File: jq.1.prebuilt

package info (click to toggle)
jq 1.8.1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,852 kB
  • sloc: ansic: 28,064; yacc: 888; sh: 841; python: 316; cpp: 314; lex: 192; makefile: 181; javascript: 34
file content (4306 lines) | stat: -rw-r--r-- 124,253 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
.
.TH "JQ" "1" "May 2025" "" ""
.
.SH "NAME"
\fBjq\fR \- Command\-line JSON processor
.
.SH "SYNOPSIS"
\fBjq\fR [\fIoptions\fR\.\.\.] \fIfilter\fR [\fIfiles\fR\.\.\.]
.
.P
\fBjq\fR can transform JSON in various ways, by selecting, iterating, reducing and otherwise mangling JSON documents\. For instance, running the command \fBjq \'map(\.price) | add\'\fR will take an array of JSON objects as input and return the sum of their "price" fields\.
.
.P
\fBjq\fR can accept text input as well, but by default, \fBjq\fR reads a stream of JSON entities (including numbers and other literals) from \fBstdin\fR\. Whitespace is only needed to separate entities such as 1 and 2, and true and false\. One or more \fIfiles\fR may be specified, in which case \fBjq\fR will read input from those instead\.
.
.P
The \fIoptions\fR are described in the [INVOKING JQ] section; they mostly concern input and output formatting\. The \fIfilter\fR is written in the jq language and specifies how to transform the input file or document\.
.
.SH "FILTERS"
A jq program is a "filter": it takes an input, and produces an output\. There are a lot of builtin filters for extracting a particular field of an object, or converting a number to a string, or various other standard tasks\.
.
.P
Filters can be combined in various ways \- you can pipe the output of one filter into another filter, or collect the output of a filter into an array\.
.
.P
Some filters produce multiple results, for instance there\'s one that produces all the elements of its input array\. Piping that filter into a second runs the second filter for each element of the array\. Generally, things that would be done with loops and iteration in other languages are just done by gluing filters together in jq\.
.
.P
It\'s important to remember that every filter has an input and an output\. Even literals like "hello" or 42 are filters \- they take an input but always produce the same literal as output\. Operations that combine two filters, like addition, generally feed the same input to both and combine the results\. So, you can implement an averaging filter as \fBadd / length\fR \- feeding the input array both to the \fBadd\fR filter and the \fBlength\fR filter and then performing the division\.
.
.P
But that\'s getting ahead of ourselves\. :) Let\'s start with something simpler:
.
.SH "INVOKING JQ"
jq filters run on a stream of JSON data\. The input to jq is parsed as a sequence of whitespace\-separated JSON values which are passed through the provided filter one at a time\. The output(s) of the filter are written to standard output, as a sequence of newline\-separated JSON data\.
.
.P
The simplest and most common filter (or jq program) is \fB\.\fR, which is the identity operator, copying the inputs of the jq processor to the output stream\. Because the default behavior of the jq processor is to read JSON texts from the input stream, and to pretty\-print outputs, the \fB\.\fR program\'s main use is to validate and pretty\-print the inputs\. The jq programming language is quite rich and allows for much more than just validation and pretty\-printing\.
.
.P
Note: it is important to mind the shell\'s quoting rules\. As a general rule it\'s best to always quote (with single\-quote characters on Unix shells) the jq program, as too many characters with special meaning to jq are also shell meta\-characters\. For example, \fBjq "foo"\fR will fail on most Unix shells because that will be the same as \fBjq foo\fR, which will generally fail because \fBfoo is not defined\fR\. When using the Windows command shell (cmd\.exe) it\'s best to use double quotes around your jq program when given on the command\-line (instead of the \fB\-f program\-file\fR option), but then double\-quotes in the jq program need backslash escaping\. When using the Powershell (\fBpowershell\.exe\fR) or the Powershell Core (\fBpwsh\fR/\fBpwsh\.exe\fR), use single\-quote characters around the jq program and backslash\-escaped double\-quotes (\fB\e"\fR) inside the jq program\.
.
.IP "\(bu" 4
Unix shells: \fBjq \'\.["foo"]\'\fR
.
.IP "\(bu" 4
Powershell: \fBjq \'\.[\e"foo\e"]\'\fR
.
.IP "\(bu" 4
Windows command shell: \fBjq "\.[\e"foo\e"]"\fR
.
.IP "" 0
.
.P
Note: jq allows user\-defined functions, but every jq program must have a top\-level expression\.
.
.P
You can affect how jq reads and writes its input and output using some command\-line options:
.
.TP
\fB\-\-null\-input\fR / \fB\-n\fR:
.
.IP
Don\'t read any input at all\. Instead, the filter is run once using \fBnull\fR as the input\. This is useful when using jq as a simple calculator or to construct JSON data from scratch\.
.
.TP
\fB\-\-raw\-input\fR / \fB\-R\fR:
.
.IP
Don\'t parse the input as JSON\. Instead, each line of text is passed to the filter as a string\. If combined with \fB\-\-slurp\fR, then the entire input is passed to the filter as a single long string\.
.
.TP
\fB\-\-slurp\fR / \fB\-s\fR:
.
.IP
Instead of running the filter for each JSON object in the input, read the entire input stream into a large array and run the filter just once\.
.
.TP
\fB\-\-compact\-output\fR / \fB\-c\fR:
.
.IP
By default, jq pretty\-prints JSON output\. Using this option will result in more compact output by instead putting each JSON object on a single line\.
.
.TP
\fB\-\-raw\-output\fR / \fB\-r\fR:
.
.IP
With this option, if the filter\'s result is a string then it will be written directly to standard output rather than being formatted as a JSON string with quotes\. This can be useful for making jq filters talk to non\-JSON\-based systems\.
.
.TP
\fB\-\-raw\-output0\fR:
.
.IP
Like \fB\-r\fR but jq will print NUL instead of newline after each output\. This can be useful when the values being output can contain newlines\. When the output value contains NUL, jq exits with non\-zero code\.
.
.TP
\fB\-\-join\-output\fR / \fB\-j\fR:
.
.IP
Like \fB\-r\fR but jq won\'t print a newline after each output\.
.
.TP
\fB\-\-ascii\-output\fR / \fB\-a\fR:
.
.IP
jq usually outputs non\-ASCII Unicode codepoints as UTF\-8, even if the input specified them as escape sequences (like "\eu03bc")\. Using this option, you can force jq to produce pure ASCII output with every non\-ASCII character replaced with the equivalent escape sequence\.
.
.TP
\fB\-\-sort\-keys\fR / \fB\-S\fR:
.
.IP
Output the fields of each object with the keys in sorted order\.
.
.TP
\fB\-\-color\-output\fR / \fB\-C\fR and \fB\-\-monochrome\-output\fR / \fB\-M\fR:
.
.IP
By default, jq outputs colored JSON if writing to a terminal\. You can force it to produce color even if writing to a pipe or a file using \fB\-C\fR, and disable color with \fB\-M\fR\. When the \fBNO_COLOR\fR environment variable is not empty, jq disables colored output by default, but you can enable it by \fB\-C\fR\.
.
.IP
Colors can be configured with the \fBJQ_COLORS\fR environment variable (see below)\.
.
.TP
\fB\-\-tab\fR:
.
.IP
Use a tab for each indentation level instead of two spaces\.
.
.TP
\fB\-\-indent n\fR:
.
.IP
Use the given number of spaces (no more than 7) for indentation\.
.
.TP
\fB\-\-unbuffered\fR:
.
.IP
Flush the output after each JSON object is printed (useful if you\'re piping a slow data source into jq and piping jq\'s output elsewhere)\.
.
.TP
\fB\-\-stream\fR:
.
.IP
Parse the input in streaming fashion, outputting arrays of path and leaf values (scalars and empty arrays or empty objects)\. For example, \fB"a"\fR becomes \fB[[],"a"]\fR, and \fB[[],"a",["b"]]\fR becomes \fB[[0],[]]\fR, \fB[[1],"a"]\fR, and \fB[[2,0],"b"]\fR\.
.
.IP
This is useful for processing very large inputs\. Use this in conjunction with filtering and the \fBreduce\fR and \fBforeach\fR syntax to reduce large inputs incrementally\.
.
.TP
\fB\-\-stream\-errors\fR:
.
.IP
Like \fB\-\-stream\fR, but invalid JSON inputs yield array values where the first element is the error and the second is a path\. For example, \fB["a",n]\fR produces \fB["Invalid literal at line 1, column 7",[1]]\fR\.
.
.IP
Implies \fB\-\-stream\fR\. Invalid JSON inputs produce no error values when \fB\-\-stream\fR without \fB\-\-stream\-errors\fR\.
.
.TP
\fB\-\-seq\fR:
.
.IP
Use the \fBapplication/json\-seq\fR MIME type scheme for separating JSON texts in jq\'s input and output\. This means that an ASCII RS (record separator) character is printed before each value on output and an ASCII LF (line feed) is printed after every output\. Input JSON texts that fail to parse are ignored (but warned about), discarding all subsequent input until the next RS\. This mode also parses the output of jq without the \fB\-\-seq\fR option\.
.
.TP
\fB\-f\fR / \fB\-\-from\-file\fR:
.
.IP
Read the filter from a file rather than from a command line, like awk\'s \-f option\. This changes the filter argument to be interpreted as a filename, instead of the source of a program\.
.
.TP
\fB\-L directory\fR / \fB\-\-library\-path directory\fR:
.
.IP
Prepend \fBdirectory\fR to the search list for modules\. If this option is used then no builtin search list is used\. See the section on modules below\.
.
.TP
\fB\-\-arg name value\fR:
.
.IP
This option passes a value to the jq program as a predefined variable\. If you run jq with \fB\-\-arg foo bar\fR, then \fB$foo\fR is available in the program and has the value \fB"bar"\fR\. Note that \fBvalue\fR will be treated as a string, so \fB\-\-arg foo 123\fR will bind \fB$foo\fR to \fB"123"\fR\.
.
.IP
Named arguments are also available to the jq program as \fB$ARGS\.named\fR\. When the name is not a valid identifier, this is the only way to access it\.
.
.TP
\fB\-\-argjson name JSON\-text\fR:
.
.IP
This option passes a JSON\-encoded value to the jq program as a predefined variable\. If you run jq with \fB\-\-argjson foo 123\fR, then \fB$foo\fR is available in the program and has the value \fB123\fR\.
.
.TP
\fB\-\-slurpfile variable\-name filename\fR:
.
.IP
This option reads all the JSON texts in the named file and binds an array of the parsed JSON values to the given global variable\. If you run jq with \fB\-\-slurpfile foo bar\fR, then \fB$foo\fR is available in the program and has an array whose elements correspond to the texts in the file named \fBbar\fR\.
.
.TP
\fB\-\-rawfile variable\-name filename\fR:
.
.IP
This option reads in the named file and binds its contents to the given global variable\. If you run jq with \fB\-\-rawfile foo bar\fR, then \fB$foo\fR is available in the program and has a string whose contents are to the texts in the file named \fBbar\fR\.
.
.TP
\fB\-\-args\fR:
.
.IP
Remaining arguments are positional string arguments\. These are available to the jq program as \fB$ARGS\.positional[]\fR\.
.
.TP
\fB\-\-jsonargs\fR:
.
.IP
Remaining arguments are positional JSON text arguments\. These are available to the jq program as \fB$ARGS\.positional[]\fR\.
.
.TP
\fB\-\-exit\-status\fR / \fB\-e\fR:
.
.IP
Sets the exit status of jq to 0 if the last output value was neither \fBfalse\fR nor \fBnull\fR, 1 if the last output value was either \fBfalse\fR or \fBnull\fR, or 4 if no valid result was ever produced\. Normally jq exits with 2 if there was any usage problem or system error, 3 if there was a jq program compile error, or 0 if the jq program ran\.
.
.IP
Another way to set the exit status is with the \fBhalt_error\fR builtin function\.
.
.TP
\fB\-\-binary\fR / \fB\-b\fR:
.
.IP
Windows users using WSL, MSYS2, or Cygwin, should use this option when using a native jq\.exe, otherwise jq will turn newlines (LFs) into carriage\-return\-then\-newline (CRLF)\.
.
.TP
\fB\-\-version\fR / \fB\-V\fR:
.
.IP
Output the jq version and exit with zero\.
.
.TP
\fB\-\-build\-configuration\fR:
.
.IP
Output the build configuration of jq and exit with zero\. This output has no supported format or structure and may change without notice in future releases\.
.
.TP
\fB\-\-help\fR / \fB\-h\fR:
.
.IP
Output the jq help and exit with zero\.
.
.TP
\fB\-\-\fR:
.
.IP
Terminates argument processing\. Remaining arguments are not interpreted as options\.
.
.TP
\fB\-\-run\-tests [filename]\fR:
.
.IP
Runs the tests in the given file or standard input\. This must be the last option given and does not honor all preceding options\. The input consists of comment lines, empty lines, and program lines followed by one input line, as many lines of output as are expected (one per output), and a terminating empty line\. Compilation failure tests start with a line containing only \fB%%FAIL\fR, then a line containing the program to compile, then a line containing an error message to compare to the actual\.
.
.IP
Be warned that this option can change backwards\-incompatibly\.
.
.SH "BASIC FILTERS"
.
.SS "Identity: \."
The absolute simplest filter is \fB\.\fR \. This filter takes its input and produces the same value as output\. That is, this is the identity operator\.
.
.P
Since jq by default pretty\-prints all output, a trivial program consisting of nothing but \fB\.\fR can be used to format JSON output from, say, \fBcurl\fR\.
.
.P
Although the identity filter never modifies the value of its input, jq processing can sometimes make it appear as though it does\. For example, using the current implementation of jq, we would see that the expression:
.
.IP "" 4
.
.nf

1E1234567890 | \.
.
.fi
.
.IP "" 0
.
.P
produces \fB1\.7976931348623157e+308\fR on at least one platform\. This is because, in the process of parsing the number, this particular version of jq has converted it to an IEEE754 double\-precision representation, losing precision\.
.
.P
The way in which jq handles numbers has changed over time and further changes are likely within the parameters set by the relevant JSON standards\. Moreover, build configuration options can alter how jq processes numbers\.
.
.P
The following remarks are therefore offered with the understanding that they are intended to be descriptive of the current version of jq and should not be interpreted as being prescriptive:
.
.P
(1) Any arithmetic operation on a number that has not already been converted to an IEEE754 double precision representation will trigger a conversion to the IEEE754 representation\.
.
.P
(2) jq will attempt to maintain the original decimal precision of number literals (if the \fB\-\-disable\-decnum\fR build configuration option was not used), but in expressions such \fB1E1234567890\fR, precision will be lost if the exponent is too large\.
.
.P
(3) Comparisons are carried out using the untruncated big decimal representation of numbers if available, as illustrated in one of the following examples\.
.
.P
The examples below use the builtin function \fBhave_decnum\fR in order to demonstrate the expected effects of using / not using the \fB\-\-disable\-decnum\fR build configuration option, and also to allow automated tests derived from these examples to pass regardless of whether that option is used\.
.
.IP "" 4
.
.nf

jq \'\.\'
   "Hello, world!"
=> "Hello, world!"

jq \'\.\'
   0\.12345678901234567890123456789
=> 0\.12345678901234567890123456789

jq \'[\., tojson] == if have_decnum then [12345678909876543212345,"12345678909876543212345"] else [12345678909876543000000,"12345678909876543000000"] end\'
   12345678909876543212345
=> true

jq \'[1234567890987654321,\-1234567890987654321 | tojson] == if have_decnum then ["1234567890987654321","\-1234567890987654321"] else ["1234567890987654400","\-1234567890987654400"] end\'
   null
=> true

jq \'\. < 0\.12345678901234567890123456788\'
   0\.12345678901234567890123456789
=> false

jq \'map([\., \. == 1]) | tojson == if have_decnum then "[[1,true],[1\.000,true],[1\.0,true],[1\.00,true]]" else "[[1,true],[1,true],[1,true],[1,true]]" end\'
   [1, 1\.000, 1\.0, 100e\-2]
=> true

jq \'\. as $big | [$big, $big + 1] | map(\. > 10000000000000000000000000000000) | \. == if have_decnum then [true, false] else [false, false] end\'
   10000000000000000000000000000001
=> true
.
.fi
.
.IP "" 0
.
.SS "Object Identifier\-Index: \.foo, \.foo\.bar"
The simplest \fIuseful\fR filter has the form \fB\.foo\fR\. When given a JSON object (aka dictionary or hash) as input, \fB\.foo\fR produces the value at the key "foo" if the key is present, or null otherwise\.
.
.P
A filter of the form \fB\.foo\.bar\fR is equivalent to \fB\.foo | \.bar\fR\.
.
.P
The \fB\.foo\fR syntax only works for simple, identifier\-like keys, that is, keys that are all made of alphanumeric characters and underscore, and which do not start with a digit\.
.
.P
If the key contains special characters or starts with a digit, you need to surround it with double quotes like this: \fB\."foo$"\fR, or else \fB\.["foo$"]\fR\.
.
.P
For example \fB\.["foo::bar"]\fR and \fB\.["foo\.bar"]\fR work while \fB\.foo::bar\fR does not\.
.
.IP "" 4
.
.nf

jq \'\.foo\'
   {"foo": 42, "bar": "less interesting data"}
=> 42

jq \'\.foo\'
   {"notfoo": true, "alsonotfoo": false}
=> null

jq \'\.["foo"]\'
   {"foo": 42}
=> 42
.
.fi
.
.IP "" 0
.
.SS "Optional Object Identifier\-Index: \.foo?"
Just like \fB\.foo\fR, but does not output an error when \fB\.\fR is not an object\.
.
.IP "" 4
.
.nf

jq \'\.foo?\'
   {"foo": 42, "bar": "less interesting data"}
=> 42

jq \'\.foo?\'
   {"notfoo": true, "alsonotfoo": false}
=> null

jq \'\.["foo"]?\'
   {"foo": 42}
=> 42

jq \'[\.foo?]\'
   [1,2]
=> []
.
.fi
.
.IP "" 0
.
.SS "Object Index: \.[<string>]"
You can also look up fields of an object using syntax like \fB\.["foo"]\fR (\fB\.foo\fR above is a shorthand version of this, but only for identifier\-like strings)\.
.
.SS "Array Index: \.[<number>]"
When the index value is an integer, \fB\.[<number>]\fR can index arrays\. Arrays are zero\-based, so \fB\.[2]\fR returns the third element\.
.
.P
Negative indices are allowed, with \-1 referring to the last element, \-2 referring to the next to last element, and so on\.
.
.IP "" 4
.
.nf

jq \'\.[0]\'
   [{"name":"JSON", "good":true}, {"name":"XML", "good":false}]
=> {"name":"JSON", "good":true}

jq \'\.[2]\'
   [{"name":"JSON", "good":true}, {"name":"XML", "good":false}]
=> null

jq \'\.[\-2]\'
   [1,2,3]
=> 2
.
.fi
.
.IP "" 0
.
.SS "Array/String Slice: \.[<number>:<number>]"
The \fB\.[<number>:<number>]\fR syntax can be used to return a subarray of an array or substring of a string\. The array returned by \fB\.[10:15]\fR will be of length 5, containing the elements from index 10 (inclusive) to index 15 (exclusive)\. Either index may be negative (in which case it counts backwards from the end of the array), or omitted (in which case it refers to the start or end of the array)\. Indices are zero\-based\.
.
.IP "" 4
.
.nf

jq \'\.[2:4]\'
   ["a","b","c","d","e"]
=> ["c", "d"]

jq \'\.[2:4]\'
   "abcdefghi"
=> "cd"

jq \'\.[:3]\'
   ["a","b","c","d","e"]
=> ["a", "b", "c"]

jq \'\.[\-2:]\'
   ["a","b","c","d","e"]
=> ["d", "e"]
.
.fi
.
.IP "" 0
.
.SS "Array/Object Value Iterator: \.[]"
If you use the \fB\.[index]\fR syntax, but omit the index entirely, it will return \fIall\fR of the elements of an array\. Running \fB\.[]\fR with the input \fB[1,2,3]\fR will produce the numbers as three separate results, rather than as a single array\. A filter of the form \fB\.foo[]\fR is equivalent to \fB\.foo | \.[]\fR\.
.
.P
You can also use this on an object, and it will return all the values of the object\.
.
.P
Note that the iterator operator is a generator of values\.
.
.IP "" 4
.
.nf

jq \'\.[]\'
   [{"name":"JSON", "good":true}, {"name":"XML", "good":false}]
=> {"name":"JSON", "good":true}, {"name":"XML", "good":false}

jq \'\.[]\'
   []
=> 

jq \'\.foo[]\'
   {"foo":[1,2,3]}
=> 1, 2, 3

jq \'\.[]\'
   {"a": 1, "b": 1}
=> 1, 1
.
.fi
.
.IP "" 0
.
.SS "\.[]?"
Like \fB\.[]\fR, but no errors will be output if \. is not an array or object\. A filter of the form \fB\.foo[]?\fR is equivalent to \fB\.foo | \.[]?\fR\.
.
.SS "Comma: ,"
If two filters are separated by a comma, then the same input will be fed into both and the two filters\' output value streams will be concatenated in order: first, all of the outputs produced by the left expression, and then all of the outputs produced by the right\. For instance, filter \fB\.foo, \.bar\fR, produces both the "foo" fields and "bar" fields as separate outputs\.
.
.P
The \fB,\fR operator is one way to construct generators\.
.
.IP "" 4
.
.nf

jq \'\.foo, \.bar\'
   {"foo": 42, "bar": "something else", "baz": true}
=> 42, "something else"

jq \'\.user, \.projects[]\'
   {"user":"stedolan", "projects": ["jq", "wikiflow"]}
=> "stedolan", "jq", "wikiflow"

jq \'\.[4,2]\'
   ["a","b","c","d","e"]
=> "e", "c"
.
.fi
.
.IP "" 0
.
.SS "Pipe: |"
The | operator combines two filters by feeding the output(s) of the one on the left into the input of the one on the right\. It\'s similar to the Unix shell\'s pipe, if you\'re used to that\.
.
.P
If the one on the left produces multiple results, the one on the right will be run for each of those results\. So, the expression \fB\.[] | \.foo\fR retrieves the "foo" field of each element of the input array\. This is a cartesian product, which can be surprising\.
.
.P
Note that \fB\.a\.b\.c\fR is the same as \fB\.a | \.b | \.c\fR\.
.
.P
Note too that \fB\.\fR is the input value at the particular stage in a "pipeline", specifically: where the \fB\.\fR expression appears\. Thus \fB\.a | \. | \.b\fR is the same as \fB\.a\.b\fR, as the \fB\.\fR in the middle refers to whatever value \fB\.a\fR produced\.
.
.IP "" 4
.
.nf

jq \'\.[] | \.name\'
   [{"name":"JSON", "good":true}, {"name":"XML", "good":false}]
=> "JSON", "XML"
.
.fi
.
.IP "" 0
.
.SS "Parenthesis"
Parenthesis work as a grouping operator just as in any typical programming language\.
.
.IP "" 4
.
.nf

jq \'(\. + 2) * 5\'
   1
=> 15
.
.fi
.
.IP "" 0
.
.SH "TYPES AND VALUES"
jq supports the same set of datatypes as JSON \- numbers, strings, booleans, arrays, objects (which in JSON\-speak are hashes with only string keys), and "null"\.
.
.P
Booleans, null, strings and numbers are written the same way as in JSON\. Just like everything else in jq, these simple values take an input and produce an output \- \fB42\fR is a valid jq expression that takes an input, ignores it, and returns 42 instead\.
.
.P
Numbers in jq are internally represented by their IEEE754 double precision approximation\. Any arithmetic operation with numbers, whether they are literals or results of previous filters, will produce a double precision floating point result\.
.
.P
However, when parsing a literal jq will store the original literal string\. If no mutation is applied to this value then it will make to the output in its original form, even if conversion to double would result in a loss\.
.
.SS "Array construction: []"
As in JSON, \fB[]\fR is used to construct arrays, as in \fB[1,2,3]\fR\. The elements of the arrays can be any jq expression, including a pipeline\. All of the results produced by all of the expressions are collected into one big array\. You can use it to construct an array out of a known quantity of values (as in \fB[\.foo, \.bar, \.baz]\fR) or to "collect" all the results of a filter into an array (as in \fB[\.items[]\.name]\fR)
.
.P
Once you understand the "," operator, you can look at jq\'s array syntax in a different light: the expression \fB[1,2,3]\fR is not using a built\-in syntax for comma\-separated arrays, but is instead applying the \fB[]\fR operator (collect results) to the expression 1,2,3 (which produces three different results)\.
.
.P
If you have a filter \fBX\fR that produces four results, then the expression \fB[X]\fR will produce a single result, an array of four elements\.
.
.IP "" 4
.
.nf

jq \'[\.user, \.projects[]]\'
   {"user":"stedolan", "projects": ["jq", "wikiflow"]}
=> ["stedolan", "jq", "wikiflow"]

jq \'[ \.[] | \. * 2]\'
   [1, 2, 3]
=> [2, 4, 6]
.
.fi
.
.IP "" 0
.
.SS "Object Construction: {}"
Like JSON, \fB{}\fR is for constructing objects (aka dictionaries or hashes), as in: \fB{"a": 42, "b": 17}\fR\.
.
.P
If the keys are "identifier\-like", then the quotes can be left off, as in \fB{a:42, b:17}\fR\. Variable references as key expressions use the value of the variable as the key\. Key expressions other than constant literals, identifiers, or variable references, need to be parenthesized, e\.g\., \fB{("a"+"b"):59}\fR\.
.
.P
The value can be any expression (although you may need to wrap it in parentheses if, for example, it contains colons), which gets applied to the {} expression\'s input (remember, all filters have an input and an output)\.
.
.IP "" 4
.
.nf

{foo: \.bar}
.
.fi
.
.IP "" 0
.
.P
will produce the JSON object \fB{"foo": 42}\fR if given the JSON object \fB{"bar":42, "baz":43}\fR as its input\. You can use this to select particular fields of an object: if the input is an object with "user", "title", "id", and "content" fields and you just want "user" and "title", you can write
.
.IP "" 4
.
.nf

{user: \.user, title: \.title}
.
.fi
.
.IP "" 0
.
.P
Because that is so common, there\'s a shortcut syntax for it: \fB{user, title}\fR\.
.
.P
If one of the expressions produces multiple results, multiple dictionaries will be produced\. If the input\'s
.
.IP "" 4
.
.nf

{"user":"stedolan","titles":["JQ Primer", "More JQ"]}
.
.fi
.
.IP "" 0
.
.P
then the expression
.
.IP "" 4
.
.nf

{user, title: \.titles[]}
.
.fi
.
.IP "" 0
.
.P
will produce two outputs:
.
.IP "" 4
.
.nf

{"user":"stedolan", "title": "JQ Primer"}
{"user":"stedolan", "title": "More JQ"}
.
.fi
.
.IP "" 0
.
.P
Putting parentheses around the key means it will be evaluated as an expression\. With the same input as above,
.
.IP "" 4
.
.nf

{(\.user): \.titles}
.
.fi
.
.IP "" 0
.
.P
produces
.
.IP "" 4
.
.nf

{"stedolan": ["JQ Primer", "More JQ"]}
.
.fi
.
.IP "" 0
.
.P
Variable references as keys use the value of the variable as the key\. Without a value then the variable\'s name becomes the key and its value becomes the value,
.
.IP "" 4
.
.nf

"f o o" as $foo | "b a r" as $bar | {$foo, $bar:$foo}
.
.fi
.
.IP "" 0
.
.P
produces
.
.IP "" 4
.
.nf

{"foo":"f o o","b a r":"f o o"}

jq \'{user, title: \.titles[]}\'
   {"user":"stedolan","titles":["JQ Primer", "More JQ"]}
=> {"user":"stedolan", "title": "JQ Primer"}, {"user":"stedolan", "title": "More JQ"}

jq \'{(\.user): \.titles}\'
   {"user":"stedolan","titles":["JQ Primer", "More JQ"]}
=> {"stedolan": ["JQ Primer", "More JQ"]}
.
.fi
.
.IP "" 0
.
.SS "Recursive Descent: \.\."
Recursively descends \fB\.\fR, producing every value\. This is the same as the zero\-argument \fBrecurse\fR builtin (see below)\. This is intended to resemble the XPath \fB//\fR operator\. Note that \fB\.\.a\fR does not work; use \fB\.\. | \.a\fR instead\. In the example below we use \fB\.\. | \.a?\fR to find all the values of object keys "a" in any object found "below" \fB\.\fR\.
.
.P
This is particularly useful in conjunction with \fBpath(EXP)\fR (also see below) and the \fB?\fR operator\.
.
.IP "" 4
.
.nf

jq \'\.\. | \.a?\'
   [[{"a":1}]]
=> 1
.
.fi
.
.IP "" 0
.
.SH "BUILTIN OPERATORS AND FUNCTIONS"
Some jq operators (for instance, \fB+\fR) do different things depending on the type of their arguments (arrays, numbers, etc\.)\. However, jq never does implicit type conversions\. If you try to add a string to an object you\'ll get an error message and no result\.
.
.P
Please note that all numbers are converted to IEEE754 double precision floating point representation\. Arithmetic and logical operators are working with these converted doubles\. Results of all such operations are also limited to the double precision\.
.
.P
The only exception to this behaviour of number is a snapshot of original number literal\. When a number which originally was provided as a literal is never mutated until the end of the program then it is printed to the output in its original literal form\. This also includes cases when the original literal would be truncated when converted to the IEEE754 double precision floating point number\.
.
.SS "Addition: +"
The operator \fB+\fR takes two filters, applies them both to the same input, and adds the results together\. What "adding" means depends on the types involved:
.
.IP "\(bu" 4
\fBNumbers\fR are added by normal arithmetic\.
.
.IP "\(bu" 4
\fBArrays\fR are added by being concatenated into a larger array\.
.
.IP "\(bu" 4
\fBStrings\fR are added by being joined into a larger string\.
.
.IP "\(bu" 4
\fBObjects\fR are added by merging, that is, inserting all the key\-value pairs from both objects into a single combined object\. If both objects contain a value for the same key, the object on the right of the \fB+\fR wins\. (For recursive merge use the \fB*\fR operator\.)
.
.IP "" 0
.
.P
\fBnull\fR can be added to any value, and returns the other value unchanged\.
.
.IP "" 4
.
.nf

jq \'\.a + 1\'
   {"a": 7}
=> 8

jq \'\.a + \.b\'
   {"a": [1,2], "b": [3,4]}
=> [1,2,3,4]

jq \'\.a + null\'
   {"a": 1}
=> 1

jq \'\.a + 1\'
   {}
=> 1

jq \'{a: 1} + {b: 2} + {c: 3} + {a: 42}\'
   null
=> {"a": 42, "b": 2, "c": 3}
.
.fi
.
.IP "" 0
.
.SS "Subtraction: \-"
As well as normal arithmetic subtraction on numbers, the \fB\-\fR operator can be used on arrays to remove all occurrences of the second array\'s elements from the first array\.
.
.IP "" 4
.
.nf

jq \'4 \- \.a\'
   {"a":3}
=> 1

jq \'\. \- ["xml", "yaml"]\'
   ["xml", "yaml", "json"]
=> ["json"]
.
.fi
.
.IP "" 0
.
.SS "Multiplication, division, modulo: *, /, %"
These infix operators behave as expected when given two numbers\. Division by zero raises an error\. \fBx % y\fR computes x modulo y\.
.
.P
Multiplying a string by a number produces the concatenation of that string that many times\. \fB"x" * 0\fR produces \fB""\fR\.
.
.P
Dividing a string by another splits the first using the second as separators\.
.
.P
Multiplying two objects will merge them recursively: this works like addition but if both objects contain a value for the same key, and the values are objects, the two are merged with the same strategy\.
.
.IP "" 4
.
.nf

jq \'10 / \. * 3\'
   5
=> 6

jq \'\. / ", "\'
   "a, b,c,d, e"
=> ["a","b,c,d","e"]

jq \'{"k": {"a": 1, "b": 2}} * {"k": {"a": 0,"c": 3}}\'
   null
=> {"k": {"a": 0, "b": 2, "c": 3}}

jq \'\.[] | (1 / \.)?\'
   [1,0,\-1]
=> 1, \-1
.
.fi
.
.IP "" 0
.
.SS "abs"
The builtin function \fBabs\fR is defined naively as: \fBif \. < 0 then \- \. else \. end\fR\.
.
.P
For numeric input, this is the absolute value\. See the section on the identity filter for the implications of this definition for numeric input\.
.
.P
To compute the absolute value of a number as a floating point number, you may wish use \fBfabs\fR\.
.
.IP "" 4
.
.nf

jq \'map(abs)\'
   [\-10, \-1\.1, \-1e\-1]
=> [10,1\.1,1e\-1]
.
.fi
.
.IP "" 0
.
.SS "length"
The builtin function \fBlength\fR gets the length of various different types of value:
.
.IP "\(bu" 4
The length of a \fBstring\fR is the number of Unicode codepoints it contains (which will be the same as its JSON\-encoded length in bytes if it\'s pure ASCII)\.
.
.IP "\(bu" 4
The length of a \fBnumber\fR is its absolute value\.
.
.IP "\(bu" 4
The length of an \fBarray\fR is the number of elements\.
.
.IP "\(bu" 4
The length of an \fBobject\fR is the number of key\-value pairs\.
.
.IP "\(bu" 4
The length of \fBnull\fR is zero\.
.
.IP "\(bu" 4
It is an error to use \fBlength\fR on a \fBboolean\fR\.
.
.IP "" 4
.
.nf

jq \'\.[] | length\'
   [[1,2], "string", {"a":2}, null, \-5]
=> 2, 6, 1, 0, 5
.
.fi
.
.IP "" 0
.
.SS "utf8bytelength"
The builtin function \fButf8bytelength\fR outputs the number of bytes used to encode a string in UTF\-8\.
.
.IP "" 4
.
.nf

jq \'utf8bytelength\'
   "\eu03bc"
=> 2
.
.fi
.
.IP "" 0
.
.SS "keys, keys_unsorted"
The builtin function \fBkeys\fR, when given an object, returns its keys in an array\.
.
.P
The keys are sorted "alphabetically", by unicode codepoint order\. This is not an order that makes particular sense in any particular language, but you can count on it being the same for any two objects with the same set of keys, regardless of locale settings\.
.
.P
When \fBkeys\fR is given an array, it returns the valid indices for that array: the integers from 0 to length\-1\.
.
.P
The \fBkeys_unsorted\fR function is just like \fBkeys\fR, but if the input is an object then the keys will not be sorted, instead the keys will roughly be in insertion order\.
.
.IP "" 4
.
.nf

jq \'keys\'
   {"abc": 1, "abcd": 2, "Foo": 3}
=> ["Foo", "abc", "abcd"]

jq \'keys\'
   [42,3,35]
=> [0,1,2]
.
.fi
.
.IP "" 0
.
.SS "has(key)"
The builtin function \fBhas\fR returns whether the input object has the given key, or the input array has an element at the given index\.
.
.P
\fBhas($key)\fR has the same effect as checking whether \fB$key\fR is a member of the array returned by \fBkeys\fR, although \fBhas\fR will be faster\.
.
.IP "" 4
.
.nf

jq \'map(has("foo"))\'
   [{"foo": 42}, {}]
=> [true, false]

jq \'map(has(2))\'
   [[0,1], ["a","b","c"]]
=> [false, true]
.
.fi
.
.IP "" 0
.
.SS "in"
The builtin function \fBin\fR returns whether or not the input key is in the given object, or the input index corresponds to an element in the given array\. It is, essentially, an inversed version of \fBhas\fR\.
.
.IP "" 4
.
.nf

jq \'\.[] | in({"foo": 42})\'
   ["foo", "bar"]
=> true, false

jq \'map(in([0,1]))\'
   [2, 0]
=> [false, true]
.
.fi
.
.IP "" 0
.
.SS "map(f), map_values(f)"
For any filter \fBf\fR, \fBmap(f)\fR and \fBmap_values(f)\fR apply \fBf\fR to each of the values in the input array or object, that is, to the values of \fB\.[]\fR\.
.
.P
In the absence of errors, \fBmap(f)\fR always outputs an array whereas \fBmap_values(f)\fR outputs an array if given an array, or an object if given an object\.
.
.P
When the input to \fBmap_values(f)\fR is an object, the output object has the same keys as the input object except for those keys whose values when piped to \fBf\fR produce no values at all\.
.
.P
The key difference between \fBmap(f)\fR and \fBmap_values(f)\fR is that the former simply forms an array from all the values of \fB($x|f)\fR for each value, \fB$x\fR, in the input array or object, but \fBmap_values(f)\fR only uses \fBfirst($x|f)\fR\.
.
.P
Specifically, for object inputs, \fBmap_values(f)\fR constructs the output object by examining in turn the value of \fBfirst(\.[$k]|f)\fR for each key, \fB$k\fR, of the input\. If this expression produces no values, then the corresponding key will be dropped; otherwise, the output object will have that value at the key, \fB$k\fR\.
.
.P
Here are some examples to clarify the behavior of \fBmap\fR and \fBmap_values\fR when applied to arrays\. These examples assume the input is \fB[1]\fR in all cases:
.
.IP "" 4
.
.nf

map(\.+1)          #=>  [2]
map(\., \.)         #=>  [1,1]
map(empty)        #=>  []

map_values(\.+1)   #=>  [2]
map_values(\., \.)  #=>  [1]
map_values(empty) #=>  []
.
.fi
.
.IP "" 0
.
.P
\fBmap(f)\fR is equivalent to \fB[\.[] | f]\fR and \fBmap_values(f)\fR is equivalent to \fB\.[] |= f\fR\.
.
.P
In fact, these are their implementations\.
.
.IP "" 4
.
.nf

jq \'map(\.+1)\'
   [1,2,3]
=> [2,3,4]

jq \'map_values(\.+1)\'
   {"a": 1, "b": 2, "c": 3}
=> {"a": 2, "b": 3, "c": 4}

jq \'map(\., \.)\'
   [1,2]
=> [1,1,2,2]

jq \'map_values(\. // empty)\'
   {"a": null, "b": true, "c": false}
=> {"b":true}
.
.fi
.
.IP "" 0
.
.SS "pick(pathexps)"
Emit the projection of the input object or array defined by the specified sequence of path expressions, such that if \fBp\fR is any one of these specifications, then \fB(\. | p)\fR will evaluate to the same value as \fB(\. | pick(pathexps) | p)\fR\. For arrays, negative indices and \fB\.[m:n]\fR specifications should not be used\.
.
.IP "" 4
.
.nf

jq \'pick(\.a, \.b\.c, \.x)\'
   {"a": 1, "b": {"c": 2, "d": 3}, "e": 4}
=> {"a":1,"b":{"c":2},"x":null}

jq \'pick(\.[2], \.[0], \.[0])\'
   [1,2,3,4]
=> [1,null,3]
.
.fi
.
.IP "" 0
.
.SS "path(path_expression)"
Outputs array representations of the given path expression in \fB\.\fR\. The outputs are arrays of strings (object keys) and/or numbers (array indices)\.
.
.P
Path expressions are jq expressions like \fB\.a\fR, but also \fB\.[]\fR\. There are two types of path expressions: ones that can match exactly, and ones that cannot\. For example, \fB\.a\.b\.c\fR is an exact match path expression, while \fB\.a[]\.b\fR is not\.
.
.P
\fBpath(exact_path_expression)\fR will produce the array representation of the path expression even if it does not exist in \fB\.\fR, if \fB\.\fR is \fBnull\fR or an array or an object\.
.
.P
\fBpath(pattern)\fR will produce array representations of the paths matching \fBpattern\fR if the paths exist in \fB\.\fR\.
.
.P
Note that the path expressions are not different from normal expressions\. The expression \fBpath(\.\.|select(type=="boolean"))\fR outputs all the paths to boolean values in \fB\.\fR, and only those paths\.
.
.IP "" 4
.
.nf

jq \'path(\.a[0]\.b)\'
   null
=> ["a",0,"b"]

jq \'[path(\.\.)]\'
   {"a":[{"b":1}]}
=> [[],["a"],["a",0],["a",0,"b"]]
.
.fi
.
.IP "" 0
.
.SS "del(path_expression)"
The builtin function \fBdel\fR removes a key and its corresponding value from an object\.
.
.IP "" 4
.
.nf

jq \'del(\.foo)\'
   {"foo": 42, "bar": 9001, "baz": 42}
=> {"bar": 9001, "baz": 42}

jq \'del(\.[1, 2])\'
   ["foo", "bar", "baz"]
=> ["foo"]
.
.fi
.
.IP "" 0
.
.SS "getpath(PATHS)"
The builtin function \fBgetpath\fR outputs the values in \fB\.\fR found at each path in \fBPATHS\fR\.
.
.IP "" 4
.
.nf

jq \'getpath(["a","b"])\'
   null
=> null

jq \'[getpath(["a","b"], ["a","c"])]\'
   {"a":{"b":0, "c":1}}
=> [0, 1]
.
.fi
.
.IP "" 0
.
.SS "setpath(PATHS; VALUE)"
The builtin function \fBsetpath\fR sets the \fBPATHS\fR in \fB\.\fR to \fBVALUE\fR\.
.
.IP "" 4
.
.nf

jq \'setpath(["a","b"]; 1)\'
   null
=> {"a": {"b": 1}}

jq \'setpath(["a","b"]; 1)\'
   {"a":{"b":0}}
=> {"a": {"b": 1}}

jq \'setpath([0,"a"]; 1)\'
   null
=> [{"a":1}]
.
.fi
.
.IP "" 0
.
.SS "delpaths(PATHS)"
The builtin function \fBdelpaths\fR deletes the \fBPATHS\fR in \fB\.\fR\. \fBPATHS\fR must be an array of paths, where each path is an array of strings and numbers\.
.
.IP "" 4
.
.nf

jq \'delpaths([["a","b"]])\'
   {"a":{"b":1},"x":{"y":2}}
=> {"a":{},"x":{"y":2}}
.
.fi
.
.IP "" 0
.
.SS "to_entries, from_entries, with_entries(f)"
These functions convert between an object and an array of key\-value pairs\. If \fBto_entries\fR is passed an object, then for each \fBk: v\fR entry in the input, the output array includes \fB{"key": k, "value": v}\fR\.
.
.P
\fBfrom_entries\fR does the opposite conversion, and \fBwith_entries(f)\fR is a shorthand for \fBto_entries | map(f) | from_entries\fR, useful for doing some operation to all keys and values of an object\. \fBfrom_entries\fR accepts \fB"key"\fR, \fB"Key"\fR, \fB"name"\fR, \fB"Name"\fR, \fB"value"\fR, and \fB"Value"\fR as keys\.
.
.IP "" 4
.
.nf

jq \'to_entries\'
   {"a": 1, "b": 2}
=> [{"key":"a", "value":1}, {"key":"b", "value":2}]

jq \'from_entries\'
   [{"key":"a", "value":1}, {"key":"b", "value":2}]
=> {"a": 1, "b": 2}

jq \'with_entries(\.key |= "KEY_" + \.)\'
   {"a": 1, "b": 2}
=> {"KEY_a": 1, "KEY_b": 2}
.
.fi
.
.IP "" 0
.
.SS "select(boolean_expression)"
The function \fBselect(f)\fR produces its input unchanged if \fBf\fR returns true for that input, and produces no output otherwise\.
.
.P
It\'s useful for filtering lists: \fB[1,2,3] | map(select(\. >= 2))\fR will give you \fB[2,3]\fR\.
.
.IP "" 4
.
.nf

jq \'map(select(\. >= 2))\'
   [1,5,3,0,7]
=> [5,3,7]

jq \'\.[] | select(\.id == "second")\'
   [{"id": "first", "val": 1}, {"id": "second", "val": 2}]
=> {"id": "second", "val": 2}
.
.fi
.
.IP "" 0
.
.SS "arrays, objects, iterables, booleans, numbers, normals, finites, strings, nulls, values, scalars"
These built\-ins select only inputs that are arrays, objects, iterables (arrays or objects), booleans, numbers, normal numbers, finite numbers, strings, null, non\-null values, and non\-iterables, respectively\.
.
.IP "" 4
.
.nf

jq \'\.[]|numbers\'
   [[],{},1,"foo",null,true,false]
=> 1
.
.fi
.
.IP "" 0
.
.SS "empty"
\fBempty\fR returns no results\. None at all\. Not even \fBnull\fR\.
.
.P
It\'s useful on occasion\. You\'ll know if you need it :)
.
.IP "" 4
.
.nf

jq \'1, empty, 2\'
   null
=> 1, 2

jq \'[1,2,empty,3]\'
   null
=> [1,2,3]
.
.fi
.
.IP "" 0
.
.SS "error, error(message)"
Produces an error with the input value, or with the message given as the argument\. Errors can be caught with try/catch; see below\.
.
.IP "" 4
.
.nf

jq \'try error catch \.\'
   "error message"
=> "error message"

jq \'try error("invalid value: \e(\.)") catch \.\'
   42
=> "invalid value: 42"
.
.fi
.
.IP "" 0
.
.SS "halt"
Stops the jq program with no further outputs\. jq will exit with exit status \fB0\fR\.
.
.SS "halt_error, halt_error(exit_code)"
Stops the jq program with no further outputs\. The input will be printed on \fBstderr\fR as raw output (i\.e\., strings will not have double quotes) with no decoration, not even a newline\.
.
.P
The given \fBexit_code\fR (defaulting to \fB5\fR) will be jq\'s exit status\.
.
.P
For example, \fB"Error: something went wrong\en"|halt_error(1)\fR\.
.
.SS "$__loc__"
Produces an object with a "file" key and a "line" key, with the filename and line number where \fB$__loc__\fR occurs, as values\.
.
.IP "" 4
.
.nf

jq \'try error("\e($__loc__)") catch \.\'
   null
=> "{\e"file\e":\e"<top\-level>\e",\e"line\e":1}"
.
.fi
.
.IP "" 0
.
.SS "paths, paths(node_filter)"
\fBpaths\fR outputs the paths to all the elements in its input (except it does not output the empty list, representing \. itself)\.
.
.P
\fBpaths(f)\fR outputs the paths to any values for which \fBf\fR is \fBtrue\fR\. That is, \fBpaths(type == "number")\fR outputs the paths to all numeric values\.
.
.IP "" 4
.
.nf

jq \'[paths]\'
   [1,[[],{"a":2}]]
=> [[0],[1],[1,0],[1,1],[1,1,"a"]]

jq \'[paths(type == "number")]\'
   [1,[[],{"a":2}]]
=> [[0],[1,1,"a"]]
.
.fi
.
.IP "" 0
.
.SS "add, add(generator)"
The filter \fBadd\fR takes as input an array, and produces as output the elements of the array added together\. This might mean summed, concatenated or merged depending on the types of the elements of the input array \- the rules are the same as those for the \fB+\fR operator (described above)\.
.
.P
If the input is an empty array, \fBadd\fR returns \fBnull\fR\.
.
.P
\fBadd(generator)\fR operates on the given generator rather than the input\.
.
.IP "" 4
.
.nf

jq \'add\'
   ["a","b","c"]
=> "abc"

jq \'add\'
   [1, 2, 3]
=> 6

jq \'add\'
   []
=> null

jq \'add(\.[]\.a)\'
   [{"a":3}, {"a":5}, {"b":6}]
=> 8
.
.fi
.
.IP "" 0
.
.SS "any, any(condition), any(generator; condition)"
The filter \fBany\fR takes as input an array of boolean values, and produces \fBtrue\fR as output if any of the elements of the array are \fBtrue\fR\.
.
.P
If the input is an empty array, \fBany\fR returns \fBfalse\fR\.
.
.P
The \fBany(condition)\fR form applies the given condition to the elements of the input array\.
.
.P
The \fBany(generator; condition)\fR form applies the given condition to all the outputs of the given generator\.
.
.IP "" 4
.
.nf

jq \'any\'
   [true, false]
=> true

jq \'any\'
   [false, false]
=> false

jq \'any\'
   []
=> false
.
.fi
.
.IP "" 0
.
.SS "all, all(condition), all(generator; condition)"
The filter \fBall\fR takes as input an array of boolean values, and produces \fBtrue\fR as output if all of the elements of the array are \fBtrue\fR\.
.
.P
The \fBall(condition)\fR form applies the given condition to the elements of the input array\.
.
.P
The \fBall(generator; condition)\fR form applies the given condition to all the outputs of the given generator\.
.
.P
If the input is an empty array, \fBall\fR returns \fBtrue\fR\.
.
.IP "" 4
.
.nf

jq \'all\'
   [true, false]
=> false

jq \'all\'
   [true, true]
=> true

jq \'all\'
   []
=> true
.
.fi
.
.IP "" 0
.
.SS "flatten, flatten(depth)"
The filter \fBflatten\fR takes as input an array of nested arrays, and produces a flat array in which all arrays inside the original array have been recursively replaced by their values\. You can pass an argument to it to specify how many levels of nesting to flatten\.
.
.P
\fBflatten(2)\fR is like \fBflatten\fR, but going only up to two levels deep\.
.
.IP "" 4
.
.nf

jq \'flatten\'
   [1, [2], [[3]]]
=> [1, 2, 3]

jq \'flatten(1)\'
   [1, [2], [[3]]]
=> [1, 2, [3]]

jq \'flatten\'
   [[]]
=> []

jq \'flatten\'
   [{"foo": "bar"}, [{"foo": "baz"}]]
=> [{"foo": "bar"}, {"foo": "baz"}]
.
.fi
.
.IP "" 0
.
.SS "range(upto), range(from; upto), range(from; upto; by)"
The \fBrange\fR function produces a range of numbers\. \fBrange(4; 10)\fR produces 6 numbers, from 4 (inclusive) to 10 (exclusive)\. The numbers are produced as separate outputs\. Use \fB[range(4; 10)]\fR to get a range as an array\.
.
.P
The one argument form generates numbers from 0 to the given number, with an increment of 1\.
.
.P
The two argument form generates numbers from \fBfrom\fR to \fBupto\fR with an increment of 1\.
.
.P
The three argument form generates numbers \fBfrom\fR to \fBupto\fR with an increment of \fBby\fR\.
.
.IP "" 4
.
.nf

jq \'range(2; 4)\'
   null
=> 2, 3

jq \'[range(2; 4)]\'
   null
=> [2,3]

jq \'[range(4)]\'
   null
=> [0,1,2,3]

jq \'[range(0; 10; 3)]\'
   null
=> [0,3,6,9]

jq \'[range(0; 10; \-1)]\'
   null
=> []

jq \'[range(0; \-5; \-1)]\'
   null
=> [0,\-1,\-2,\-3,\-4]
.
.fi
.
.IP "" 0
.
.SS "floor"
The \fBfloor\fR function returns the floor of its numeric input\.
.
.IP "" 4
.
.nf

jq \'floor\'
   3\.14159
=> 3
.
.fi
.
.IP "" 0
.
.SS "sqrt"
The \fBsqrt\fR function returns the square root of its numeric input\.
.
.IP "" 4
.
.nf

jq \'sqrt\'
   9
=> 3
.
.fi
.
.IP "" 0
.
.SS "tonumber"
The \fBtonumber\fR function parses its input as a number\. It will convert correctly\-formatted strings to their numeric equivalent, leave numbers alone, and give an error on all other input\.
.
.IP "" 4
.
.nf

jq \'\.[] | tonumber\'
   [1, "1"]
=> 1, 1
.
.fi
.
.IP "" 0
.
.SS "toboolean"
The \fBtoboolean\fR function parses its input as a boolean\. It will convert correctly\-formatted strings to their boolean equivalent, leave booleans alone, and give an error on all other input\.
.
.IP "" 4
.
.nf

jq \'\.[] | toboolean\'
   ["true", "false", true, false]
=> true, false, true, false
.
.fi
.
.IP "" 0
.
.SS "tostring"
The \fBtostring\fR function prints its input as a string\. Strings are left unchanged, and all other values are JSON\-encoded\.
.
.IP "" 4
.
.nf

jq \'\.[] | tostring\'
   [1, "1", [1]]
=> "1", "1", "[1]"
.
.fi
.
.IP "" 0
.
.SS "type"
The \fBtype\fR function returns the type of its argument as a string, which is one of null, boolean, number, string, array or object\.
.
.IP "" 4
.
.nf

jq \'map(type)\'
   [0, false, [], {}, null, "hello"]
=> ["number", "boolean", "array", "object", "null", "string"]
.
.fi
.
.IP "" 0
.
.SS "infinite, nan, isinfinite, isnan, isfinite, isnormal"
Some arithmetic operations can yield infinities and "not a number" (NaN) values\. The \fBisinfinite\fR builtin returns \fBtrue\fR if its input is infinite\. The \fBisnan\fR builtin returns \fBtrue\fR if its input is a NaN\. The \fBinfinite\fR builtin returns a positive infinite value\. The \fBnan\fR builtin returns a NaN\. The \fBisnormal\fR builtin returns true if its input is a normal number\.
.
.P
Note that division by zero raises an error\.
.
.P
Currently most arithmetic operations operating on infinities, NaNs, and sub\-normals do not raise errors\.
.
.IP "" 4
.
.nf

jq \'\.[] | (infinite * \.) < 0\'
   [\-1, 1]
=> true, false

jq \'infinite, nan | type\'
   null
=> "number", "number"
.
.fi
.
.IP "" 0
.
.SS "sort, sort_by(path_expression)"
The \fBsort\fR functions sorts its input, which must be an array\. Values are sorted in the following order:
.
.IP "\(bu" 4
\fBnull\fR
.
.IP "\(bu" 4
\fBfalse\fR
.
.IP "\(bu" 4
\fBtrue\fR
.
.IP "\(bu" 4
numbers
.
.IP "\(bu" 4
strings, in alphabetical order (by unicode codepoint value)
.
.IP "\(bu" 4
arrays, in lexical order
.
.IP "\(bu" 4
objects
.
.IP "" 0
.
.P
The ordering for objects is a little complex: first they\'re compared by comparing their sets of keys (as arrays in sorted order), and if their keys are equal then the values are compared key by key\.
.
.P
\fBsort_by\fR may be used to sort by a particular field of an object, or by applying any jq filter\. \fBsort_by(f)\fR compares two elements by comparing the result of \fBf\fR on each element\. When \fBf\fR produces multiple values, it firstly compares the first values, and the second values if the first values are equal, and so on\.
.
.IP "" 4
.
.nf

jq \'sort\'
   [8,3,null,6]
=> [null,3,6,8]

jq \'sort_by(\.foo)\'
   [{"foo":4, "bar":10}, {"foo":3, "bar":10}, {"foo":2, "bar":1}]
=> [{"foo":2, "bar":1}, {"foo":3, "bar":10}, {"foo":4, "bar":10}]

jq \'sort_by(\.foo, \.bar)\'
   [{"foo":4, "bar":10}, {"foo":3, "bar":20}, {"foo":2, "bar":1}, {"foo":3, "bar":10}]
=> [{"foo":2, "bar":1}, {"foo":3, "bar":10}, {"foo":3, "bar":20}, {"foo":4, "bar":10}]
.
.fi
.
.IP "" 0
.
.SS "group_by(path_expression)"
\fBgroup_by(\.foo)\fR takes as input an array, groups the elements having the same \fB\.foo\fR field into separate arrays, and produces all of these arrays as elements of a larger array, sorted by the value of the \fB\.foo\fR field\.
.
.P
Any jq expression, not just a field access, may be used in place of \fB\.foo\fR\. The sorting order is the same as described in the \fBsort\fR function above\.
.
.IP "" 4
.
.nf

jq \'group_by(\.foo)\'
   [{"foo":1, "bar":10}, {"foo":3, "bar":100}, {"foo":1, "bar":1}]
=> [[{"foo":1, "bar":10}, {"foo":1, "bar":1}], [{"foo":3, "bar":100}]]
.
.fi
.
.IP "" 0
.
.SS "min, max, min_by(path_exp), max_by(path_exp)"
Find the minimum or maximum element of the input array\.
.
.P
The \fBmin_by(path_exp)\fR and \fBmax_by(path_exp)\fR functions allow you to specify a particular field or property to examine, e\.g\. \fBmin_by(\.foo)\fR finds the object with the smallest \fBfoo\fR field\.
.
.IP "" 4
.
.nf

jq \'min\'
   [5,4,2,7]
=> 2

jq \'max_by(\.foo)\'
   [{"foo":1, "bar":14}, {"foo":2, "bar":3}]
=> {"foo":2, "bar":3}
.
.fi
.
.IP "" 0
.
.SS "unique, unique_by(path_exp)"
The \fBunique\fR function takes as input an array and produces an array of the same elements, in sorted order, with duplicates removed\.
.
.P
The \fBunique_by(path_exp)\fR function will keep only one element for each value obtained by applying the argument\. Think of it as making an array by taking one element out of every group produced by \fBgroup\fR\.
.
.IP "" 4
.
.nf

jq \'unique\'
   [1,2,5,3,5,3,1,3]
=> [1,2,3,5]

jq \'unique_by(\.foo)\'
   [{"foo": 1, "bar": 2}, {"foo": 1, "bar": 3}, {"foo": 4, "bar": 5}]
=> [{"foo": 1, "bar": 2}, {"foo": 4, "bar": 5}]

jq \'unique_by(length)\'
   ["chunky", "bacon", "kitten", "cicada", "asparagus"]
=> ["bacon", "chunky", "asparagus"]
.
.fi
.
.IP "" 0
.
.SS "reverse"
This function reverses an array\.
.
.IP "" 4
.
.nf

jq \'reverse\'
   [1,2,3,4]
=> [4,3,2,1]
.
.fi
.
.IP "" 0
.
.SS "contains(element)"
The filter \fBcontains(b)\fR will produce true if b is completely contained within the input\. A string B is contained in a string A if B is a substring of A\. An array B is contained in an array A if all elements in B are contained in any element in A\. An object B is contained in object A if all of the values in B are contained in the value in A with the same key\. All other types are assumed to be contained in each other if they are equal\.
.
.IP "" 4
.
.nf

jq \'contains("bar")\'
   "foobar"
=> true

jq \'contains(["baz", "bar"])\'
   ["foobar", "foobaz", "blarp"]
=> true

jq \'contains(["bazzzzz", "bar"])\'
   ["foobar", "foobaz", "blarp"]
=> false

jq \'contains({foo: 12, bar: [{barp: 12}]})\'
   {"foo": 12, "bar":[1,2,{"barp":12, "blip":13}]}
=> true

jq \'contains({foo: 12, bar: [{barp: 15}]})\'
   {"foo": 12, "bar":[1,2,{"barp":12, "blip":13}]}
=> false
.
.fi
.
.IP "" 0
.
.SS "indices(s)"
Outputs an array containing the indices in \fB\.\fR where \fBs\fR occurs\. The input may be an array, in which case if \fBs\fR is an array then the indices output will be those where all elements in \fB\.\fR match those of \fBs\fR\.
.
.IP "" 4
.
.nf

jq \'indices(", ")\'
   "a,b, cd, efg, hijk"
=> [3,7,12]

jq \'indices(1)\'
   [0,1,2,1,3,1,4]
=> [1,3,5]

jq \'indices([1,2])\'
   [0,1,2,3,1,4,2,5,1,2,6,7]
=> [1,8]
.
.fi
.
.IP "" 0
.
.SS "index(s), rindex(s)"
Outputs the index of the first (\fBindex\fR) or last (\fBrindex\fR) occurrence of \fBs\fR in the input\.
.
.IP "" 4
.
.nf

jq \'index(", ")\'
   "a,b, cd, efg, hijk"
=> 3

jq \'index(1)\'
   [0,1,2,1,3,1,4]
=> 1

jq \'index([1,2])\'
   [0,1,2,3,1,4,2,5,1,2,6,7]
=> 1

jq \'rindex(", ")\'
   "a,b, cd, efg, hijk"
=> 12

jq \'rindex(1)\'
   [0,1,2,1,3,1,4]
=> 5

jq \'rindex([1,2])\'
   [0,1,2,3,1,4,2,5,1,2,6,7]
=> 8
.
.fi
.
.IP "" 0
.
.SS "inside"
The filter \fBinside(b)\fR will produce true if the input is completely contained within b\. It is, essentially, an inversed version of \fBcontains\fR\.
.
.IP "" 4
.
.nf

jq \'inside("foobar")\'
   "bar"
=> true

jq \'inside(["foobar", "foobaz", "blarp"])\'
   ["baz", "bar"]
=> true

jq \'inside(["foobar", "foobaz", "blarp"])\'
   ["bazzzzz", "bar"]
=> false

jq \'inside({"foo": 12, "bar":[1,2,{"barp":12, "blip":13}]})\'
   {"foo": 12, "bar": [{"barp": 12}]}
=> true

jq \'inside({"foo": 12, "bar":[1,2,{"barp":12, "blip":13}]})\'
   {"foo": 12, "bar": [{"barp": 15}]}
=> false
.
.fi
.
.IP "" 0
.
.SS "startswith(str)"
Outputs \fBtrue\fR if \. starts with the given string argument\.
.
.IP "" 4
.
.nf

jq \'[\.[]|startswith("foo")]\'
   ["fo", "foo", "barfoo", "foobar", "barfoob"]
=> [false, true, false, true, false]
.
.fi
.
.IP "" 0
.
.SS "endswith(str)"
Outputs \fBtrue\fR if \. ends with the given string argument\.
.
.IP "" 4
.
.nf

jq \'[\.[]|endswith("foo")]\'
   ["foobar", "barfoo"]
=> [false, true]
.
.fi
.
.IP "" 0
.
.SS "combinations, combinations(n)"
Outputs all combinations of the elements of the arrays in the input array\. If given an argument \fBn\fR, it outputs all combinations of \fBn\fR repetitions of the input array\.
.
.IP "" 4
.
.nf

jq \'combinations\'
   [[1,2], [3, 4]]
=> [1, 3], [1, 4], [2, 3], [2, 4]

jq \'combinations(2)\'
   [0, 1]
=> [0, 0], [0, 1], [1, 0], [1, 1]
.
.fi
.
.IP "" 0
.
.SS "ltrimstr(str)"
Outputs its input with the given prefix string removed, if it starts with it\.
.
.IP "" 4
.
.nf

jq \'[\.[]|ltrimstr("foo")]\'
   ["fo", "foo", "barfoo", "foobar", "afoo"]
=> ["fo","","barfoo","bar","afoo"]
.
.fi
.
.IP "" 0
.
.SS "rtrimstr(str)"
Outputs its input with the given suffix string removed, if it ends with it\.
.
.IP "" 4
.
.nf

jq \'[\.[]|rtrimstr("foo")]\'
   ["fo", "foo", "barfoo", "foobar", "foob"]
=> ["fo","","bar","foobar","foob"]
.
.fi
.
.IP "" 0
.
.SS "trimstr(str)"
Outputs its input with the given string removed at both ends, if it starts or ends with it\.
.
.IP "" 4
.
.nf

jq \'[\.[]|trimstr("foo")]\'
   ["fo", "foo", "barfoo", "foobarfoo", "foob"]
=> ["fo","","bar","bar","b"]
.
.fi
.
.IP "" 0
.
.SS "trim, ltrim, rtrim"
\fBtrim\fR trims both leading and trailing whitespace\.
.
.P
\fBltrim\fR trims only leading (left side) whitespace\.
.
.P
\fBrtrim\fR trims only trailing (right side) whitespace\.
.
.P
Whitespace characters are the usual \fB" "\fR, \fB"\en"\fR \fB"\et"\fR, \fB"\er"\fR and also all characters in the Unicode character database with the whitespace property\. Note that what considers whitespace might change in the future\.
.
.IP "" 4
.
.nf

jq \'trim, ltrim, rtrim\'
   " abc "
=> "abc", "abc ", " abc"
.
.fi
.
.IP "" 0
.
.SS "explode"
Converts an input string into an array of the string\'s codepoint numbers\.
.
.IP "" 4
.
.nf

jq \'explode\'
   "foobar"
=> [102,111,111,98,97,114]
.
.fi
.
.IP "" 0
.
.SS "implode"
The inverse of explode\.
.
.IP "" 4
.
.nf

jq \'implode\'
   [65, 66, 67]
=> "ABC"
.
.fi
.
.IP "" 0
.
.SS "split(str)"
Splits an input string on the separator argument\.
.
.P
\fBsplit\fR can also split on regex matches when called with two arguments (see the regular expressions section below)\.
.
.IP "" 4
.
.nf

jq \'split(", ")\'
   "a, b,c,d, e, "
=> ["a","b,c,d","e",""]
.
.fi
.
.IP "" 0
.
.SS "join(str)"
Joins the array of elements given as input, using the argument as separator\. It is the inverse of \fBsplit\fR: that is, running \fBsplit("foo") | join("foo")\fR over any input string returns said input string\.
.
.P
Numbers and booleans in the input are converted to strings\. Null values are treated as empty strings\. Arrays and objects in the input are not supported\.
.
.IP "" 4
.
.nf

jq \'join(", ")\'
   ["a","b,c,d","e"]
=> "a, b,c,d, e"

jq \'join(" ")\'
   ["a",1,2\.3,true,null,false]
=> "a 1 2\.3 true  false"
.
.fi
.
.IP "" 0
.
.SS "ascii_downcase, ascii_upcase"
Emit a copy of the input string with its alphabetic characters (a\-z and A\-Z) converted to the specified case\.
.
.IP "" 4
.
.nf

jq \'ascii_upcase\'
   "useful but not for é"
=> "USEFUL BUT NOT FOR é"
.
.fi
.
.IP "" 0
.
.SS "while(cond; update)"
The \fBwhile(cond; update)\fR function allows you to repeatedly apply an update to \fB\.\fR until \fBcond\fR is false\.
.
.P
Note that \fBwhile(cond; update)\fR is internally defined as a recursive jq function\. Recursive calls within \fBwhile\fR will not consume additional memory if \fBupdate\fR produces at most one output for each input\. See advanced topics below\.
.
.IP "" 4
.
.nf

jq \'[while(\.<100; \.*2)]\'
   1
=> [1,2,4,8,16,32,64]
.
.fi
.
.IP "" 0
.
.SS "repeat(exp)"
The \fBrepeat(exp)\fR function allows you to repeatedly apply expression \fBexp\fR to \fB\.\fR until an error is raised\.
.
.P
Note that \fBrepeat(exp)\fR is internally defined as a recursive jq function\. Recursive calls within \fBrepeat\fR will not consume additional memory if \fBexp\fR produces at most one output for each input\. See advanced topics below\.
.
.IP "" 4
.
.nf

jq \'[repeat(\.*2, error)?]\'
   1
=> [2]
.
.fi
.
.IP "" 0
.
.SS "until(cond; next)"
The \fBuntil(cond; next)\fR function allows you to repeatedly apply the expression \fBnext\fR, initially to \fB\.\fR then to its own output, until \fBcond\fR is true\. For example, this can be used to implement a factorial function (see below)\.
.
.P
Note that \fBuntil(cond; next)\fR is internally defined as a recursive jq function\. Recursive calls within \fBuntil()\fR will not consume additional memory if \fBnext\fR produces at most one output for each input\. See advanced topics below\.
.
.IP "" 4
.
.nf

jq \'[\.,1]|until(\.[0] < 1; [\.[0] \- 1, \.[1] * \.[0]])|\.[1]\'
   4
=> 24
.
.fi
.
.IP "" 0
.
.SS "recurse(f), recurse, recurse(f; condition)"
The \fBrecurse(f)\fR function allows you to search through a recursive structure, and extract interesting data from all levels\. Suppose your input represents a filesystem:
.
.IP "" 4
.
.nf

{"name": "/", "children": [
  {"name": "/bin", "children": [
    {"name": "/bin/ls", "children": []},
    {"name": "/bin/sh", "children": []}]},
  {"name": "/home", "children": [
    {"name": "/home/stephen", "children": [
      {"name": "/home/stephen/jq", "children": []}]}]}]}
.
.fi
.
.IP "" 0
.
.P
Now suppose you want to extract all of the filenames present\. You need to retrieve \fB\.name\fR, \fB\.children[]\.name\fR, \fB\.children[]\.children[]\.name\fR, and so on\. You can do this with:
.
.IP "" 4
.
.nf

recurse(\.children[]) | \.name
.
.fi
.
.IP "" 0
.
.P
When called without an argument, \fBrecurse\fR is equivalent to \fBrecurse(\.[]?)\fR\.
.
.P
\fBrecurse(f)\fR is identical to \fBrecurse(f; true)\fR and can be used without concerns about recursion depth\.
.
.P
\fBrecurse(f; condition)\fR is a generator which begins by emitting \. and then emits in turn \.|f, \.|f|f, \.|f|f|f, \.\.\. so long as the computed value satisfies the condition\. For example, to generate all the integers, at least in principle, one could write \fBrecurse(\.+1; true)\fR\.
.
.P
The recursive calls in \fBrecurse\fR will not consume additional memory whenever \fBf\fR produces at most a single output for each input\.
.
.IP "" 4
.
.nf

jq \'recurse(\.foo[])\'
   {"foo":[{"foo": []}, {"foo":[{"foo":[]}]}]}
=> {"foo":[{"foo":[]},{"foo":[{"foo":[]}]}]}, {"foo":[]}, {"foo":[{"foo":[]}]}, {"foo":[]}

jq \'recurse\'
   {"a":0,"b":[1]}
=> {"a":0,"b":[1]}, 0, [1], 1

jq \'recurse(\. * \.; \. < 20)\'
   2
=> 2, 4, 16
.
.fi
.
.IP "" 0
.
.SS "walk(f)"
The \fBwalk(f)\fR function applies f recursively to every component of the input entity\. When an array is encountered, f is first applied to its elements and then to the array itself; when an object is encountered, f is first applied to all the values and then to the object\. In practice, f will usually test the type of its input, as illustrated in the following examples\. The first example highlights the usefulness of processing the elements of an array of arrays before processing the array itself\. The second example shows how all the keys of all the objects within the input can be considered for alteration\.
.
.IP "" 4
.
.nf

jq \'walk(if type == "array" then sort else \. end)\'
   [[4, 1, 7], [8, 5, 2], [3, 6, 9]]
=> [[1,4,7],[2,5,8],[3,6,9]]

jq \'walk( if type == "object" then with_entries( \.key |= sub( "^_+"; "") ) else \. end )\'
   [ { "_a": { "__b": 2 } } ]
=> [{"a":{"b":2}}]
.
.fi
.
.IP "" 0
.
.SS "have_literal_numbers"
This builtin returns true if jq\'s build configuration includes support for preservation of input number literals\.
.
.SS "have_decnum"
This builtin returns true if jq was built with "decnum", which is the current literal number preserving numeric backend implementation for jq\.
.
.SS "$JQ_BUILD_CONFIGURATION"
This builtin binding shows the jq executable\'s build configuration\. Its value has no particular format, but it can be expected to be at least the \fB\./configure\fR command\-line arguments, and may be enriched in the future to include the version strings for the build tooling used\.
.
.P
Note that this can be overridden in the command\-line with \fB\-\-arg\fR and related options\.
.
.SS "$ENV, env"
\fB$ENV\fR is an object representing the environment variables as set when the jq program started\.
.
.P
\fBenv\fR outputs an object representing jq\'s current environment\.
.
.P
At the moment there is no builtin for setting environment variables\.
.
.IP "" 4
.
.nf

jq \'$ENV\.PAGER\'
   null
=> "less"

jq \'env\.PAGER\'
   null
=> "less"
.
.fi
.
.IP "" 0
.
.SS "transpose"
Transpose a possibly jagged matrix (an array of arrays)\. Rows are padded with nulls so the result is always rectangular\.
.
.IP "" 4
.
.nf

jq \'transpose\'
   [[1], [2,3]]
=> [[1,2],[null,3]]
.
.fi
.
.IP "" 0
.
.SS "bsearch(x)"
\fBbsearch(x)\fR conducts a binary search for x in the input array\. If the input is sorted and contains x, then \fBbsearch(x)\fR will return its index in the array; otherwise, if the array is sorted, it will return (\-1 \- ix) where ix is an insertion point such that the array would still be sorted after the insertion of x at ix\. If the array is not sorted, \fBbsearch(x)\fR will return an integer that is probably of no interest\.
.
.IP "" 4
.
.nf

jq \'bsearch(0)\'
   [0,1]
=> 0

jq \'bsearch(0)\'
   [1,2,3]
=> \-1

jq \'bsearch(4) as $ix | if $ix < 0 then \.[\-(1+$ix)] = 4 else \. end\'
   [1,2,3]
=> [1,2,3,4]
.
.fi
.
.IP "" 0
.
.SS "String interpolation: \e(exp)"
Inside a string, you can put an expression inside parens after a backslash\. Whatever the expression returns will be interpolated into the string\.
.
.IP "" 4
.
.nf

jq \'"The input was \e(\.), which is one less than \e(\.+1)"\'
   42
=> "The input was 42, which is one less than 43"
.
.fi
.
.IP "" 0
.
.SS "Convert to/from JSON"
The \fBtojson\fR and \fBfromjson\fR builtins dump values as JSON texts or parse JSON texts into values, respectively\. The \fBtojson\fR builtin differs from \fBtostring\fR in that \fBtostring\fR returns strings unmodified, while \fBtojson\fR encodes strings as JSON strings\.
.
.IP "" 4
.
.nf

jq \'[\.[]|tostring]\'
   [1, "foo", ["foo"]]
=> ["1","foo","[\e"foo\e"]"]

jq \'[\.[]|tojson]\'
   [1, "foo", ["foo"]]
=> ["1","\e"foo\e"","[\e"foo\e"]"]

jq \'[\.[]|tojson|fromjson]\'
   [1, "foo", ["foo"]]
=> [1,"foo",["foo"]]
.
.fi
.
.IP "" 0
.
.SS "Format strings and escaping"
The \fB@foo\fR syntax is used to format and escape strings, which is useful for building URLs, documents in a language like HTML or XML, and so forth\. \fB@foo\fR can be used as a filter on its own, the possible escapings are:
.
.TP
\fB@text\fR:
.
.IP
Calls \fBtostring\fR, see that function for details\.
.
.TP
\fB@json\fR:
.
.IP
Serializes the input as JSON\.
.
.TP
\fB@html\fR:
.
.IP
Applies HTML/XML escaping, by mapping the characters \fB<>&\'"\fR to their entity equivalents \fB&lt;\fR, \fB&gt;\fR, \fB&amp;\fR, \fB&apos;\fR, \fB&quot;\fR\.
.
.TP
\fB@uri\fR:
.
.IP
Applies percent\-encoding, by mapping all reserved URI characters to a \fB%XX\fR sequence\.
.
.TP
\fB@urid\fR:
.
.IP
The inverse of \fB@uri\fR, applies percent\-decoding, by mapping all \fB%XX\fR sequences to their corresponding URI characters\.
.
.TP
\fB@csv\fR:
.
.IP
The input must be an array, and it is rendered as CSV with double quotes for strings, and quotes escaped by repetition\.
.
.TP
\fB@tsv\fR:
.
.IP
The input must be an array, and it is rendered as TSV (tab\-separated values)\. Each input array will be printed as a single line\. Fields are separated by a single tab (ascii \fB0x09\fR)\. Input characters line\-feed (ascii \fB0x0a\fR), carriage\-return (ascii \fB0x0d\fR), tab (ascii \fB0x09\fR) and backslash (ascii \fB0x5c\fR) will be output as escape sequences \fB\en\fR, \fB\er\fR, \fB\et\fR, \fB\e\e\fR respectively\.
.
.TP
\fB@sh\fR:
.
.IP
The input is escaped suitable for use in a command\-line for a POSIX shell\. If the input is an array, the output will be a series of space\-separated strings\.
.
.TP
\fB@base64\fR:
.
.IP
The input is converted to base64 as specified by RFC 4648\.
.
.TP
\fB@base64d\fR:
.
.IP
The inverse of \fB@base64\fR, input is decoded as specified by RFC 4648\. Note\e: If the decoded string is not UTF\-8, the results are undefined\.
.
.P
This syntax can be combined with string interpolation in a useful way\. You can follow a \fB@foo\fR token with a string literal\. The contents of the string literal will \fInot\fR be escaped\. However, all interpolations made inside that string literal will be escaped\. For instance,
.
.IP "" 4
.
.nf

@uri "https://www\.google\.com/search?q=\e(\.search)"
.
.fi
.
.IP "" 0
.
.P
will produce the following output for the input \fB{"search":"what is jq?"}\fR:
.
.IP "" 4
.
.nf

"https://www\.google\.com/search?q=what%20is%20jq%3F"
.
.fi
.
.IP "" 0
.
.P
Note that the slashes, question mark, etc\. in the URL are not escaped, as they were part of the string literal\.
.
.IP "" 4
.
.nf

jq \'@html\'
   "This works if x < y"
=> "This works if x &lt; y"

jq \'@sh "echo \e(\.)"\'
   "O\'Hara\'s Ale"
=> "echo \'O\'\e\e\'\'Hara\'\e\e\'\'s Ale\'"

jq \'@base64\'
   "This is a message"
=> "VGhpcyBpcyBhIG1lc3NhZ2U="

jq \'@base64d\'
   "VGhpcyBpcyBhIG1lc3NhZ2U="
=> "This is a message"
.
.fi
.
.IP "" 0
.
.SS "Dates"
jq provides some basic date handling functionality, with some high\-level and low\-level builtins\. In all cases these builtins deal exclusively with time in UTC\.
.
.P
The \fBfromdateiso8601\fR builtin parses datetimes in the ISO 8601 format to a number of seconds since the Unix epoch (1970\-01\-01T00:00:00Z)\. The \fBtodateiso8601\fR builtin does the inverse\.
.
.P
The \fBfromdate\fR builtin parses datetime strings\. Currently \fBfromdate\fR only supports ISO 8601 datetime strings, but in the future it will attempt to parse datetime strings in more formats\.
.
.P
The \fBtodate\fR builtin is an alias for \fBtodateiso8601\fR\.
.
.P
The \fBnow\fR builtin outputs the current time, in seconds since the Unix epoch\.
.
.P
Low\-level jq interfaces to the C\-library time functions are also provided: \fBstrptime\fR, \fBstrftime\fR, \fBstrflocaltime\fR, \fBmktime\fR, \fBgmtime\fR, and \fBlocaltime\fR\. Refer to your host operating system\'s documentation for the format strings used by \fBstrptime\fR and \fBstrftime\fR\. Note: these are not necessarily stable interfaces in jq, particularly as to their localization functionality\.
.
.P
The \fBgmtime\fR builtin consumes a number of seconds since the Unix epoch and outputs a "broken down time" representation of Greenwich Mean Time as an array of numbers representing (in this order): the year, the month (zero\-based), the day of the month (one\-based), the hour of the day, the minute of the hour, the second of the minute, the day of the week, and the day of the year \-\- all one\-based unless otherwise stated\. The day of the week number may be wrong on some systems for dates before March 1st 1900, or after December 31 2099\.
.
.P
The \fBlocaltime\fR builtin works like the \fBgmtime\fR builtin, but using the local timezone setting\.
.
.P
The \fBmktime\fR builtin consumes "broken down time" representations of time output by \fBgmtime\fR and \fBstrptime\fR\.
.
.P
The \fBstrptime(fmt)\fR builtin parses input strings matching the \fBfmt\fR argument\. The output is in the "broken down time" representation consumed by \fBmktime\fR and output by \fBgmtime\fR\.
.
.P
The \fBstrftime(fmt)\fR builtin formats a time (GMT) with the given format\. The \fBstrflocaltime\fR does the same, but using the local timezone setting\.
.
.P
The format strings for \fBstrptime\fR and \fBstrftime\fR are described in typical C library documentation\. The format string for ISO 8601 datetime is \fB"%Y\-%m\-%dT%H:%M:%SZ"\fR\.
.
.P
jq may not support some or all of this date functionality on some systems\. In particular, the \fB%u\fR and \fB%j\fR specifiers for \fBstrptime(fmt)\fR are not supported on macOS\.
.
.IP "" 4
.
.nf

jq \'fromdate\'
   "2015\-03\-05T23:51:47Z"
=> 1425599507

jq \'strptime("%Y\-%m\-%dT%H:%M:%SZ")\'
   "2015\-03\-05T23:51:47Z"
=> [2015,2,5,23,51,47,4,63]

jq \'strptime("%Y\-%m\-%dT%H:%M:%SZ")|mktime\'
   "2015\-03\-05T23:51:47Z"
=> 1425599507
.
.fi
.
.IP "" 0
.
.SS "SQL\-Style Operators"
jq provides a few SQL\-style operators\.
.
.TP
\fBINDEX(stream; index_expression)\fR:
.
.IP
This builtin produces an object whose keys are computed by the given index expression applied to each value from the given stream\.
.
.TP
\fBJOIN($idx; stream; idx_expr; join_expr)\fR:
.
.IP
This builtin joins the values from the given stream to the given index\. The index\'s keys are computed by applying the given index expression to each value from the given stream\. An array of the value in the stream and the corresponding value from the index is fed to the given join expression to produce each result\.
.
.TP
\fBJOIN($idx; stream; idx_expr)\fR:
.
.IP
Same as \fBJOIN($idx; stream; idx_expr; \.)\fR\.
.
.TP
\fBJOIN($idx; idx_expr)\fR:
.
.IP
This builtin joins the input \fB\.\fR to the given index, applying the given index expression to \fB\.\fR to compute the index key\. The join operation is as described above\.
.
.TP
\fBIN(s)\fR:
.
.IP
This builtin outputs \fBtrue\fR if \fB\.\fR appears in the given stream, otherwise it outputs \fBfalse\fR\.
.
.TP
\fBIN(source; s)\fR:
.
.IP
This builtin outputs \fBtrue\fR if any value in the source stream appears in the second stream, otherwise it outputs \fBfalse\fR\.
.
.SS "builtins"
Returns a list of all builtin functions in the format \fBname/arity\fR\. Since functions with the same name but different arities are considered separate functions, \fBall/0\fR, \fBall/1\fR, and \fBall/2\fR would all be present in the list\.
.
.SH "CONDITIONALS AND COMPARISONS"
.
.SS "==, !="
The expression \'a == b\' will produce \'true\' if the results of evaluating a and b are equal (that is, if they represent equivalent JSON values) and \'false\' otherwise\. In particular, strings are never considered equal to numbers\. In checking for the equality of JSON objects, the ordering of keys is irrelevant\. If you\'re coming from JavaScript, please note that jq\'s \fB==\fR is like JavaScript\'s \fB===\fR, the "strict equality" operator\.
.
.P
!= is "not equal", and \'a != b\' returns the opposite value of \'a == b\'
.
.IP "" 4
.
.nf

jq \'\. == false\'
   null
=> false

jq \'\. == {"b": {"d": (4 + 1e\-20), "c": 3}, "a":1}\'
   {"a":1, "b": {"c": 3, "d": 4}}
=> true

jq \'\.[] == 1\'
   [1, 1\.0, "1", "banana"]
=> true, true, false, false
.
.fi
.
.IP "" 0
.
.SS "if\-then\-else\-end"
\fBif A then B else C end\fR will act the same as \fBB\fR if \fBA\fR produces a value other than false or null, but act the same as \fBC\fR otherwise\.
.
.P
\fBif A then B end\fR is the same as \fBif A then B else \.  end\fR\. That is, the \fBelse\fR branch is optional, and if absent is the same as \fB\.\fR\. This also applies to \fBelif\fR with absent ending \fBelse\fR branch\.
.
.P
Checking for false or null is a simpler notion of "truthiness" than is found in JavaScript or Python, but it means that you\'ll sometimes have to be more explicit about the condition you want\. You can\'t test whether, e\.g\. a string is empty using \fBif \.name then A else B end\fR; you\'ll need something like \fBif \.name == "" then A else B end\fR instead\.
.
.P
If the condition \fBA\fR produces multiple results, then \fBB\fR is evaluated once for each result that is not false or null, and \fBC\fR is evaluated once for each false or null\.
.
.P
More cases can be added to an if using \fBelif A then B\fR syntax\.
.
.IP "" 4
.
.nf

jq \'if \. == 0 then
  "zero"
elif \. == 1 then
  "one"
else
  "many"
end\'
   2
=> "many"
.
.fi
.
.IP "" 0
.
.SS ">, >=, <=, <"
The comparison operators \fB>\fR, \fB>=\fR, \fB<=\fR, \fB<\fR return whether their left argument is greater than, greater than or equal to, less than or equal to or less than their right argument (respectively)\.
.
.P
The ordering is the same as that described for \fBsort\fR, above\.
.
.IP "" 4
.
.nf

jq \'\. < 5\'
   2
=> true
.
.fi
.
.IP "" 0
.
.SS "and, or, not"
jq supports the normal Boolean operators \fBand\fR, \fBor\fR, \fBnot\fR\. They have the same standard of truth as if expressions \- \fBfalse\fR and \fBnull\fR are considered "false values", and anything else is a "true value"\.
.
.P
If an operand of one of these operators produces multiple results, the operator itself will produce a result for each input\.
.
.P
\fBnot\fR is in fact a builtin function rather than an operator, so it is called as a filter to which things can be piped rather than with special syntax, as in \fB\.foo and \.bar | not\fR\.
.
.P
These three only produce the values \fBtrue\fR and \fBfalse\fR, and so are only useful for genuine Boolean operations, rather than the common Perl/Python/Ruby idiom of "value_that_may_be_null or default"\. If you want to use this form of "or", picking between two values rather than evaluating a condition, see the \fB//\fR operator below\.
.
.IP "" 4
.
.nf

jq \'42 and "a string"\'
   null
=> true

jq \'(true, false) or false\'
   null
=> true, false

jq \'(true, true) and (true, false)\'
   null
=> true, false, true, false

jq \'[true, false | not]\'
   null
=> [false, true]
.
.fi
.
.IP "" 0
.
.SS "Alternative operator: //"
The \fB//\fR operator produces all the values of its left\-hand side that are neither \fBfalse\fR nor \fBnull\fR\. If the left\-hand side produces no values other than \fBfalse\fR or \fBnull\fR, then \fB//\fR produces all the values of its right\-hand side\.
.
.P
A filter of the form \fBa // b\fR produces all the results of \fBa\fR that are not \fBfalse\fR or \fBnull\fR\. If \fBa\fR produces no results, or no results other than \fBfalse\fR or \fBnull\fR, then \fBa // b\fR produces the results of \fBb\fR\.
.
.P
This is useful for providing defaults: \fB\.foo // 1\fR will evaluate to \fB1\fR if there\'s no \fB\.foo\fR element in the input\. It\'s similar to how \fBor\fR is sometimes used in Python (jq\'s \fBor\fR operator is reserved for strictly Boolean operations)\.
.
.P
Note: \fBsome_generator // defaults_here\fR is not the same as \fBsome_generator | \. // defaults_here\fR\. The latter will produce default values for all non\-\fBfalse\fR, non\-\fBnull\fR values of the left\-hand side, while the former will not\. Precedence rules can make this confusing\. For example, in \fBfalse, 1 // 2\fR the left\-hand side of \fB//\fR is \fB1\fR, not \fBfalse, 1\fR \-\- \fBfalse, 1 // 2\fR parses the same way as \fBfalse, (1 // 2)\fR\. In \fB(false, null, 1) | \. // 42\fR the left\-hand side of \fB//\fR is \fB\.\fR, which always produces just one value, while in \fB(false, null, 1) // 42\fR the left\-hand side is a generator of three values, and since it produces a value other \fBfalse\fR and \fBnull\fR, the default \fB42\fR is not produced\.
.
.IP "" 4
.
.nf

jq \'empty // 42\'
   null
=> 42

jq \'\.foo // 42\'
   {"foo": 19}
=> 19

jq \'\.foo // 42\'
   {}
=> 42

jq \'(false, null, 1) // 42\'
   null
=> 1

jq \'(false, null, 1) | \. // 42\'
   null
=> 42, 42, 1
.
.fi
.
.IP "" 0
.
.SS "try\-catch"
Errors can be caught by using \fBtry EXP catch EXP\fR\. The first expression is executed, and if it fails then the second is executed with the error message\. The output of the handler, if any, is output as if it had been the output of the expression to try\.
.
.P
The \fBtry EXP\fR form uses \fBempty\fR as the exception handler\.
.
.IP "" 4
.
.nf

jq \'try \.a catch "\. is not an object"\'
   true
=> "\. is not an object"

jq \'[\.[]|try \.a]\'
   [{}, true, {"a":1}]
=> [null, 1]

jq \'try error("some exception") catch \.\'
   true
=> "some exception"
.
.fi
.
.IP "" 0
.
.SS "Breaking out of control structures"
A convenient use of try/catch is to break out of control structures like \fBreduce\fR, \fBforeach\fR, \fBwhile\fR, and so on\.
.
.P
For example:
.
.IP "" 4
.
.nf

# Repeat an expression until it raises "break" as an
# error, then stop repeating without re\-raising the error\.
# But if the error caught is not "break" then re\-raise it\.
try repeat(exp) catch if \.=="break" then empty else error
.
.fi
.
.IP "" 0
.
.P
jq has a syntax for named lexical labels to "break" or "go (back) to":
.
.IP "" 4
.
.nf

label $out | \.\.\. break $out \.\.\.
.
.fi
.
.IP "" 0
.
.P
The \fBbreak $label_name\fR expression will cause the program to act as though the nearest (to the left) \fBlabel $label_name\fR produced \fBempty\fR\.
.
.P
The relationship between the \fBbreak\fR and corresponding \fBlabel\fR is lexical: the label has to be "visible" from the break\.
.
.P
To break out of a \fBreduce\fR, for example:
.
.IP "" 4
.
.nf

label $out | reduce \.[] as $item (null; if \.==false then break $out else \.\.\. end)
.
.fi
.
.IP "" 0
.
.P
The following jq program produces a syntax error:
.
.IP "" 4
.
.nf

break $out
.
.fi
.
.IP "" 0
.
.P
because no label \fB$out\fR is visible\.
.
.SS "Error Suppression / Optional Operator: ?"
The \fB?\fR operator, used as \fBEXP?\fR, is shorthand for \fBtry EXP\fR\.
.
.IP "" 4
.
.nf

jq \'[\.[] | \.a?]\'
   [{}, true, {"a":1}]
=> [null, 1]

jq \'[\.[] | tonumber?]\'
   ["1", "invalid", "3", 4]
=> [1, 3, 4]
.
.fi
.
.IP "" 0
.
.SH "REGULAR EXPRESSIONS"
jq uses the Oniguruma regular expression library, as do PHP, TextMate, Sublime Text, etc, so the description here will focus on jq specifics\.

.
.P
Oniguruma supports several flavors of regular expression, so it is important to know that jq uses the "Perl NG" (Perl with named groups) flavor\.

.
.P
The jq regex filters are defined so that they can be used using one of these patterns:
.
.IP "" 4
.
.nf

STRING | FILTER(REGEX)
STRING | FILTER(REGEX; FLAGS)
STRING | FILTER([REGEX])
STRING | FILTER([REGEX, FLAGS])
.
.fi
.
.IP "" 0
.
.P
where:
.
.IP "\(bu" 4
STRING, REGEX, and FLAGS are jq strings and subject to jq string interpolation;
.
.IP "\(bu" 4
REGEX, after string interpolation, should be a valid regular expression;
.
.IP "\(bu" 4
FILTER is one of \fBtest\fR, \fBmatch\fR, or \fBcapture\fR, as described below\.
.
.IP "" 0
.
.P
Since REGEX must evaluate to a JSON string, some characters that are needed to form a regular expression must be escaped\. For example, the regular expression \fB\es\fR signifying a whitespace character would be written as \fB"\e\es"\fR\.
.
.P
FLAGS is a string consisting of one of more of the supported flags:
.
.IP "\(bu" 4
\fBg\fR \- Global search (find all matches, not just the first)
.
.IP "\(bu" 4
\fBi\fR \- Case insensitive search
.
.IP "\(bu" 4
\fBm\fR \- Multi line mode (\fB\.\fR will match newlines)
.
.IP "\(bu" 4
\fBn\fR \- Ignore empty matches
.
.IP "\(bu" 4
\fBp\fR \- Both s and m modes are enabled
.
.IP "\(bu" 4
\fBs\fR \- Single line mode (\fB^\fR \-> \fB\eA\fR, \fB$\fR \-> \fB\eZ\fR)
.
.IP "\(bu" 4
\fBl\fR \- Find longest possible matches
.
.IP "\(bu" 4
\fBx\fR \- Extended regex format (ignore whitespace and comments)
.
.IP "" 0
.
.P
To match a whitespace with the \fBx\fR flag, use \fB\es\fR, e\.g\.
.
.IP "" 4
.
.nf

jq \-n \'"a b" | test("a\e\esb"; "x")\'
.
.fi
.
.IP "" 0
.
.P
Note that certain flags may also be specified within REGEX, e\.g\.
.
.IP "" 4
.
.nf

jq \-n \'("test", "TEst", "teST", "TEST") | test("(?i)te(?\-i)st")\'
.
.fi
.
.IP "" 0
.
.P
evaluates to: \fBtrue\fR, \fBtrue\fR, \fBfalse\fR, \fBfalse\fR\.
.
.SS "test(val), test(regex; flags)"
Like \fBmatch\fR, but does not return match objects, only \fBtrue\fR or \fBfalse\fR for whether or not the regex matches the input\.
.
.IP "" 4
.
.nf

jq \'test("foo")\'
   "foo"
=> true

jq \'\.[] | test("a b c # spaces are ignored"; "ix")\'
   ["xabcd", "ABC"]
=> true, true
.
.fi
.
.IP "" 0
.
.SS "match(val), match(regex; flags)"
\fBmatch\fR outputs an object for each match it finds\. Matches have the following fields:
.
.IP "\(bu" 4
\fBoffset\fR \- offset in UTF\-8 codepoints from the beginning of the input
.
.IP "\(bu" 4
\fBlength\fR \- length in UTF\-8 codepoints of the match
.
.IP "\(bu" 4
\fBstring\fR \- the string that it matched
.
.IP "\(bu" 4
\fBcaptures\fR \- an array of objects representing capturing groups\.
.
.IP "" 0
.
.P
Capturing group objects have the following fields:
.
.IP "\(bu" 4
\fBoffset\fR \- offset in UTF\-8 codepoints from the beginning of the input
.
.IP "\(bu" 4
\fBlength\fR \- length in UTF\-8 codepoints of this capturing group
.
.IP "\(bu" 4
\fBstring\fR \- the string that was captured
.
.IP "\(bu" 4
\fBname\fR \- the name of the capturing group (or \fBnull\fR if it was unnamed)
.
.IP "" 0
.
.P
Capturing groups that did not match anything return an offset of \-1
.
.IP "" 4
.
.nf

jq \'match("(abc)+"; "g")\'
   "abc abc"
=> {"offset": 0, "length": 3, "string": "abc", "captures": [{"offset": 0, "length": 3, "string": "abc", "name": null}]}, {"offset": 4, "length": 3, "string": "abc", "captures": [{"offset": 4, "length": 3, "string": "abc", "name": null}]}

jq \'match("foo")\'
   "foo bar foo"
=> {"offset": 0, "length": 3, "string": "foo", "captures": []}

jq \'match(["foo", "ig"])\'
   "foo bar FOO"
=> {"offset": 0, "length": 3, "string": "foo", "captures": []}, {"offset": 8, "length": 3, "string": "FOO", "captures": []}

jq \'match("foo (?<bar123>bar)? foo"; "ig")\'
   "foo bar foo foo  foo"
=> {"offset": 0, "length": 11, "string": "foo bar foo", "captures": [{"offset": 4, "length": 3, "string": "bar", "name": "bar123"}]}, {"offset": 12, "length": 8, "string": "foo  foo", "captures": [{"offset": \-1, "length": 0, "string": null, "name": "bar123"}]}

jq \'[ match("\."; "g")] | length\'
   "abc"
=> 3
.
.fi
.
.IP "" 0
.
.SS "capture(val), capture(regex; flags)"
Collects the named captures in a JSON object, with the name of each capture as the key, and the matched string as the corresponding value\.
.
.IP "" 4
.
.nf

jq \'capture("(?<a>[a\-z]+)\-(?<n>[0\-9]+)")\'
   "xyzzy\-14"
=> { "a": "xyzzy", "n": "14" }
.
.fi
.
.IP "" 0
.
.SS "scan(regex), scan(regex; flags)"
Emit a stream of the non\-overlapping substrings of the input that match the regex in accordance with the flags, if any have been specified\. If there is no match, the stream is empty\. To capture all the matches for each input string, use the idiom \fB[ expr ]\fR, e\.g\. \fB[ scan(regex) ]\fR\. If the regex contains capturing groups, the filter emits a stream of arrays, each of which contains the captured strings\.
.
.IP "" 4
.
.nf

jq \'scan("c")\'
   "abcdefabc"
=> "c", "c"

jq \'scan("(a+)(b+)")\'
   "abaabbaaabbb"
=> ["a","b"], ["aa","bb"], ["aaa","bbb"]
.
.fi
.
.IP "" 0
.
.SS "split(regex; flags)"
Splits an input string on each regex match\.
.
.P
For backwards compatibility, when called with a single argument, \fBsplit\fR splits on a string, not a regex\.
.
.IP "" 4
.
.nf

jq \'split(", *"; null)\'
   "ab,cd, ef"
=> ["ab","cd","ef"]
.
.fi
.
.IP "" 0
.
.SS "splits(regex), splits(regex; flags)"
These provide the same results as their \fBsplit\fR counterparts, but as a stream instead of an array\.
.
.IP "" 4
.
.nf

jq \'splits(", *")\'
   "ab,cd,   ef, gh"
=> "ab", "cd", "ef", "gh"

jq \'splits(",? *"; "n")\'
   "ab,cd ef,  gh"
=> "ab", "cd", "ef", "gh"
.
.fi
.
.IP "" 0
.
.SS "sub(regex; tostring), sub(regex; tostring; flags)"
Emit the string obtained by replacing the first match of regex in the input string with \fBtostring\fR, after interpolation\. \fBtostring\fR should be a jq string or a stream of such strings, each of which may contain references to named captures\. The named captures are, in effect, presented as a JSON object (as constructed by \fBcapture\fR) to \fBtostring\fR, so a reference to a captured variable named "x" would take the form: \fB"\e(\.x)"\fR\.
.
.IP "" 4
.
.nf

jq \'sub("[^a\-z]*(?<x>[a\-z]+)"; "Z\e(\.x)"; "g")\'
   "123abc456def"
=> "ZabcZdef"

jq \'[sub("(?<a>\.)"; "\e(\.a|ascii_upcase)", "\e(\.a|ascii_downcase)")]\'
   "aB"
=> ["AB","aB"]
.
.fi
.
.IP "" 0
.
.SS "gsub(regex; tostring), gsub(regex; tostring; flags)"
\fBgsub\fR is like \fBsub\fR but all the non\-overlapping occurrences of the regex are replaced by \fBtostring\fR, after interpolation\. If the second argument is a stream of jq strings, then \fBgsub\fR will produce a corresponding stream of JSON strings\.
.
.IP "" 4
.
.nf

jq \'gsub("(?<x>\.)[^a]*"; "+\e(\.x)\-")\'
   "Abcabc"
=> "+A\-+a\-"

jq \'[gsub("p"; "a", "b")]\'
   "p"
=> ["a","b"]
.
.fi
.
.IP "" 0
.
.SH "ADVANCED FEATURES"
Variables are an absolute necessity in most programming languages, but they\'re relegated to an "advanced feature" in jq\.
.
.P
In most languages, variables are the only means of passing around data\. If you calculate a value, and you want to use it more than once, you\'ll need to store it in a variable\. To pass a value to another part of the program, you\'ll need that part of the program to define a variable (as a function parameter, object member, or whatever) in which to place the data\.
.
.P
It is also possible to define functions in jq, although this is is a feature whose biggest use is defining jq\'s standard library (many jq functions such as \fBmap\fR and \fBselect\fR are in fact written in jq)\.
.
.P
jq has reduction operators, which are very powerful but a bit tricky\. Again, these are mostly used internally, to define some useful bits of jq\'s standard library\.
.
.P
It may not be obvious at first, but jq is all about generators (yes, as often found in other languages)\. Some utilities are provided to help deal with generators\.
.
.P
Some minimal I/O support (besides reading JSON from standard input, and writing JSON to standard output) is available\.
.
.P
Finally, there is a module/library system\.
.
.SS "Variable / Symbolic Binding Operator: \.\.\. as $identifier | \.\.\."
In jq, all filters have an input and an output, so manual plumbing is not necessary to pass a value from one part of a program to the next\. Many expressions, for instance \fBa + b\fR, pass their input to two distinct subexpressions (here \fBa\fR and \fBb\fR are both passed the same input), so variables aren\'t usually necessary in order to use a value twice\.
.
.P
For instance, calculating the average value of an array of numbers requires a few variables in most languages \- at least one to hold the array, perhaps one for each element or for a loop counter\. In jq, it\'s simply \fBadd / length\fR \- the \fBadd\fR expression is given the array and produces its sum, and the \fBlength\fR expression is given the array and produces its length\.
.
.P
So, there\'s generally a cleaner way to solve most problems in jq than defining variables\. Still, sometimes they do make things easier, so jq lets you define variables using \fBexpression as $variable\fR\. All variable names start with \fB$\fR\. Here\'s a slightly uglier version of the array\-averaging example:
.
.IP "" 4
.
.nf

length as $array_length | add / $array_length
.
.fi
.
.IP "" 0
.
.P
We\'ll need a more complicated problem to find a situation where using variables actually makes our lives easier\.
.
.P
Suppose we have an array of blog posts, with "author" and "title" fields, and another object which is used to map author usernames to real names\. Our input looks like:
.
.IP "" 4
.
.nf

{"posts": [{"title": "First post", "author": "anon"},
           {"title": "A well\-written article", "author": "person1"}],
 "realnames": {"anon": "Anonymous Coward",
               "person1": "Person McPherson"}}
.
.fi
.
.IP "" 0
.
.P
We want to produce the posts with the author field containing a real name, as in:
.
.IP "" 4
.
.nf

{"title": "First post", "author": "Anonymous Coward"}
{"title": "A well\-written article", "author": "Person McPherson"}
.
.fi
.
.IP "" 0
.
.P
We use a variable, \fB$names\fR, to store the realnames object, so that we can refer to it later when looking up author usernames:
.
.IP "" 4
.
.nf

\&.realnames as $names | \.posts[] | {title, author: $names[\.author]}
.
.fi
.
.IP "" 0
.
.P
The expression \fBexp as $x | \.\.\.\fR means: for each value of expression \fBexp\fR, run the rest of the pipeline with the entire original input, and with \fB$x\fR set to that value\. Thus \fBas\fR functions as something of a foreach loop\.
.
.P
Just as \fB{foo}\fR is a handy way of writing \fB{foo: \.foo}\fR, so \fB{$foo}\fR is a handy way of writing \fB{foo: $foo}\fR\.
.
.P
Multiple variables may be declared using a single \fBas\fR expression by providing a pattern that matches the structure of the input (this is known as "destructuring"):
.
.IP "" 4
.
.nf

\&. as {realnames: $names, posts: [$first, $second]} | \.\.\.
.
.fi
.
.IP "" 0
.
.P
The variable declarations in array patterns (e\.g\., \fB\. as [$first, $second]\fR) bind to the elements of the array in from the element at index zero on up, in order\. When there is no value at the index for an array pattern element, \fBnull\fR is bound to that variable\.
.
.P
Variables are scoped over the rest of the expression that defines them, so
.
.IP "" 4
.
.nf

\&.realnames as $names | (\.posts[] | {title, author: $names[\.author]})
.
.fi
.
.IP "" 0
.
.P
will work, but
.
.IP "" 4
.
.nf

(\.realnames as $names | \.posts[]) | {title, author: $names[\.author]}
.
.fi
.
.IP "" 0
.
.P
won\'t\.
.
.P
For programming language theorists, it\'s more accurate to say that jq variables are lexically\-scoped bindings\. In particular there\'s no way to change the value of a binding; one can only setup a new binding with the same name, but which will not be visible where the old one was\.
.
.IP "" 4
.
.nf

jq \'\.bar as $x | \.foo | \. + $x\'
   {"foo":10, "bar":200}
=> 210

jq \'\. as $i|[(\.*2|\. as $i| $i), $i]\'
   5
=> [10,5]

jq \'\. as [$a, $b, {c: $c}] | $a + $b + $c\'
   [2, 3, {"c": 4, "d": 5}]
=> 9

jq \'\.[] as [$a, $b] | {a: $a, b: $b}\'
   [[0], [0, 1], [2, 1, 0]]
=> {"a":0,"b":null}, {"a":0,"b":1}, {"a":2,"b":1}
.
.fi
.
.IP "" 0
.
.SS "Destructuring Alternative Operator: ?//"
The destructuring alternative operator provides a concise mechanism for destructuring an input that can take one of several forms\.
.
.P
Suppose we have an API that returns a list of resources and events associated with them, and we want to get the user_id and timestamp of the first event for each resource\. The API (having been clumsily converted from XML) will only wrap the events in an array if the resource has multiple events:
.
.IP "" 4
.
.nf

{"resources": [{"id": 1, "kind": "widget", "events": {"action": "create", "user_id": 1, "ts": 13}},
               {"id": 2, "kind": "widget", "events": [{"action": "create", "user_id": 1, "ts": 14}, {"action": "destroy", "user_id": 1, "ts": 15}]}]}
.
.fi
.
.IP "" 0
.
.P
We can use the destructuring alternative operator to handle this structural change simply:
.
.IP "" 4
.
.nf

\&.resources[] as {$id, $kind, events: {$user_id, $ts}} ?// {$id, $kind, events: [{$user_id, $ts}]} | {$user_id, $kind, $id, $ts}
.
.fi
.
.IP "" 0
.
.P
Or, if we aren\'t sure if the input is an array of values or an object:
.
.IP "" 4
.
.nf

\&.[] as [$id, $kind, $user_id, $ts] ?// {$id, $kind, $user_id, $ts} | \.\.\.
.
.fi
.
.IP "" 0
.
.P
Each alternative need not define all of the same variables, but all named variables will be available to the subsequent expression\. Variables not matched in the alternative that succeeded will be \fBnull\fR:
.
.IP "" 4
.
.nf

\&.resources[] as {$id, $kind, events: {$user_id, $ts}} ?// {$id, $kind, events: [{$first_user_id, $first_ts}]} | {$user_id, $first_user_id, $kind, $id, $ts, $first_ts}
.
.fi
.
.IP "" 0
.
.P
Additionally, if the subsequent expression returns an error, the alternative operator will attempt to try the next binding\. Errors that occur during the final alternative are passed through\.
.
.IP "" 4
.
.nf

[[3]] | \.[] as [$a] ?// [$b] | if $a != null then error("err: \e($a)") else {$a,$b} end

jq \'\.[] as {$a, $b, c: {$d, $e}} ?// {$a, $b, c: [{$d, $e}]} | {$a, $b, $d, $e}\'
   [{"a": 1, "b": 2, "c": {"d": 3, "e": 4}}, {"a": 1, "b": 2, "c": [{"d": 3, "e": 4}]}]
=> {"a":1,"b":2,"d":3,"e":4}, {"a":1,"b":2,"d":3,"e":4}

jq \'\.[] as {$a, $b, c: {$d}} ?// {$a, $b, c: [{$e}]} | {$a, $b, $d, $e}\'
   [{"a": 1, "b": 2, "c": {"d": 3, "e": 4}}, {"a": 1, "b": 2, "c": [{"d": 3, "e": 4}]}]
=> {"a":1,"b":2,"d":3,"e":null}, {"a":1,"b":2,"d":null,"e":4}

jq \'\.[] as [$a] ?// [$b] | if $a != null then error("err: \e($a)") else {$a,$b} end\'
   [[3]]
=> {"a":null,"b":3}
.
.fi
.
.IP "" 0
.
.SS "Defining Functions"
You can give a filter a name using "def" syntax:
.
.IP "" 4
.
.nf

def increment: \. + 1;
.
.fi
.
.IP "" 0
.
.P
From then on, \fBincrement\fR is usable as a filter just like a builtin function (in fact, this is how many of the builtins are defined)\. A function may take arguments:
.
.IP "" 4
.
.nf

def map(f): [\.[] | f];
.
.fi
.
.IP "" 0
.
.P
Arguments are passed as \fIfilters\fR (functions with no arguments), \fInot\fR as values\. The same argument may be referenced multiple times with different inputs (here \fBf\fR is run for each element of the input array)\. Arguments to a function work more like callbacks than like value arguments\. This is important to understand\. Consider:
.
.IP "" 4
.
.nf

def foo(f): f|f;
5|foo(\.*2)
.
.fi
.
.IP "" 0
.
.P
The result will be 20 because \fBf\fR is \fB\.*2\fR, and during the first invocation of \fBf\fR \fB\.\fR will be 5, and the second time it will be 10 (5 * 2), so the result will be 20\. Function arguments are filters, and filters expect an input when invoked\.
.
.P
If you want the value\-argument behaviour for defining simple functions, you can just use a variable:
.
.IP "" 4
.
.nf

def addvalue(f): f as $f | map(\. + $f);
.
.fi
.
.IP "" 0
.
.P
Or use the short\-hand:
.
.IP "" 4
.
.nf

def addvalue($f): \.\.\.;
.
.fi
.
.IP "" 0
.
.P
With either definition, \fBaddvalue(\.foo)\fR will add the current input\'s \fB\.foo\fR field to each element of the array\. Do note that calling \fBaddvalue(\.[])\fR will cause the \fBmap(\. + $f)\fR part to be evaluated once per value in the value of \fB\.\fR at the call site\.
.
.P
Multiple definitions using the same function name are allowed\. Each re\-definition replaces the previous one for the same number of function arguments, but only for references from functions (or main program) subsequent to the re\-definition\. See also the section below on scoping\.
.
.IP "" 4
.
.nf

jq \'def addvalue(f): \. + [f]; map(addvalue(\.[0]))\'
   [[1,2],[10,20]]
=> [[1,2,1], [10,20,10]]

jq \'def addvalue(f): f as $x | map(\. + $x); addvalue(\.[0])\'
   [[1,2],[10,20]]
=> [[1,2,1,2], [10,20,1,2]]
.
.fi
.
.IP "" 0
.
.SS "Scoping"
There are two types of symbols in jq: value bindings (a\.k\.a\., "variables"), and functions\. Both are scoped lexically, with expressions being able to refer only to symbols that have been defined "to the left" of them\. The only exception to this rule is that functions can refer to themselves so as to be able to create recursive functions\.
.
.P
For example, in the following expression there is a binding which is visible "to the right" of it, \fB\.\.\. | \.*3 as $times_three | [\. + $times_three] | \.\.\.\fR, but not "to the left"\. Consider this expression now, \fB\.\.\. | (\.*3 as $times_three | [\. + $times_three]) | \.\.\.\fR: here the binding \fB$times_three\fR is \fInot\fR visible past the closing parenthesis\.
.
.SS "isempty(exp)"
Returns true if \fBexp\fR produces no outputs, false otherwise\.
.
.IP "" 4
.
.nf

jq \'isempty(empty)\'
   null
=> true

jq \'isempty(\.[])\'
   []
=> true

jq \'isempty(\.[])\'
   [1,2,3]
=> false
.
.fi
.
.IP "" 0
.
.SS "limit(n; expr)"
The \fBlimit\fR function extracts up to \fBn\fR outputs from \fBexpr\fR\.
.
.IP "" 4
.
.nf

jq \'[limit(3; \.[])]\'
   [0,1,2,3,4,5,6,7,8,9]
=> [0,1,2]
.
.fi
.
.IP "" 0
.
.SS "skip(n; expr)"
The \fBskip\fR function skips the first \fBn\fR outputs from \fBexpr\fR\.
.
.IP "" 4
.
.nf

jq \'[skip(3; \.[])]\'
   [0,1,2,3,4,5,6,7,8,9]
=> [3,4,5,6,7,8,9]
.
.fi
.
.IP "" 0
.
.SS "first(expr), last(expr), nth(n; expr)"
The \fBfirst(expr)\fR and \fBlast(expr)\fR functions extract the first and last values from \fBexpr\fR, respectively\.
.
.P
The \fBnth(n; expr)\fR function extracts the nth value output by \fBexpr\fR\. Note that \fBnth(n; expr)\fR doesn\'t support negative values of \fBn\fR\.
.
.IP "" 4
.
.nf

jq \'[first(range(\.)), last(range(\.)), nth(5; range(\.))]\'
   10
=> [0,9,5]

jq \'[first(empty), last(empty), nth(5; empty)]\'
   null
=> []
.
.fi
.
.IP "" 0
.
.SS "first, last, nth(n)"
The \fBfirst\fR and \fBlast\fR functions extract the first and last values from any array at \fB\.\fR\.
.
.P
The \fBnth(n)\fR function extracts the nth value of any array at \fB\.\fR\.
.
.IP "" 4
.
.nf

jq \'[range(\.)]|[first, last, nth(5)]\'
   10
=> [0,9,5]
.
.fi
.
.IP "" 0
.
.SS "reduce"
The \fBreduce\fR syntax allows you to combine all of the results of an expression by accumulating them into a single answer\. The form is \fBreduce EXP as $var (INIT; UPDATE)\fR\. As an example, we\'ll pass \fB[1,2,3]\fR to this expression:
.
.IP "" 4
.
.nf

reduce \.[] as $item (0; \. + $item)
.
.fi
.
.IP "" 0
.
.P
For each result that \fB\.[]\fR produces, \fB\. + $item\fR is run to accumulate a running total, starting from 0 as the input value\. In this example, \fB\.[]\fR produces the results \fB1\fR, \fB2\fR, and \fB3\fR, so the effect is similar to running something like this:
.
.IP "" 4
.
.nf

0 | 1 as $item | \. + $item |
    2 as $item | \. + $item |
    3 as $item | \. + $item

jq \'reduce \.[] as $item (0; \. + $item)\'
   [1,2,3,4,5]
=> 15

jq \'reduce \.[] as [$i,$j] (0; \. + $i * $j)\'
   [[1,2],[3,4],[5,6]]
=> 44

jq \'reduce \.[] as {$x,$y} (null; \.x += $x | \.y += [$y])\'
   [{"x":"a","y":1},{"x":"b","y":2},{"x":"c","y":3}]
=> {"x":"abc","y":[1,2,3]}
.
.fi
.
.IP "" 0
.
.SS "foreach"
The \fBforeach\fR syntax is similar to \fBreduce\fR, but intended to allow the construction of \fBlimit\fR and reducers that produce intermediate results\.
.
.P
The form is \fBforeach EXP as $var (INIT; UPDATE; EXTRACT)\fR\. As an example, we\'ll pass \fB[1,2,3]\fR to this expression:
.
.IP "" 4
.
.nf

foreach \.[] as $item (0; \. + $item; [$item, \. * 2])
.
.fi
.
.IP "" 0
.
.P
Like the \fBreduce\fR syntax, \fB\. + $item\fR is run for each result that \fB\.[]\fR produces, but \fB[$item, \. * 2]\fR is run for each intermediate values\. In this example, since the intermediate values are \fB1\fR, \fB3\fR, and \fB6\fR, the \fBforeach\fR expression produces \fB[1,2]\fR, \fB[2,6]\fR, and \fB[3,12]\fR\. So the effect is similar to running something like this:
.
.IP "" 4
.
.nf

0 | 1 as $item | \. + $item | [$item, \. * 2],
    2 as $item | \. + $item | [$item, \. * 2],
    3 as $item | \. + $item | [$item, \. * 2]
.
.fi
.
.IP "" 0
.
.P
When \fBEXTRACT\fR is omitted, the identity filter is used\. That is, it outputs the intermediate values as they are\.
.
.IP "" 4
.
.nf

jq \'foreach \.[] as $item (0; \. + $item)\'
   [1,2,3,4,5]
=> 1, 3, 6, 10, 15

jq \'foreach \.[] as $item (0; \. + $item; [$item, \. * 2])\'
   [1,2,3,4,5]
=> [1,2], [2,6], [3,12], [4,20], [5,30]

jq \'foreach \.[] as $item (0; \. + 1; {index: \., $item})\'
   ["foo", "bar", "baz"]
=> {"index":1,"item":"foo"}, {"index":2,"item":"bar"}, {"index":3,"item":"baz"}
.
.fi
.
.IP "" 0
.
.SS "Recursion"
As described above, \fBrecurse\fR uses recursion, and any jq function can be recursive\. The \fBwhile\fR builtin is also implemented in terms of recursion\.
.
.P
Tail calls are optimized whenever the expression to the left of the recursive call outputs its last value\. In practice this means that the expression to the left of the recursive call should not produce more than one output for each input\.
.
.P
For example:
.
.IP "" 4
.
.nf

def recurse(f): def r: \., (f | select(\. != null) | r); r;

def while(cond; update):
  def _while:
    if cond then \., (update | _while) else empty end;
  _while;

def repeat(exp):
  def _repeat:
    exp, _repeat;
  _repeat;
.
.fi
.
.IP "" 0
.
.SS "Generators and iterators"
Some jq operators and functions are actually generators in that they can produce zero, one, or more values for each input, just as one might expect in other programming languages that have generators\. For example, \fB\.[]\fR generates all the values in its input (which must be an array or an object), \fBrange(0; 10)\fR generates the integers between 0 and 10, and so on\.
.
.P
Even the comma operator is a generator, generating first the values generated by the expression to the left of the comma, then the values generated by the expression on the right of the comma\.
.
.P
The \fBempty\fR builtin is the generator that produces zero outputs\. The \fBempty\fR builtin backtracks to the preceding generator expression\.
.
.P
All jq functions can be generators just by using builtin generators\. It is also possible to construct new generators using only recursion and the comma operator\. If recursive calls are "in tail position" then the generator will be efficient\. In the example below the recursive call by \fB_range\fR to itself is in tail position\. The example shows off three advanced topics: tail recursion, generator construction, and sub\-functions\.
.
.IP "" 4
.
.nf

jq \'def range(init; upto; by): def _range: if (by > 0 and \. < upto) or (by < 0 and \. > upto) then \., ((\.+by)|_range) else empty end; if init == upto then empty elif by == 0 then init else init|_range end; range(0; 10; 3)\'
   null
=> 0, 3, 6, 9

jq \'def while(cond; update): def _while: if cond then \., (update | _while) else empty end; _while; [while(\.<100; \.*2)]\'
   1
=> [1,2,4,8,16,32,64]
.
.fi
.
.IP "" 0
.
.SH "MATH"
jq currently only has IEEE754 double\-precision (64\-bit) floating point number support\.
.
.P
Besides simple arithmetic operators such as \fB+\fR, jq also has most standard math functions from the C math library\. C math functions that take a single input argument (e\.g\., \fBsin()\fR) are available as zero\-argument jq functions\. C math functions that take two input arguments (e\.g\., \fBpow()\fR) are available as two\-argument jq functions that ignore \fB\.\fR\. C math functions that take three input arguments are available as three\-argument jq functions that ignore \fB\.\fR\.
.
.P
Availability of standard math functions depends on the availability of the corresponding math functions in your operating system and C math library\. Unavailable math functions will be defined but will raise an error\.
.
.P
One\-input C math functions: \fBacos\fR \fBacosh\fR \fBasin\fR \fBasinh\fR \fBatan\fR \fBatanh\fR \fBcbrt\fR \fBceil\fR \fBcos\fR \fBcosh\fR \fBerf\fR \fBerfc\fR \fBexp\fR \fBexp10\fR \fBexp2\fR \fBexpm1\fR \fBfabs\fR \fBfloor\fR \fBgamma\fR \fBj0\fR \fBj1\fR \fBlgamma\fR \fBlog\fR \fBlog10\fR \fBlog1p\fR \fBlog2\fR \fBlogb\fR \fBnearbyint\fR \fBrint\fR \fBround\fR \fBsignificand\fR \fBsin\fR \fBsinh\fR \fBsqrt\fR \fBtan\fR \fBtanh\fR \fBtgamma\fR \fBtrunc\fR \fBy0\fR \fBy1\fR\.
.
.P
Two\-input C math functions: \fBatan2\fR \fBcopysign\fR \fBdrem\fR \fBfdim\fR \fBfmax\fR \fBfmin\fR \fBfmod\fR \fBfrexp\fR \fBhypot\fR \fBjn\fR \fBldexp\fR \fBmodf\fR \fBnextafter\fR \fBnexttoward\fR \fBpow\fR \fBremainder\fR \fBscalb\fR \fBscalbln\fR \fByn\fR\.
.
.P
Three\-input C math functions: \fBfma\fR\.
.
.P
See your system\'s manual for more information on each of these\.
.
.SH "I/O"
At this time jq has minimal support for I/O, mostly in the form of control over when inputs are read\. Two builtins functions are provided for this, \fBinput\fR and \fBinputs\fR, that read from the same sources (e\.g\., \fBstdin\fR, files named on the command\-line) as jq itself\. These two builtins, and jq\'s own reading actions, can be interleaved with each other\. They are commonly used in combination with the null input option \fB\-n\fR to prevent one input from being read implicitly\.
.
.P
Two builtins provide minimal output capabilities, \fBdebug\fR, and \fBstderr\fR\. (Recall that a jq program\'s output values are always output as JSON texts on \fBstdout\fR\.) The \fBdebug\fR builtin can have application\-specific behavior, such as for executables that use the libjq C API but aren\'t the jq executable itself\. The \fBstderr\fR builtin outputs its input in raw mode to stder with no additional decoration, not even a newline\.
.
.P
Most jq builtins are referentially transparent, and yield constant and repeatable value streams when applied to constant inputs\. This is not true of I/O builtins\.
.
.SS "input"
Outputs one new input\.
.
.P
Note that when using \fBinput\fR it is generally necessary to invoke jq with the \fB\-n\fR command\-line option, otherwise the first entity will be lost\.
.
.IP "" 4
.
.nf

echo 1 2 3 4 | jq \'[\., input]\' # [1,2] [3,4]
.
.fi
.
.IP "" 0
.
.SS "inputs"
Outputs all remaining inputs, one by one\.
.
.P
This is primarily useful for reductions over a program\'s inputs\. Note that when using \fBinputs\fR it is generally necessary to invoke jq with the \fB\-n\fR command\-line option, otherwise the first entity will be lost\.
.
.IP "" 4
.
.nf

echo 1 2 3 | jq \-n \'reduce inputs as $i (0; \. + $i)\' # 6
.
.fi
.
.IP "" 0
.
.SS "debug, debug(msgs)"
These two filters are like \fB\.\fR but have as a side\-effect the production of one or more messages on stderr\.
.
.P
The message produced by the \fBdebug\fR filter has the form
.
.IP "" 4
.
.nf

["DEBUG:",<input\-value>]
.
.fi
.
.IP "" 0
.
.P
where \fB<input\-value>\fR is a compact rendition of the input value\. This format may change in the future\.
.
.P
The \fBdebug(msgs)\fR filter is defined as \fB(msgs | debug | empty), \.\fR thus allowing great flexibility in the content of the message, while also allowing multi\-line debugging statements to be created\.
.
.P
For example, the expression:
.
.IP "" 4
.
.nf

1 as $x | 2 | debug("Entering function foo with $x == \e($x)", \.) | (\.+1)
.
.fi
.
.IP "" 0
.
.P
would produce the value 3 but with the following two lines being written to stderr:
.
.IP "" 4
.
.nf

["DEBUG:","Entering function foo with $x == 1"]
["DEBUG:",2]
.
.fi
.
.IP "" 0
.
.SS "stderr"
Prints its input in raw and compact mode to stderr with no additional decoration, not even a newline\.
.
.SS "input_filename"
Returns the name of the file whose input is currently being filtered\. Note that this will not work well unless jq is running in a UTF\-8 locale\.
.
.SS "input_line_number"
Returns the line number of the input currently being filtered\.
.
.SH "STREAMING"
With the \fB\-\-stream\fR option jq can parse input texts in a streaming fashion, allowing jq programs to start processing large JSON texts immediately rather than after the parse completes\. If you have a single JSON text that is 1GB in size, streaming it will allow you to process it much more quickly\.
.
.P
However, streaming isn\'t easy to deal with as the jq program will have \fB[<path>, <leaf\-value>]\fR (and a few other forms) as inputs\.
.
.P
Several builtins are provided to make handling streams easier\.
.
.P
The examples below use the streamed form of \fB["a",["b"]]\fR, which is \fB[[0],"a"],[[1,0],"b"],[[1,0]],[[1]]\fR\.
.
.P
Streaming forms include \fB[<path>, <leaf\-value>]\fR (to indicate any scalar value, empty array, or empty object), and \fB[<path>]\fR (to indicate the end of an array or object)\. Future versions of jq run with \fB\-\-stream\fR and \fB\-\-seq\fR may output additional forms such as \fB["error message"]\fR when an input text fails to parse\.
.
.SS "truncate_stream(stream_expression)"
Consumes a number as input and truncates the corresponding number of path elements from the left of the outputs of the given streaming expression\.
.
.IP "" 4
.
.nf

jq \'truncate_stream([[0],"a"],[[1,0],"b"],[[1,0]],[[1]])\'
   1
=> [[0],"b"], [[0]]
.
.fi
.
.IP "" 0
.
.SS "fromstream(stream_expression)"
Outputs values corresponding to the stream expression\'s outputs\.
.
.IP "" 4
.
.nf

jq \'fromstream(1|truncate_stream([[0],"a"],[[1,0],"b"],[[1,0]],[[1]]))\'
   null
=> ["b"]
.
.fi
.
.IP "" 0
.
.SS "tostream"
The \fBtostream\fR builtin outputs the streamed form of its input\.
.
.IP "" 4
.
.nf

jq \'\. as $dot|fromstream($dot|tostream)|\.==$dot\'
   [0,[1,{"a":1},{"b":2}]]
=> true
.
.fi
.
.IP "" 0
.
.SH "ASSIGNMENT"
Assignment works a little differently in jq than in most programming languages\. jq doesn\'t distinguish between references to and copies of something \- two objects or arrays are either equal or not equal, without any further notion of being "the same object" or "not the same object"\.
.
.P
If an object has two fields which are arrays, \fB\.foo\fR and \fB\.bar\fR, and you append something to \fB\.foo\fR, then \fB\.bar\fR will not get bigger, even if you\'ve previously set \fB\.bar = \.foo\fR\. If you\'re used to programming in languages like Python, Java, Ruby, JavaScript, etc\. then you can think of it as though jq does a full deep copy of every object before it does the assignment (for performance it doesn\'t actually do that, but that\'s the general idea)\.
.
.P
This means that it\'s impossible to build circular values in jq (such as an array whose first element is itself)\. This is quite intentional, and ensures that anything a jq program can produce can be represented in JSON\.
.
.P
All the assignment operators in jq have path expressions on the left\-hand side (LHS)\. The right\-hand side (RHS) provides values to set to the paths named by the LHS path expressions\.
.
.P
Values in jq are always immutable\. Internally, assignment works by using a reduction to compute new, replacement values for \fB\.\fR that have had all the desired assignments applied to \fB\.\fR, then outputting the modified value\. This might be made clear by this example: \fB{a:{b:{c:1}}} | (\.a\.b|=3), \.\fR\. This will output \fB{"a":{"b":3}}\fR and \fB{"a":{"b":{"c":1}}}\fR because the last sub\-expression, \fB\.\fR, sees the original value, not the modified value\.
.
.P
Most users will want to use modification assignment operators, such as \fB|=\fR or \fB+=\fR, rather than \fB=\fR\.
.
.P
Note that the LHS of assignment operators refers to a value in \fB\.\fR\. Thus \fB$var\.foo = 1\fR won\'t work as expected (\fB$var\.foo\fR is not a valid or useful path expression in \fB\.\fR); use \fB$var | \.foo = 1\fR instead\.
.
.P
Note too that \fB\.a,\.b=0\fR does not set \fB\.a\fR and \fB\.b\fR, but \fB(\.a,\.b)=0\fR sets both\.
.
.SS "Update\-assignment: |="
This is the "update" operator \fB|=\fR\. It takes a filter on the right\-hand side and works out the new value for the property of \fB\.\fR being assigned to by running the old value through this expression\. For instance, \fB(\.foo, \.bar) |= \.+1\fR will build an object with the \fBfoo\fR field set to the input\'s \fBfoo\fR plus 1, and the \fBbar\fR field set to the input\'s \fBbar\fR plus 1\.
.
.P
The left\-hand side can be any general path expression; see \fBpath()\fR\.
.
.P
Note that the left\-hand side of \fB|=\fR refers to a value in \fB\.\fR\. Thus \fB$var\.foo |= \. + 1\fR won\'t work as expected (\fB$var\.foo\fR is not a valid or useful path expression in \fB\.\fR); use \fB$var | \.foo |= \. + 1\fR instead\.
.
.P
If the right\-hand side outputs no values (i\.e\., \fBempty\fR), then the left\-hand side path will be deleted, as with \fBdel(path)\fR\.
.
.P
If the right\-hand side outputs multiple values, only the first one will be used (COMPATIBILITY NOTE: in jq 1\.5 and earlier releases, it used to be that only the last one was used)\.
.
.IP "" 4
.
.nf

jq \'(\.\.|select(type=="boolean")) |= if \. then 1 else 0 end\'
   [true,false,[5,true,[true,[false]],false]]
=> [1,0,[5,1,[1,[0]],0]]
.
.fi
.
.IP "" 0
.
.SS "Arithmetic update\-assignment: +=, \-=, *=, /=, %=, //="
jq has a few operators of the form \fBa op= b\fR, which are all equivalent to \fBa |= \. op b\fR\. So, \fB+= 1\fR can be used to increment values, being the same as \fB|= \. + 1\fR\.
.
.IP "" 4
.
.nf

jq \'\.foo += 1\'
   {"foo": 42}
=> {"foo": 43}
.
.fi
.
.IP "" 0
.
.SS "Plain assignment: ="
This is the plain assignment operator\. Unlike the others, the input to the right\-hand side (RHS) is the same as the input to the left\-hand side (LHS) rather than the value at the LHS path, and all values output by the RHS will be used (as shown below)\.
.
.P
If the RHS of \fB=\fR produces multiple values, then for each such value jq will set the paths on the left\-hand side to the value and then it will output the modified \fB\.\fR\. For example, \fB(\.a,\.b) = range(2)\fR outputs \fB{"a":0,"b":0}\fR, then \fB{"a":1,"b":1}\fR\. The "update" assignment forms (see above) do not do this\.
.
.P
This example should show the difference between \fB=\fR and \fB|=\fR:
.
.P
Provide input \fB{"a": {"b": 10}, "b": 20}\fR to the programs
.
.IP "" 4
.
.nf

\&.a = \.b
.
.fi
.
.IP "" 0
.
.P
and
.
.IP "" 4
.
.nf

\&.a |= \.b
.
.fi
.
.IP "" 0
.
.P
The former will set the \fBa\fR field of the input to the \fBb\fR field of the input, and produce the output \fB{"a": 20, "b": 20}\fR\. The latter will set the \fBa\fR field of the input to the \fBa\fR field\'s \fBb\fR field, producing \fB{"a": 10, "b": 20}\fR\.
.
.IP "" 4
.
.nf

jq \'\.a = \.b\'
   {"a": {"b": 10}, "b": 20}
=> {"a":20,"b":20}

jq \'\.a |= \.b\'
   {"a": {"b": 10}, "b": 20}
=> {"a":10,"b":20}

jq \'(\.a, \.b) = range(3)\'
   null
=> {"a":0,"b":0}, {"a":1,"b":1}, {"a":2,"b":2}

jq \'(\.a, \.b) |= range(3)\'
   null
=> {"a":0,"b":0}
.
.fi
.
.IP "" 0
.
.SS "Complex assignments"
Lots more things are allowed on the left\-hand side of a jq assignment than in most languages\. We\'ve already seen simple field accesses on the left hand side, and it\'s no surprise that array accesses work just as well:
.
.IP "" 4
.
.nf

\&.posts[0]\.title = "JQ Manual"
.
.fi
.
.IP "" 0
.
.P
What may come as a surprise is that the expression on the left may produce multiple results, referring to different points in the input document:
.
.IP "" 4
.
.nf

\&.posts[]\.comments |= \. + ["this is great"]
.
.fi
.
.IP "" 0
.
.P
That example appends the string "this is great" to the "comments" array of each post in the input (where the input is an object with a field "posts" which is an array of posts)\.
.
.P
When jq encounters an assignment like \'a = b\', it records the "path" taken to select a part of the input document while executing a\. This path is then used to find which part of the input to change while executing the assignment\. Any filter may be used on the left\-hand side of an equals \- whichever paths it selects from the input will be where the assignment is performed\.
.
.P
This is a very powerful operation\. Suppose we wanted to add a comment to blog posts, using the same "blog" input above\. This time, we only want to comment on the posts written by "stedolan"\. We can find those posts using the "select" function described earlier:
.
.IP "" 4
.
.nf

\&.posts[] | select(\.author == "stedolan")
.
.fi
.
.IP "" 0
.
.P
The paths provided by this operation point to each of the posts that "stedolan" wrote, and we can comment on each of them in the same way that we did before:
.
.IP "" 4
.
.nf

(\.posts[] | select(\.author == "stedolan") | \.comments) |=
    \. + ["terrible\."]
.
.fi
.
.IP "" 0
.
.SH "COMMENTS"
You can write comments in your jq filters using \fB#\fR\.
.
.P
A \fB#\fR character (not part of a string) starts a comment\. All characters from \fB#\fR to the end of the line are ignored\.
.
.P
If the end of the line is preceded by an odd number of backslash characters, the following line is also considered part of the comment and is ignored\.
.
.P
For example, the following code outputs \fB[1,3,4,7]\fR
.
.IP "" 4
.
.nf

[
  1,
  # foo \e
  2,
  # bar \e\e
  3,
  4, # baz \e\e\e
  5, \e
  6,
  7
  # comment \e
    comment \e
    comment
]
.
.fi
.
.IP "" 0
.
.P
Backslash continuing the comment on the next line can be useful when writing the "shebang" for a jq script:
.
.IP "" 4
.
.nf

#!/bin/sh \-\-
# total \- Output the sum of the given arguments (or stdin)
# usage: total [numbers\.\.\.]
# \e
exec jq \-\-args \-MRnf \-\- "$0" "$@"

$ARGS\.positional |
reduce (
  if \. == []
    then inputs
    else \.[]
  end |
  \. as $dot |
  try tonumber catch false |
  if not or isnan then
    @json "total: Invalid number \e($dot)\.\en" | halt_error(1)
  end
) as $n (0; \. + $n)
.
.fi
.
.IP "" 0
.
.P
The \fBexec\fR line is considered a comment by jq, so it is ignored\. But it is not ignored by \fBsh\fR, since in \fBsh\fR a backslash at the end of the line does not continue the comment\. With this trick, when the script is invoked as \fBtotal 1 2\fR, \fB/bin/sh \-\- /path/to/total 1 2\fR will be run, and \fBsh\fR will then run \fBexec jq \-\-args \-MRnf \-\- /path/to/total 1 2\fR replacing itself with a \fBjq\fR interpreter invoked with the specified options (\fB\-M\fR, \fB\-R\fR, \fB\-n\fR, \fB\-\-args\fR), that evaluates the current file (\fB$0\fR), with the arguments (\fB$@\fR) that were passed to \fBsh\fR\.
.
.SH "MODULES"
jq has a library/module system\. Modules are files whose names end in \fB\.jq\fR\.
.
.P
Modules imported by a program are searched for in a default search path (see below)\. The \fBimport\fR and \fBinclude\fR directives allow the importer to alter this path\.
.
.P
Paths in the search path are subject to various substitutions\.
.
.P
For paths starting with \fB~/\fR, the user\'s home directory is substituted for \fB~\fR\.
.
.P
For paths starting with \fB$ORIGIN/\fR, the directory where the jq executable is located is substituted for \fB$ORIGIN\fR\.
.
.P
For paths starting with \fB\./\fR or paths that are \fB\.\fR, the path of the including file is substituted for \fB\.\fR\. For top\-level programs given on the command\-line, the current directory is used\.
.
.P
Import directives can optionally specify a search path to which the default is appended\.
.
.P
The default search path is the search path given to the \fB\-L\fR command\-line option, else \fB["~/\.jq", "$ORIGIN/\.\./lib/jq", "$ORIGIN/\.\./lib"]\fR\.
.
.P
Null and empty string path elements terminate search path processing\.
.
.P
A dependency with relative path \fBfoo/bar\fR would be searched for in \fBfoo/bar\.jq\fR and \fBfoo/bar/bar\.jq\fR in the given search path\. This is intended to allow modules to be placed in a directory along with, for example, version control files, README files, and so on, but also to allow for single\-file modules\.
.
.P
Consecutive components with the same name are not allowed to avoid ambiguities (e\.g\., \fBfoo/foo\fR)\.
.
.P
For example, with \fB\-L$HOME/\.jq\fR a module \fBfoo\fR can be found in \fB$HOME/\.jq/foo\.jq\fR and \fB$HOME/\.jq/foo/foo\.jq\fR\.
.
.P
If \fB\.jq\fR exists in the user\'s home directory, and is a file (not a directory), it is automatically sourced into the main program\.
.
.SS "import RelativePathString as NAME [<metadata>];"
Imports a module found at the given path relative to a directory in a search path\. A \fB\.jq\fR suffix will be added to the relative path string\. The module\'s symbols are prefixed with \fBNAME::\fR\.
.
.P
The optional metadata must be a constant jq expression\. It should be an object with keys like \fBhomepage\fR and so on\. At this time jq only uses the \fBsearch\fR key/value of the metadata\. The metadata is also made available to users via the \fBmodulemeta\fR builtin\.
.
.P
The \fBsearch\fR key in the metadata, if present, should have a string or array value (array of strings); this is the search path to be prefixed to the top\-level search path\.
.
.SS "include RelativePathString [<metadata>];"
Imports a module found at the given path relative to a directory in a search path as if it were included in place\. A \fB\.jq\fR suffix will be added to the relative path string\. The module\'s symbols are imported into the caller\'s namespace as if the module\'s content had been included directly\.
.
.P
The optional metadata must be a constant jq expression\. It should be an object with keys like \fBhomepage\fR and so on\. At this time jq only uses the \fBsearch\fR key/value of the metadata\. The metadata is also made available to users via the \fBmodulemeta\fR builtin\.
.
.SS "import RelativePathString as $NAME [<metadata>];"
Imports a JSON file found at the given path relative to a directory in a search path\. A \fB\.json\fR suffix will be added to the relative path string\. The file\'s data will be available as \fB$NAME::NAME\fR\.
.
.P
The optional metadata must be a constant jq expression\. It should be an object with keys like \fBhomepage\fR and so on\. At this time jq only uses the \fBsearch\fR key/value of the metadata\. The metadata is also made available to users via the \fBmodulemeta\fR builtin\.
.
.P
The \fBsearch\fR key in the metadata, if present, should have a string or array value (array of strings); this is the search path to be prefixed to the top\-level search path\.
.
.SS "module <metadata>;"
This directive is entirely optional\. It\'s not required for proper operation\. It serves only the purpose of providing metadata that can be read with the \fBmodulemeta\fR builtin\.
.
.P
The metadata must be a constant jq expression\. It should be an object with keys like \fBhomepage\fR\. At this time jq doesn\'t use this metadata, but it is made available to users via the \fBmodulemeta\fR builtin\.
.
.SS "modulemeta"
Takes a module name as input and outputs the module\'s metadata as an object, with the module\'s imports (including metadata) as an array value for the \fBdeps\fR key and the module\'s defined functions as an array value for the \fBdefs\fR key\.
.
.P
Programs can use this to query a module\'s metadata, which they could then use to, for example, search for, download, and install missing dependencies\.
.
.SH "COLORS"
To configure alternative colors just set the \fBJQ_COLORS\fR environment variable to colon\-delimited list of partial terminal escape sequences like \fB"1;31"\fR, in this order:
.
.IP "\(bu" 4
color for \fBnull\fR
.
.IP "\(bu" 4
color for \fBfalse\fR
.
.IP "\(bu" 4
color for \fBtrue\fR
.
.IP "\(bu" 4
color for numbers
.
.IP "\(bu" 4
color for strings
.
.IP "\(bu" 4
color for arrays
.
.IP "\(bu" 4
color for objects
.
.IP "\(bu" 4
color for object keys
.
.IP "" 0
.
.P
The default color scheme is the same as setting \fBJQ_COLORS="0;90:0;39:0;39:0;39:0;32:1;39:1;39:1;34"\fR\.
.
.P
This is not a manual for VT100/ANSI escapes\. However, each of these color specifications should consist of two numbers separated by a semi\-colon, where the first number is one of these:
.
.IP "\(bu" 4
1 (bright)
.
.IP "\(bu" 4
2 (dim)
.
.IP "\(bu" 4
4 (underscore)
.
.IP "\(bu" 4
5 (blink)
.
.IP "\(bu" 4
7 (reverse)
.
.IP "\(bu" 4
8 (hidden)
.
.IP "" 0
.
.P
and the second is one of these:
.
.IP "\(bu" 4
30 (black)
.
.IP "\(bu" 4
31 (red)
.
.IP "\(bu" 4
32 (green)
.
.IP "\(bu" 4
33 (yellow)
.
.IP "\(bu" 4
34 (blue)
.
.IP "\(bu" 4
35 (magenta)
.
.IP "\(bu" 4
36 (cyan)
.
.IP "\(bu" 4
37 (white)
.
.IP "" 0
.
.SH "BUGS"
Presumably\. Report them or discuss them at:
.
.IP "" 4
.
.nf

https://github\.com/jqlang/jq/issues
.
.fi
.
.IP "" 0
.
.SH "AUTHOR"
Stephen Dolan \fB<mu@netsoc\.tcd\.ie>\fR