1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 2001 Institut National de Recherche en Informatique et */
/* en Automatique. All rights reserved. This file is distributed */
/* under the terms of the GNU Library General Public License, with */
/* the special exception on linking described in file ../LICENSE. */
/* */
/***********************************************************************/
/* $Id: globroots.c 10505 2010-06-04 19:16:46Z maranget $ */
/* Registration of global memory roots */
#include "memory.h"
#include "misc.h"
#include "mlvalues.h"
#include "roots.h"
#include "globroots.h"
/* The sets of global memory roots are represented as skip lists
(see William Pugh, "Skip lists: a probabilistic alternative to
balanced binary trees", Comm. ACM 33(6), 1990). */
struct global_root {
value * root; /* the address of the root */
struct global_root * forward[1]; /* variable-length array */
};
#define NUM_LEVELS 17
struct global_root_list {
value * root; /* dummy value for layout compatibility */
struct global_root * forward[NUM_LEVELS]; /* forward chaining */
int level; /* max used level */
};
/* Generate a random level for a new node: 0 with probability 3/4,
1 with probability 3/16, 2 with probability 3/64, etc.
We use a simple linear congruential PRNG (see Knuth vol 2) instead
of random(), because we need exactly 32 bits of pseudo-random data
(i.e. 2 * (NUM_LEVELS - 1)). Moreover, the congruential PRNG
is faster and guaranteed to be deterministic (to reproduce bugs). */
static uint32 random_seed = 0;
static int random_level(void)
{
uint32 r;
int level = 0;
/* Linear congruence with modulus = 2^32, multiplier = 69069
(Knuth vol 2 p. 106, line 15 of table 1), additive = 25173. */
r = random_seed = random_seed * 69069 + 25173;
/* Knuth (vol 2 p. 13) shows that the least significant bits are
"less random" than the most significant bits with a modulus of 2^m,
so consume most significant bits first */
while ((r & 0xC0000000U) == 0xC0000000U) { level++; r = r << 2; }
Assert(level < NUM_LEVELS);
return level;
}
/* Insertion in a global root list */
static void caml_insert_global_root(struct global_root_list * rootlist,
value * r)
{
struct global_root * update[NUM_LEVELS];
struct global_root * e, * f;
int i, new_level;
/* Init "cursor" to list head */
e = (struct global_root *) rootlist;
/* Find place to insert new node */
for (i = rootlist->level; i >= 0; i--) {
while (1) {
f = e->forward[i];
if (f == NULL || f->root >= r) break;
e = f;
}
update[i] = e;
}
e = e->forward[0];
/* If already present, don't do anything */
if (e != NULL && e->root == r) return;
/* Insert additional element, updating list level if necessary */
new_level = random_level();
if (new_level > rootlist->level) {
for (i = rootlist->level + 1; i <= new_level; i++)
update[i] = (struct global_root *) rootlist;
rootlist->level = new_level;
}
e = caml_stat_alloc(sizeof(struct global_root) +
new_level * sizeof(struct global_root *));
e->root = r;
for (i = 0; i <= new_level; i++) {
e->forward[i] = update[i]->forward[i];
update[i]->forward[i] = e;
}
}
/* Deletion in a global root list */
static void caml_delete_global_root(struct global_root_list * rootlist,
value * r)
{
struct global_root * update[NUM_LEVELS];
struct global_root * e, * f;
int i;
/* Init "cursor" to list head */
e = (struct global_root *) rootlist;
/* Find element in list */
for (i = rootlist->level; i >= 0; i--) {
while (1) {
f = e->forward[i];
if (f == NULL || f->root >= r) break;
e = f;
}
update[i] = e;
}
e = e->forward[0];
/* If not found, nothing to do */
if (e == NULL || e->root != r) return;
/* Rebuild list without node */
for (i = 0; i <= rootlist->level; i++) {
if (update[i]->forward[i] == e)
update[i]->forward[i] = e->forward[i];
}
/* Reclaim list element */
caml_stat_free(e);
/* Down-correct list level */
while (rootlist->level > 0 &&
rootlist->forward[rootlist->level] == NULL)
rootlist->level--;
}
/* Iterate over a global root list */
static void caml_iterate_global_roots(scanning_action f,
struct global_root_list * rootlist)
{
struct global_root * gr;
for (gr = rootlist->forward[0]; gr != NULL; gr = gr->forward[0]) {
f(*(gr->root), gr->root);
}
}
/* Empty a global root list */
static void caml_empty_global_roots(struct global_root_list * rootlist)
{
struct global_root * gr, * next;
int i;
for (gr = rootlist->forward[0]; gr != NULL; /**/) {
next = gr->forward[0];
caml_stat_free(gr);
gr = next;
}
for (i = 0; i <= rootlist->level; i++) rootlist->forward[i] = NULL;
rootlist->level = 0;
}
/* The three global root lists */
struct global_root_list caml_global_roots = { NULL, { NULL, }, 0 };
/* mutable roots, don't know whether old or young */
struct global_root_list caml_global_roots_young = { NULL, { NULL, }, 0 };
/* generational roots pointing to minor or major heap */
struct global_root_list caml_global_roots_old = { NULL, { NULL, }, 0 };
/* generational roots pointing to major heap */
/* Register a global C root of the mutable kind */
CAMLexport void caml_register_global_root(value *r)
{
Assert (((intnat) r & 3) == 0); /* compact.c demands this (for now) */
caml_insert_global_root(&caml_global_roots, r);
}
/* Un-register a global C root of the mutable kind */
CAMLexport void caml_remove_global_root(value *r)
{
caml_delete_global_root(&caml_global_roots, r);
}
/* Register a global C root of the generational kind */
CAMLexport void caml_register_generational_global_root(value *r)
{
value v = *r;
Assert (((intnat) r & 3) == 0); /* compact.c demands this (for now) */
if (Is_block(v)) {
if (Is_young(v))
caml_insert_global_root(&caml_global_roots_young, r);
else if (Is_in_heap(v))
caml_insert_global_root(&caml_global_roots_old, r);
}
}
/* Un-register a global C root of the generational kind */
CAMLexport void caml_remove_generational_global_root(value *r)
{
value v = *r;
if (Is_block(v)) {
if (Is_young(v))
caml_delete_global_root(&caml_global_roots_young, r);
else if (Is_in_heap(v))
caml_delete_global_root(&caml_global_roots_old, r);
}
}
/* Modify the value of a global C root of the generational kind */
CAMLexport void caml_modify_generational_global_root(value *r, value newval)
{
value oldval = *r;
/* It is OK to have a root in roots_young that suddenly points to
the old generation -- the next minor GC will take care of that.
What needs corrective action is a root in roots_old that suddenly
points to the young generation. */
if (Is_block(newval) && Is_young(newval) &&
Is_block(oldval) && Is_in_heap(oldval)) {
caml_delete_global_root(&caml_global_roots_old, r);
caml_insert_global_root(&caml_global_roots_young, r);
}
/* PR#4704 */
else if (!Is_block(oldval) && Is_block(newval)) {
/* The previous value in the root was unboxed but now it is boxed.
The root won't appear in any of the root lists thus far (by virtue
of the operation of [caml_register_generational_global_root]), so we
need to make sure it gets in, or else it will never be scanned. */
if (Is_young(newval))
caml_insert_global_root(&caml_global_roots_young, r);
else if (Is_in_heap(newval))
caml_insert_global_root(&caml_global_roots_old, r);
}
else if (Is_block(oldval) && !Is_block(newval)) {
/* The previous value in the root was boxed but now it is unboxed, so
the root should be removed. If [oldval] is young, this will happen
anyway at the next minor collection, but it is safer to delete it
here. */
if (Is_young(oldval))
caml_delete_global_root(&caml_global_roots_young, r);
else if (Is_in_heap(oldval))
caml_delete_global_root(&caml_global_roots_old, r);
}
/* end PR#4704 */
*r = newval;
}
/* Scan all global roots */
void caml_scan_global_roots(scanning_action f)
{
caml_iterate_global_roots(f, &caml_global_roots);
caml_iterate_global_roots(f, &caml_global_roots_young);
caml_iterate_global_roots(f, &caml_global_roots_old);
}
/* Scan global roots for a minor collection */
void caml_scan_global_young_roots(scanning_action f)
{
struct global_root * gr;
caml_iterate_global_roots(f, &caml_global_roots);
caml_iterate_global_roots(f, &caml_global_roots_young);
/* Move young roots to old roots */
for (gr = caml_global_roots_young.forward[0];
gr != NULL; gr = gr->forward[0]) {
caml_insert_global_root(&caml_global_roots_old, gr->root);
}
caml_empty_global_roots(&caml_global_roots_young);
}
|