1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id: coloring.ml 10507 2010-06-04 19:16:58Z maranget $ *)
(* Register allocation by coloring of the interference graph *)
open Reg
(* Preallocation of spilled registers in the stack. *)
let allocate_spilled reg =
if reg.spill then begin
let cl = Proc.register_class reg in
let nslots = Proc.num_stack_slots.(cl) in
let conflict = Array.create nslots false in
List.iter
(fun r ->
match r.loc with
Stack(Local n) ->
if Proc.register_class r = cl then conflict.(n) <- true
| _ -> ())
reg.interf;
let slot = ref 0 in
while !slot < nslots && conflict.(!slot) do incr slot done;
reg.loc <- Stack(Local !slot);
if !slot >= nslots then Proc.num_stack_slots.(cl) <- !slot + 1
end
(* Compute the degree (= number of neighbours of the same type)
of each register, and split them in two sets:
unconstrained (degree < number of available registers)
and constrained (degree >= number of available registers).
Spilled registers are ignored in the process. *)
let unconstrained = ref Reg.Set.empty
let constrained = ref Reg.Set.empty
let find_degree reg =
if reg.spill then () else begin
let cl = Proc.register_class reg in
let avail_regs = Proc.num_available_registers.(cl) in
if avail_regs = 0 then
(* Don't bother computing the degree if there are no regs
in this class *)
unconstrained := Reg.Set.add reg !unconstrained
else begin
let deg = ref 0 in
List.iter
(fun r -> if not r.spill && Proc.register_class r = cl then incr deg)
reg.interf;
reg.degree <- !deg;
if !deg >= avail_regs
then constrained := Reg.Set.add reg !constrained
else unconstrained := Reg.Set.add reg !unconstrained
end
end
(* Remove a register from the interference graph *)
let remove_reg reg =
reg.degree <- 0; (* 0 means r is no longer part of the graph *)
let cl = Proc.register_class reg in
List.iter
(fun r ->
if Proc.register_class r = cl && r.degree > 0 then begin
let olddeg = r.degree in
r.degree <- olddeg - 1;
if olddeg = Proc.num_available_registers.(cl) then begin
(* r was constrained and becomes unconstrained *)
constrained := Reg.Set.remove r !constrained;
unconstrained := Reg.Set.add r !unconstrained
end
end)
reg.interf
(* Remove all registers one by one, unconstrained if possible, otherwise
constrained with lowest spill cost. Return the list of registers removed
in reverse order.
The spill cost measure is [r.spill_cost / r.degree].
[r.spill_cost] estimates the number of accesses to this register. *)
let rec remove_all_regs stack =
if not (Reg.Set.is_empty !unconstrained) then begin
(* Pick any unconstrained register *)
let r = Reg.Set.choose !unconstrained in
unconstrained := Reg.Set.remove r !unconstrained;
remove_all_regs (r :: stack)
end else
if not (Reg.Set.is_empty !constrained) then begin
(* Find a constrained reg with minimal cost *)
let r = ref Reg.dummy in
let min_degree = ref 0 and min_spill_cost = ref 1 in
(* initially !min_spill_cost / !min_degree is +infty *)
Reg.Set.iter
(fun r2 ->
(* if r2.spill_cost / r2.degree < !min_spill_cost / !min_degree *)
if r2.spill_cost * !min_degree < !min_spill_cost * r2.degree
then begin
r := r2; min_degree := r2.degree; min_spill_cost := r2.spill_cost
end)
!constrained;
constrained := Reg.Set.remove !r !constrained;
remove_all_regs (!r :: stack)
end else
stack (* All regs have been removed *)
(* Iterate over all registers preferred by the given register (transitively) *)
let iter_preferred f reg =
let rec walk r w =
if not r.visited then begin
f r w;
begin match r.prefer with
[] -> ()
| p -> r.visited <- true;
List.iter (fun (r1, w1) -> walk r1 (min w w1)) p;
r.visited <- false
end
end in
reg.visited <- true;
List.iter (fun (r, w) -> walk r w) reg.prefer;
reg.visited <- false
(* Where to start the search for a suitable register.
Used to introduce some "randomness" in the choice between registers
with equal scores. This offers more opportunities for scheduling. *)
let start_register = Array.create Proc.num_register_classes 0
(* Assign a location to a register, the best we can *)
let assign_location reg =
let cl = Proc.register_class reg in
let first_reg = Proc.first_available_register.(cl) in
let num_regs = Proc.num_available_registers.(cl) in
let last_reg = first_reg + num_regs in
let score = Array.create num_regs 0 in
let best_score = ref (-1000000) and best_reg = ref (-1) in
let start = start_register.(cl) in
if num_regs > 0 then begin
(* Favor the registers that have been assigned to pseudoregs for which
we have a preference. If these pseudoregs have not been assigned
already, avoid the registers with which they conflict. *)
iter_preferred
(fun r w ->
match r.loc with
Reg n -> if n >= first_reg && n < last_reg then
score.(n - first_reg) <- score.(n - first_reg) + w
| Unknown ->
List.iter
(fun neighbour ->
match neighbour.loc with
Reg n -> if n >= first_reg && n < last_reg then
score.(n - first_reg) <- score.(n - first_reg) - w
| _ -> ())
r.interf
| _ -> ())
reg;
List.iter
(fun neighbour ->
(* Prohibit the registers that have been assigned
to our neighbours *)
begin match neighbour.loc with
Reg n -> if n >= first_reg && n < last_reg then
score.(n - first_reg) <- (-1000000)
| _ -> ()
end;
(* Avoid the registers that have been assigned to pseudoregs
for which our neighbours have a preference *)
iter_preferred
(fun r w ->
match r.loc with
Reg n -> if n >= first_reg && n < last_reg then
score.(n - first_reg) <- score.(n - first_reg) - (w - 1)
(* w-1 to break the symmetry when two conflicting regs
have the same preference for a third reg. *)
| _ -> ())
neighbour)
reg.interf;
(* Pick the register with the best score *)
for n = start to num_regs - 1 do
if score.(n) > !best_score then begin
best_score := score.(n);
best_reg := n
end
done;
for n = 0 to start - 1 do
if score.(n) > !best_score then begin
best_score := score.(n);
best_reg := n
end
done
end;
(* Found a register? *)
if !best_reg >= 0 then begin
reg.loc <- Reg(first_reg + !best_reg);
if Proc.rotate_registers then
start_register.(cl) <- (if start+1 >= num_regs then 0 else start+1)
end else begin
(* Sorry, we must put the pseudoreg in a stack location *)
let nslots = Proc.num_stack_slots.(cl) in
let score = Array.create nslots 0 in
(* Compute the scores as for registers *)
List.iter
(fun (r, w) ->
match r.loc with
Stack(Local n) -> if Proc.register_class r = cl then
score.(n) <- score.(n) + w
| Unknown ->
List.iter
(fun neighbour ->
match neighbour.loc with
Stack(Local n) ->
if Proc.register_class neighbour = cl
then score.(n) <- score.(n) - w
| _ -> ())
r.interf
| _ -> ())
reg.prefer;
List.iter
(fun neighbour ->
begin match neighbour.loc with
Stack(Local n) ->
if Proc.register_class neighbour = cl then
score.(n) <- (-1000000)
| _ -> ()
end;
List.iter
(fun (r, w) ->
match r.loc with
Stack(Local n) -> if Proc.register_class r = cl then
score.(n) <- score.(n) - w
| _ -> ())
neighbour.prefer)
reg.interf;
(* Pick the location with the best score *)
let best_score = ref (-1000000) and best_slot = ref (-1) in
for n = 0 to nslots - 1 do
if score.(n) > !best_score then begin
best_score := score.(n);
best_slot := n
end
done;
(* Found one? *)
if !best_slot >= 0 then
reg.loc <- Stack(Local !best_slot)
else begin
(* Allocate a new stack slot *)
reg.loc <- Stack(Local nslots);
Proc.num_stack_slots.(cl) <- nslots + 1
end
end;
(* Cancel the preferences of this register so that they don't influence
transitively the allocation of registers that prefer this reg. *)
reg.prefer <- []
let allocate_registers() =
(* First pass: preallocate spill registers
Second pass: compute the degrees
Third pass: determine coloring order by successive removals of regs
Fourth pass: assign registers in that order *)
for i = 0 to Proc.num_register_classes - 1 do
Proc.num_stack_slots.(i) <- 0;
start_register.(i) <- 0
done;
List.iter allocate_spilled (Reg.all_registers());
List.iter find_degree (Reg.all_registers());
List.iter assign_location (remove_all_regs [])
|