (fun hdr ->
Cifthenelse(is_addr_array_hdr hdr,
Csequence(Cop(Ccheckbound dbg, [addr_array_length hdr; idx]),
addr_array_ref arr idx),
Csequence(Cop(Ccheckbound dbg, [float_array_length hdr; idx]),
float_array_ref arr idx)))))
| Paddrarray | Pintarray ->
bind "index" (transl arg2) (fun idx ->
bind "arr" (transl arg1) (fun arr ->
Csequence(Cop(Ccheckbound dbg, [addr_array_length(header arr); idx]),
addr_array_ref arr idx)))
| Pfloatarray ->
box_float(
bind "index" (transl arg2) (fun idx ->
bind "arr" (transl arg1) (fun arr ->
Csequence(Cop(Ccheckbound dbg,
[float_array_length(header arr); idx]),
unboxed_float_array_ref arr idx))))
end
(* Operations on bitvects *)
| Pbittest ->
bind "index" (untag_int(transl arg2)) (fun idx ->
tag_int(
Cop(Cand, [Cop(Clsr, [Cop(Cload Byte_unsigned,
[add_int (transl arg1)
(Cop(Clsr, [idx; Cconst_int 3]))]);
Cop(Cand, [idx; Cconst_int 7])]);
Cconst_int 1])))
(* Boxed integers *)
| Paddbint bi ->
box_int bi (Cop(Caddi,
[transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
| Psubbint bi ->
box_int bi (Cop(Csubi,
[transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
| Pmulbint bi ->
box_int bi (Cop(Cmuli,
[transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
| Pdivbint bi ->
box_int bi (safe_divmod Cdivi
(transl_unbox_int bi arg1) (transl_unbox_int bi arg2)
dbg)
| Pmodbint bi ->
box_int bi (safe_divmod Cmodi
(transl_unbox_int bi arg1) (transl_unbox_int bi arg2)
dbg)
| Pandbint bi ->
box_int bi (Cop(Cand,
[transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
| Porbint bi ->
box_int bi (Cop(Cor,
[transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
| Pxorbint bi ->
box_int bi (Cop(Cxor,
[transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
| Plslbint bi ->
box_int bi (Cop(Clsl,
[transl_unbox_int bi arg1; untag_int(transl arg2)]))
| Plsrbint bi ->
box_int bi (Cop(Clsr,
[make_unsigned_int bi (transl_unbox_int bi arg1);
untag_int(transl arg2)]))
| Pasrbint bi ->
box_int bi (Cop(Casr,
[transl_unbox_int bi arg1; untag_int(transl arg2)]))
| Pbintcomp(bi, cmp) ->
tag_int (Cop(Ccmpi(transl_comparison cmp),
[transl_unbox_int bi arg1; transl_unbox_int bi arg2]))
| _ ->
fatal_error "Cmmgen.transl_prim_2"
and transl_prim_3 p arg1 arg2 arg3 dbg =
match p with
(* String operations *)
Pstringsetu ->
return_unit(Cop(Cstore Byte_unsigned,
[add_int (transl arg1) (untag_int(transl arg2));
untag_int(transl arg3)]))
| Pstringsets ->
return_unit
(bind "str" (transl arg1) (fun str ->
bind "index" (untag_int (transl arg2)) (fun idx ->
Csequence(
Cop(Ccheckbound dbg, [string_length str; idx]),
Cop(Cstore Byte_unsigned,
[add_int str idx; untag_int(transl arg3)])))))
(* Array operations *)
| Parraysetu kind ->
return_unit(begin match kind with
Pgenarray ->
bind "newval" (transl arg3) (fun newval ->
bind "index" (transl arg2) (fun index ->
bind "arr" (transl arg1) (fun arr ->
Cifthenelse(is_addr_array_ptr arr,
addr_array_set arr index newval,
float_array_set arr index (unbox_float newval)))))
| Paddrarray ->
addr_array_set (transl arg1) (transl arg2) (transl arg3)
| Pintarray ->
int_array_set (transl arg1) (transl arg2) (transl arg3)
| Pfloatarray ->
float_array_set (transl arg1) (transl arg2) (transl_unbox_float arg3)
end)
| Parraysets kind ->
return_unit(begin match kind with
Pgenarray ->
bind "newval" (transl arg3) (fun newval ->
bind "index" (transl arg2) (fun idx ->
bind "arr" (transl arg1) (fun arr ->
bind "header" (header arr) (fun hdr ->
Cifthenelse(is_addr_array_hdr hdr,
Csequence(Cop(Ccheckbound dbg, [addr_array_length hdr; idx]),
addr_array_set arr idx newval),
Csequence(Cop(Ccheckbound dbg, [float_array_length hdr; idx]),
float_array_set arr idx
(unbox_float newval)))))))
| Paddrarray ->
bind "index" (transl arg2) (fun idx ->
bind "arr" (transl arg1) (fun arr ->
Csequence(Cop(Ccheckbound dbg, [addr_array_length(header arr); idx]),
addr_array_set arr idx (transl arg3))))
| Pintarray ->
bind "index" (transl arg2) (fun idx ->
bind "arr" (transl arg1) (fun arr ->
Csequence(Cop(Ccheckbound dbg, [addr_array_length(header arr); idx]),
int_array_set arr idx (transl arg3))))
| Pfloatarray ->
bind "index" (transl arg2) (fun idx ->
bind "arr" (transl arg1) (fun arr ->
Csequence(Cop(Ccheckbound dbg, [float_array_length(header arr);idx]),
float_array_set arr idx (transl_unbox_float arg3))))
end)
| _ ->
fatal_error "Cmmgen.transl_prim_3"
and transl_unbox_float = function
Uconst(Const_base(Const_float f)) -> Cconst_float f
| exp -> unbox_float(transl exp)
and transl_unbox_int bi = function
Uconst(Const_base(Const_int32 n)) ->
Cconst_natint (Nativeint.of_int32 n)
| Uconst(Const_base(Const_nativeint n)) ->
Cconst_natint n
| Uconst(Const_base(Const_int64 n)) ->
assert (size_int = 8); Cconst_natint (Int64.to_nativeint n)
| Uprim(Pbintofint bi', [Uconst(Const_base(Const_int i))], _) when bi = bi' ->
Cconst_int i
| exp -> unbox_int bi (transl exp)
and transl_unbox_let box_fn unbox_fn transl_unbox_fn id exp body =
let unboxed_id = Ident.create (Ident.name id) in
let trbody1 = transl body in
let (trbody2, need_boxed, is_assigned) =
subst_boxed_number unbox_fn id unboxed_id trbody1 in
if need_boxed && is_assigned then
Clet(id, transl exp, trbody1)
else
Clet(unboxed_id, transl_unbox_fn exp,
if need_boxed
then Clet(id, box_fn(Cvar unboxed_id), trbody2)
else trbody2)
and make_catch ncatch body handler = match body with
| Cexit (nexit,[]) when nexit=ncatch -> handler
| _ -> Ccatch (ncatch, [], body, handler)
and make_catch2 mk_body handler = match handler with
| Cexit (_,[])|Ctuple []|Cconst_int _|Cconst_pointer _ ->
mk_body handler
| _ ->
let nfail = next_raise_count () in
make_catch
nfail
(mk_body (Cexit (nfail,[])))
handler
and exit_if_true cond nfail otherwise =
match cond with
| Uconst (Const_pointer 0) -> otherwise
| Uconst (Const_pointer 1) -> Cexit (nfail,[])
| Uprim(Psequor, [arg1; arg2], _) ->
exit_if_true arg1 nfail (exit_if_true arg2 nfail otherwise)
| Uprim(Psequand, _, _) ->
begin match otherwise with
| Cexit (raise_num,[]) ->
exit_if_false cond (Cexit (nfail,[])) raise_num
| _ ->
let raise_num = next_raise_count () in
make_catch
raise_num
(exit_if_false cond (Cexit (nfail,[])) raise_num)
otherwise
end
| Uprim(Pnot, [arg], _) ->
exit_if_false arg otherwise nfail
| Uifthenelse (cond, ifso, ifnot) ->
make_catch2
(fun shared ->
Cifthenelse
(test_bool (transl cond),
exit_if_true ifso nfail shared,
exit_if_true ifnot nfail shared))
otherwise
| _ ->
Cifthenelse(test_bool(transl cond), Cexit (nfail, []), otherwise)
and exit_if_false cond otherwise nfail =
match cond with
| Uconst (Const_pointer 0) -> Cexit (nfail,[])
| Uconst (Const_pointer 1) -> otherwise
| Uprim(Psequand, [arg1; arg2], _) ->
exit_if_false arg1 (exit_if_false arg2 otherwise nfail) nfail
| Uprim(Psequor, _, _) ->
begin match otherwise with
| Cexit (raise_num,[]) ->
exit_if_true cond raise_num (Cexit (nfail,[]))
| _ ->
let raise_num = next_raise_count () in
make_catch
raise_num
(exit_if_true cond raise_num (Cexit (nfail,[])))
otherwise
end
| Uprim(Pnot, [arg], _) ->
exit_if_true arg nfail otherwise
| Uifthenelse (cond, ifso, ifnot) ->
make_catch2
(fun shared ->
Cifthenelse
(test_bool (transl cond),
exit_if_false ifso shared nfail,
exit_if_false ifnot shared nfail))
otherwise
| _ ->
Cifthenelse(test_bool(transl cond), otherwise, Cexit (nfail, []))
and transl_switch arg index cases = match Array.length cases with
| 0 -> fatal_error "Cmmgen.transl_switch"
| 1 -> transl cases.(0)
| _ ->
let n_index = Array.length index in
let actions = Array.map transl cases in
let inters = ref []
and this_high = ref (n_index-1)
and this_low = ref (n_index-1)
and this_act = ref index.(n_index-1) in
for i = n_index-2 downto 0 do
let act = index.(i) in
if act = !this_act then
decr this_low
else begin
inters := (!this_low, !this_high, !this_act) :: !inters ;
this_high := i ;
this_low := i ;
this_act := act
end
done ;
inters := (0, !this_high, !this_act) :: !inters ;
bind "switcher" arg
(fun a ->
SwitcherBlocks.zyva
(0,n_index-1)
(fun i -> Cconst_int i)
a
(Array.of_list !inters) actions)
and transl_letrec bindings cont =
let bsz = List.map (fun (id, exp) -> (id, exp, expr_size exp)) bindings in
let rec init_blocks = function
| [] -> fill_nonrec bsz
| (id, exp, RHS_block sz) :: rem ->
Clet(id, Cop(Cextcall("caml_alloc_dummy", typ_addr, true, Debuginfo.none),
[int_const sz]),
init_blocks rem)
| (id, exp, RHS_nonrec) :: rem ->
Clet (id, Cconst_int 0, init_blocks rem)
and fill_nonrec = function
| [] -> fill_blocks bsz
| (id, exp, RHS_block sz) :: rem -> fill_nonrec rem
| (id, exp, RHS_nonrec) :: rem ->
Clet (id, transl exp, fill_nonrec rem)
and fill_blocks = function
| [] -> cont
| (id, exp, RHS_block _) :: rem ->
Csequence(Cop(Cextcall("caml_update_dummy", typ_void, false, Debuginfo.none),
[Cvar id; transl exp]),
fill_blocks rem)
| (id, exp, RHS_nonrec) :: rem ->
fill_blocks rem
in init_blocks bsz
(* Translate a function definition *)
let transl_function lbl params body =
Cfunction {fun_name = lbl;
fun_args = List.map (fun id -> (id, typ_addr)) params;
fun_body = transl body;
fun_fast = !Clflags.optimize_for_speed}
(* Translate all function definitions *)
module StringSet =
Set.Make(struct
type t = string
let compare = compare
end)
let rec transl_all_functions already_translated cont =
try
let (lbl, params, body) = Queue.take functions in
if StringSet.mem lbl already_translated then
transl_all_functions already_translated cont
else begin
transl_all_functions (StringSet.add lbl already_translated)
(transl_function lbl params body :: cont)
end
with Queue.Empty ->
cont
(* Emit structured constants *)
let immstrings = Hashtbl.create 17
let rec emit_constant symb cst cont =
match cst with
Const_base(Const_float s) ->
Cint(float_header) :: Cdefine_symbol symb :: Cdouble s :: cont
| Const_base(Const_string s) | Const_immstring s ->
Cint(string_header (String.length s)) ::
Cdefine_symbol symb ::
emit_string_constant s cont
| Const_base(Const_int32 n) ->
Cint(boxedint32_header) :: Cdefine_symbol symb ::
emit_boxed_int32_constant n cont
| Const_base(Const_int64 n) ->
Cint(boxedint64_header) :: Cdefine_symbol symb ::
emit_boxed_int64_constant n cont
| Const_base(Const_nativeint n) ->
Cint(boxedintnat_header) :: Cdefine_symbol symb ::
emit_boxed_nativeint_constant n cont
| Const_block(tag, fields) ->
let (emit_fields, cont1) = emit_constant_fields fields cont in
Cint(block_header tag (List.length fields)) ::
Cdefine_symbol symb ::
emit_fields @ cont1
| Const_float_array(fields) ->
Cint(floatarray_header (List.length fields)) ::
Cdefine_symbol symb ::
Misc.map_end (fun f -> Cdouble f) fields cont
| _ -> fatal_error "gencmm.emit_constant"
and emit_constant_fields fields cont =
match fields with
[] -> ([], cont)
| f1 :: fl ->
let (data1, cont1) = emit_constant_field f1 cont in
let (datal, contl) = emit_constant_fields fl cont1 in
(data1 :: datal, contl)
and emit_constant_field field cont =
match field with
Const_base(Const_int n) ->
(Cint(Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n),
cont)
| Const_base(Const_char c) ->
(Cint(Nativeint.of_int(((Char.code c) lsl 1) + 1)), cont)
| Const_base(Const_float s) ->
let lbl = new_const_label() in
(Clabel_address lbl,
Cint(float_header) :: Cdefine_label lbl :: Cdouble s :: cont)
| Const_base(Const_string s) ->
let lbl = new_const_label() in
(Clabel_address lbl,
Cint(string_header (String.length s)) :: Cdefine_label lbl ::
emit_string_constant s cont)
| Const_immstring s ->
begin try
(Clabel_address (Hashtbl.find immstrings s), cont)
with Not_found ->
let lbl = new_const_label() in
Hashtbl.add immstrings s lbl;
(Clabel_address lbl,
Cint(string_header (String.length s)) :: Cdefine_label lbl ::
emit_string_constant s cont)
end
| Const_base(Const_int32 n) ->
let lbl = new_const_label() in
(Clabel_address lbl,
Cint(boxedint32_header) :: Cdefine_label lbl ::
emit_boxed_int32_constant n cont)
| Const_base(Const_int64 n) ->
let lbl = new_const_label() in
(Clabel_address lbl,
Cint(boxedint64_header) :: Cdefine_label lbl ::
emit_boxed_int64_constant n cont)
| Const_base(Const_nativeint n) ->
let lbl = new_const_label() in
(Clabel_address lbl,
Cint(boxedintnat_header) :: Cdefine_label lbl ::
emit_boxed_nativeint_constant n cont)
| Const_pointer n ->
(Cint(Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n),
cont)
| Const_block(tag, fields) ->
let lbl = new_const_label() in
let (emit_fields, cont1) = emit_constant_fields fields cont in
(Clabel_address lbl,
Cint(block_header tag (List.length fields)) :: Cdefine_label lbl ::
emit_fields @ cont1)
| Const_float_array(fields) ->
let lbl = new_const_label() in
(Clabel_address lbl,
Cint(floatarray_header (List.length fields)) :: Cdefine_label lbl ::
Misc.map_end (fun f -> Cdouble f) fields cont)
and emit_string_constant s cont =
let n = size_int - 1 - (String.length s) mod size_int in
Cstring s :: Cskip n :: Cint8 n :: cont
and emit_boxed_int32_constant n cont =
let n = Nativeint.of_int32 n in
if size_int = 8 then
Csymbol_address("caml_int32_ops") :: Cint32 n :: Cint32 0n :: cont
else
Csymbol_address("caml_int32_ops") :: Cint n :: cont
and emit_boxed_nativeint_constant n cont =
Csymbol_address("caml_nativeint_ops") :: Cint n :: cont
and emit_boxed_int64_constant n cont =
let lo = Int64.to_nativeint n in
if size_int = 8 then
Csymbol_address("caml_int64_ops") :: Cint lo :: cont
else begin
let hi = Int64.to_nativeint (Int64.shift_right n 32) in
if big_endian then
Csymbol_address("caml_int64_ops") :: Cint hi :: Cint lo :: cont
else
Csymbol_address("caml_int64_ops") :: Cint lo :: Cint hi :: cont
end
(* Emit constant closures *)
let emit_constant_closure symb fundecls cont =
match fundecls with
[] -> assert false
| (label, arity, params, body) :: remainder ->
let rec emit_others pos = function
[] -> cont
| (label, arity, params, body) :: rem ->
if arity = 1 then
Cint(infix_header pos) ::
Csymbol_address label ::
Cint 3n ::
emit_others (pos + 3) rem
else
Cint(infix_header pos) ::
Csymbol_address(curry_function arity) ::
Cint(Nativeint.of_int (arity lsl 1 + 1)) ::
Csymbol_address label ::
emit_others (pos + 4) rem in
Cint(closure_header (fundecls_size fundecls)) ::
Cdefine_symbol symb ::
if arity = 1 then
Csymbol_address label ::
Cint 3n ::
emit_others 3 remainder
else
Csymbol_address(curry_function arity) ::
Cint(Nativeint.of_int (arity lsl 1 + 1)) ::
Csymbol_address label ::
emit_others 4 remainder
(* Emit all structured constants *)
let emit_all_constants cont =
let c = ref cont in
List.iter
(fun (lbl, cst) -> c := Cdata(emit_constant lbl cst []) :: !c)
!structured_constants;
structured_constants := [];
Hashtbl.clear immstrings; (* PR#3979 *)
List.iter
(fun (symb, fundecls) ->
c := Cdata(emit_constant_closure symb fundecls []) :: !c)
!constant_closures;
constant_closures := [];
!c
(* Translate a compilation unit *)
let compunit size ulam =
let glob = Compilenv.make_symbol None in
let init_code = transl ulam in
let c1 = [Cfunction {fun_name = Compilenv.make_symbol (Some "entry");
fun_args = [];
fun_body = init_code; fun_fast = false}] in
let c2 = transl_all_functions StringSet.empty c1 in
let c3 = emit_all_constants c2 in
Cdata [Cint(block_header 0 size);
Cglobal_symbol glob;
Cdefine_symbol glob;
Cskip(size * size_addr)] :: c3
(*
CAMLprim value caml_cache_public_method (value meths, value tag, value *cache)
{
int li = 3, hi = Field(meths,0), mi;
while (li < hi) { // no need to check the 1st time
mi = ((li+hi) >> 1) | 1;
if (tag < Field(meths,mi)) hi = mi-2;
else li = mi;
}
*cache = (li-3)*sizeof(value)+1;
return Field (meths, li-1);
}
*)
let cache_public_method meths tag cache =
let raise_num = next_raise_count () in
let li = Ident.create "li" and hi = Ident.create "hi"
and mi = Ident.create "mi" and tagged = Ident.create "tagged" in
Clet (
li, Cconst_int 3,
Clet (
hi, Cop(Cload Word, [meths]),
Csequence(
Ccatch
(raise_num, [],
Cloop
(Clet(
mi,
Cop(Cor,
[Cop(Clsr, [Cop(Caddi, [Cvar li; Cvar hi]); Cconst_int 1]);
Cconst_int 1]),
Csequence(
Cifthenelse
(Cop (Ccmpi Clt,
[tag;
Cop(Cload Word,
[Cop(Cadda,
[meths; lsl_const (Cvar mi) log2_size_addr])])]),
Cassign(hi, Cop(Csubi, [Cvar mi; Cconst_int 2])),
Cassign(li, Cvar mi)),
Cifthenelse
(Cop(Ccmpi Cge, [Cvar li; Cvar hi]), Cexit (raise_num, []),
Ctuple [])))),
Ctuple []),
Clet (
tagged, Cop(Cadda, [lsl_const (Cvar li) log2_size_addr;
Cconst_int(1 - 3 * size_addr)]),
Csequence(Cop (Cstore Word, [cache; Cvar tagged]),
Cvar tagged)))))
(* Generate an application function:
(defun caml_applyN (a1 ... aN clos)
(if (= clos.arity N)
(app clos.direct a1 ... aN clos)
(let (clos1 (app clos.code a1 clos)
clos2 (app clos1.code a2 clos)
...
closN-1 (app closN-2.code aN-1 closN-2))
(app closN-1.code aN closN-1))))
*)
let apply_function_body arity =
let arg = Array.create arity (Ident.create "arg") in
for i = 1 to arity - 1 do arg.(i) <- Ident.create "arg" done;
let clos = Ident.create "clos" in
let rec app_fun clos n =
if n = arity-1 then
Cop(Capply(typ_addr, Debuginfo.none),
[get_field (Cvar clos) 0; Cvar arg.(n); Cvar clos])
else begin
let newclos = Ident.create "clos" in
Clet(newclos,
Cop(Capply(typ_addr, Debuginfo.none),
[get_field (Cvar clos) 0; Cvar arg.(n); Cvar clos]),
app_fun newclos (n+1))
end in
let args = Array.to_list arg in
let all_args = args @ [clos] in
(args, clos,
if arity = 1 then app_fun clos 0 else
Cifthenelse(
Cop(Ccmpi Ceq, [get_field (Cvar clos) 1; int_const arity]),
Cop(Capply(typ_addr, Debuginfo.none),
get_field (Cvar clos) 2 :: List.map (fun s -> Cvar s) all_args),
app_fun clos 0))
let send_function arity =
let (args, clos', body) = apply_function_body (1+arity) in
let cache = Ident.create "cache"
and obj = List.hd args
and tag = Ident.create "tag" in
let clos =
let cache = Cvar cache and obj = Cvar obj and tag = Cvar tag in
let meths = Ident.create "meths" and cached = Ident.create "cached" in
let real = Ident.create "real" in
let mask = get_field (Cvar meths) 1 in
let cached_pos = Cvar cached in
let tag_pos = Cop(Cadda, [Cop (Cadda, [cached_pos; Cvar meths]);
Cconst_int(3*size_addr-1)]) in
let tag' = Cop(Cload Word, [tag_pos]) in
Clet (
meths, Cop(Cload Word, [obj]),
Clet (
cached, Cop(Cand, [Cop(Cload Word, [cache]); mask]),
Clet (
real,
Cifthenelse(Cop(Ccmpa Cne, [tag'; tag]),
cache_public_method (Cvar meths) tag cache,
cached_pos),
Cop(Cload Word, [Cop(Cadda, [Cop (Cadda, [Cvar real; Cvar meths]);
Cconst_int(2*size_addr-1)])]))))
in
let body = Clet(clos', clos, body) in
let fun_args =
[obj, typ_addr; tag, typ_int; cache, typ_addr]
@ List.map (fun id -> (id, typ_addr)) (List.tl args) in
Cfunction
{fun_name = "caml_send" ^ string_of_int arity;
fun_args = fun_args;
fun_body = body;
fun_fast = true}
let apply_function arity =
let (args, clos, body) = apply_function_body arity in
let all_args = args @ [clos] in
Cfunction
{fun_name = "caml_apply" ^ string_of_int arity;
fun_args = List.map (fun id -> (id, typ_addr)) all_args;
fun_body = body;
fun_fast = true}
(* Generate tuplifying functions:
(defun caml_tuplifyN (arg clos)
(app clos.direct #0(arg) ... #N-1(arg) clos)) *)
let tuplify_function arity =
let arg = Ident.create "arg" in
let clos = Ident.create "clos" in
let rec access_components i =
if i >= arity
then []
else get_field (Cvar arg) i :: access_components(i+1) in
Cfunction
{fun_name = "caml_tuplify" ^ string_of_int arity;
fun_args = [arg, typ_addr; clos, typ_addr];
fun_body =
Cop(Capply(typ_addr, Debuginfo.none),
get_field (Cvar clos) 2 :: access_components 0 @ [Cvar clos]);
fun_fast = true}
(* Generate currying functions:
(defun caml_curryN (arg clos)
(alloc HDR caml_curryN_1 arg clos))
(defun caml_curryN_1 (arg clos)
(alloc HDR caml_curryN_2 arg clos))
...
(defun caml_curryN_N-1 (arg clos)
(let (closN-2 clos.cdr
closN-3 closN-2.cdr
...
clos1 clos2.cdr
clos clos1.cdr)
(app clos.direct
clos1.car clos2.car ... closN-2.car clos.car arg clos))) *)
let final_curry_function arity =
let last_arg = Ident.create "arg" in
let last_clos = Ident.create "clos" in
let rec curry_fun args clos n =
if n = 0 then
Cop(Capply(typ_addr, Debuginfo.none),
get_field (Cvar clos) 2 ::
args @ [Cvar last_arg; Cvar clos])
else begin
let newclos = Ident.create "clos" in
Clet(newclos,
get_field (Cvar clos) 3,
curry_fun (get_field (Cvar clos) 2 :: args) newclos (n-1))
end in
Cfunction
{fun_name = "caml_curry" ^ string_of_int arity ^
"_" ^ string_of_int (arity-1);
fun_args = [last_arg, typ_addr; last_clos, typ_addr];
fun_body = curry_fun [] last_clos (arity-1);
fun_fast = true}
let rec intermediate_curry_functions arity num =
if num = arity - 1 then
[final_curry_function arity]
else begin
let name1 = "caml_curry" ^ string_of_int arity in
let name2 = if num = 0 then name1 else name1 ^ "_" ^ string_of_int num in
let arg = Ident.create "arg" and clos = Ident.create "clos" in
Cfunction
{fun_name = name2;
fun_args = [arg, typ_addr; clos, typ_addr];
fun_body = Cop(Calloc,
[alloc_closure_header 4;
Cconst_symbol(name1 ^ "_" ^ string_of_int (num+1));
int_const 1; Cvar arg; Cvar clos]);
fun_fast = true}
:: intermediate_curry_functions arity (num+1)
end
let curry_function arity =
if arity >= 0
then intermediate_curry_functions arity 0
else [tuplify_function (-arity)]
module IntSet = Set.Make(
struct
type t = int
let compare = compare
end)
let default_apply = IntSet.add 2 (IntSet.add 3 IntSet.empty)
(* These apply funs are always present in the main program because
the run-time system needs them (cf. asmrun/<arch>.S) . *)
let generic_functions shared units =
let (apply,send,curry) =
List.fold_left
(fun (apply,send,curry) ui ->
List.fold_right IntSet.add ui.ui_apply_fun apply,
List.fold_right IntSet.add ui.ui_send_fun send,
List.fold_right IntSet.add ui.ui_curry_fun curry)
(IntSet.empty,IntSet.empty,IntSet.empty)
units in
let apply = if shared then apply else IntSet.union apply default_apply in
let accu = IntSet.fold (fun n accu -> apply_function n :: accu) apply [] in
let accu = IntSet.fold (fun n accu -> send_function n :: accu) send accu in
IntSet.fold (fun n accu -> curry_function n @ accu) curry accu
(* Generate the entry point *)
let entry_point namelist =
let incr_global_inited =
Cop(Cstore Word,
[Cconst_symbol "caml_globals_inited";
Cop(Caddi, [Cop(Cload Word, [Cconst_symbol "caml_globals_inited"]);
Cconst_int 1])]) in
let body =
List.fold_right
(fun name next ->
let entry_sym = Compilenv.make_symbol ~unitname:name (Some "entry") in
Csequence(Cop(Capply(typ_void, Debuginfo.none),
[Cconst_symbol entry_sym]),
Csequence(incr_global_inited, next)))
namelist (Cconst_int 1) in
Cfunction {fun_name = "caml_program";
fun_args = [];
fun_body = body;
fun_fast = false}
(* Generate the table of globals *)
let cint_zero = Cint 0n
let global_table namelist =
let mksym name =
Csymbol_address (Compilenv.make_symbol ~unitname:name None)
in
Cdata(Cglobal_symbol "caml_globals" ::
Cdefine_symbol "caml_globals" ::
List.map mksym namelist @
[cint_zero])
let reference_symbols namelist =
let mksym name = Csymbol_address name in
Cdata(List.map mksym namelist)
let global_data name v =
Cdata(Cglobal_symbol name ::
emit_constant name
(Const_base (Const_string (Marshal.to_string v []))) [])
let globals_map v = global_data "caml_globals_map" v
(* Generate the master table of frame descriptors *)
let frame_table namelist =
let mksym name =
Csymbol_address (Compilenv.make_symbol ~unitname:name (Some "frametable"))
in
Cdata(Cglobal_symbol "caml_frametable" ::
Cdefine_symbol "caml_frametable" ::
List.map mksym namelist
@ [cint_zero])
(* Generate the table of module data and code segments *)
let segment_table namelist symbol begname endname =
let addsyms name lst =
Csymbol_address (Compilenv.make_symbol ~unitname:name (Some begname)) ::
Csymbol_address (Compilenv.make_symbol ~unitname:name (Some endname)) ::
lst
in
Cdata(Cglobal_symbol symbol ::
Cdefine_symbol symbol ::
List.fold_right addsyms namelist [cint_zero])
let data_segment_table namelist =
segment_table namelist "caml_data_segments" "data_begin" "data_end"
let code_segment_table namelist =
segment_table namelist "caml_code_segments" "code_begin" "code_end"
(* Initialize a predefined exception *)
let predef_exception name =
let bucketname = "caml_bucket_" ^ name in
let symname = "caml_exn_" ^ name in
Cdata(Cglobal_symbol symname ::
emit_constant symname (Const_block(0,[Const_base(Const_string name)]))
[ Cglobal_symbol bucketname;
Cint(block_header 0 1);
Cdefine_symbol bucketname;
Csymbol_address symname ])
(* Header for a plugin *)
let mapflat f l = List.flatten (List.map f l)
let plugin_header units =
let mk (ui,crc) =
{ dynu_name = ui.ui_name;
dynu_crc = crc;
dynu_imports_cmi = ui.ui_imports_cmi;
dynu_imports_cmx = ui.ui_imports_cmx;
dynu_defines = ui.ui_defines
} in
global_data "caml_plugin_header"
{ dynu_magic = Config.cmxs_magic_number; dynu_units = List.map mk units }
|