1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
module FFI
CURRENT_PROCESS = USE_THIS_PROCESS_AS_LIBRARY = Object.new
module Library
CURRENT_PROCESS = FFI::CURRENT_PROCESS
LIBC = FFI::Platform::LIBC
def ffi_lib(*names)
lib_flags = defined?(@ffi_lib_flags) ? @ffi_lib_flags : FFI::DynamicLibrary::RTLD_LAZY | FFI::DynamicLibrary::RTLD_LOCAL
ffi_libs = names.map do |name|
if name == FFI::CURRENT_PROCESS
FFI::DynamicLibrary.open(nil, FFI::DynamicLibrary::RTLD_LAZY | FFI::DynamicLibrary::RTLD_LOCAL)
else
libnames = (name.is_a?(::Array) ? name : [ name ]).map { |n| [ n, FFI.map_library_name(n) ].uniq }.flatten.compact
lib = nil
errors = {}
libnames.each do |libname|
begin
lib = FFI::DynamicLibrary.open(libname, lib_flags)
break if lib
rescue Exception => ex
errors[libname] = ex
end
end
if lib.nil?
raise LoadError.new(errors.values.join('. '))
end
# return the found lib
lib
end
end
@ffi_libs = ffi_libs
end
def ffi_convention(convention)
@ffi_convention = convention
end
def ffi_libraries
raise LoadError.new("no library specified") if !defined?(@ffi_libs) || @ffi_libs.empty?
@ffi_libs
end
FlagsMap = {
:global => DynamicLibrary::RTLD_GLOBAL,
:local => DynamicLibrary::RTLD_LOCAL,
:lazy => DynamicLibrary::RTLD_LAZY,
:now => DynamicLibrary::RTLD_NOW
}
def ffi_lib_flags(*flags)
lib_flags = flags.inject(0) { |result, f| result | FlagsMap[f] }
if (lib_flags & (DynamicLibrary::RTLD_LAZY | DynamicLibrary::RTLD_NOW)) == 0
lib_flags |= DynamicLibrary::RTLD_LAZY
end
if (lib_flags & (DynamicLibrary::RTLD_GLOBAL | DynamicLibrary::RTLD_LOCAL) == 0)
lib_flags |= DynamicLibrary::RTLD_LOCAL
end
@ffi_lib_flags = lib_flags
end
##
# Attach C function +name+ to this module.
#
# If you want to provide an alternate name for the module function, supply
# it after the +name+, otherwise the C function name will be used.#
#
# After the +name+, the C function argument types are provided as an Array.
#
# The C function return type is provided last.
def attach_function(mname, a2, a3, a4=nil, a5 = nil)
cname, arg_types, ret_type, opts = (a4 && (a2.is_a?(String) || a2.is_a?(Symbol))) ? [ a2, a3, a4, a5 ] : [ mname.to_s, a2, a3, a4 ]
# Convert :foo to the native type
arg_types.map! { |e| find_type(e) }
options = Hash.new
options[:convention] = defined?(@ffi_convention) ? @ffi_convention : :default
options[:type_map] = defined?(@ffi_typedefs) ? @ffi_typedefs : nil
options[:enums] = defined?(@ffi_enum_map) ? @ffi_enum_map : nil
options.merge!(opts) if opts.is_a?(Hash)
# Try to locate the function in any of the libraries
invokers = []
load_error = nil
ffi_libraries.each do |lib|
begin
invokers << FFI.create_invoker(lib, cname.to_s, arg_types, find_type(ret_type), options)
rescue LoadError => ex
load_error = ex
end if invokers.empty?
end
invoker = invokers.compact.shift
raise load_error if load_error && invoker.nil?
#raise FFI::NotFoundError.new(cname.to_s, *libraries) unless invoker
invoker.attach(self, mname.to_s)
invoker # Return a version that can be called via #call
end
def attach_variable(mname, a1, a2 = nil)
cname, type = a2 ? [ a1, a2 ] : [ mname.to_s, a1 ]
address = nil
ffi_libraries.each do |lib|
begin
address = lib.find_variable(cname.to_s)
break unless address.nil?
rescue LoadError
end
end
raise FFI::NotFoundError.new(cname, ffi_libraries) if address.nil? || address.null?
if type.is_a?(Class) && type < FFI::Struct
# If it is a global struct, just attach directly to the pointer
s = type.new(address)
self.module_eval <<-code, __FILE__, __LINE__
@@ffi_gvar_#{mname} = s
def self.#{mname}
@@ffi_gvar_#{mname}
end
code
else
sc = Class.new(FFI::Struct)
sc.layout :gvar, find_type(type)
s = sc.new(address)
#
# Attach to this module as mname/mname=
#
self.module_eval <<-code, __FILE__, __LINE__
@@ffi_gvar_#{mname} = s
def self.#{mname}
@@ffi_gvar_#{mname}[:gvar]
end
def self.#{mname}=(value)
@@ffi_gvar_#{mname}[:gvar] = value
end
code
end
address
end
def callback(*args)
raise ArgumentError, "wrong number of arguments" if args.length < 2 || args.length > 3
name, params, ret = if args.length == 3
args
else
[ nil, args[0], args[1] ]
end
options = Hash.new
options[:convention] = defined?(@ffi_convention) ? @ffi_convention : :default
options[:enums] = @ffi_enums if defined?(@ffi_enums)
cb = FFI::CallbackInfo.new(find_type(ret), params.map { |e| find_type(e) }, options)
# Add to the symbol -> type map (unless there was no name)
unless name.nil?
__cb_map[name] = cb
# Also put in the type map, so it can be used for typedefs
__type_map[name] = cb
end
cb
end
def __type_map
defined?(@ffi_typedefs) ? @ffi_typedefs : (@ffi_typedefs = Hash.new)
end
def __cb_map
defined?(@ffi_callbacks) ? @ffi_callbacks: (@ffi_callbacks = Hash.new)
end
def typedef(current, add, info=nil)
__type_map[add] = if current.kind_of?(FFI::Type)
current
else
__type_map[current] || FFI.find_type(current)
end
end
def enum(*args)
#
# enum can be called as:
# enum :zero, :one, :two # unnamed enum
# enum [ :zero, :one, :two ] # equivalent to above
# enum :foo, [ :zero, :one, :two ] create an enum named :foo
#
name, values = if args[0].kind_of?(Symbol) && args[1].kind_of?(Array)
[ args[0], args[1] ]
elsif args[0].kind_of?(Array)
[ nil, args[0] ]
else
[ nil, args ]
end
@ffi_enums = FFI::Enums.new unless defined?(@ffi_enums)
@ffi_enums << (e = FFI::Enum.new(values, name))
@ffi_enum_map = Hash.new unless defined?(@ffi_enum_map)
# append all the enum values to a global :name => value map
@ffi_enum_map.merge!(e.symbol_map)
# If called as enum :foo, [ :zero, :one, :two ], add a typedef alias
typedef(e, name) if name
e
end
def enum_type(name)
@ffi_enums.find(name) if defined?(@ffi_enums)
end
def enum_value(symbol)
@ffi_enums.__map_symbol(symbol)
end
def find_type(name)
if name.kind_of?(FFI::Type)
name
elsif name.is_a?(Class) && name < FFI::Struct
FFI::NativeType::POINTER
elsif defined?(@ffi_typedefs) && @ffi_typedefs.has_key?(name)
@ffi_typedefs[name]
elsif defined?(@ffi_callbacks) && @ffi_callbacks.has_key?(name)
@ffi_callbacks[name]
end || FFI.find_type(name)
end
end
end
|