File: gamma_spec.rb

package info (click to toggle)
jruby 1.7.26-1%2Bdeb9u1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 84,572 kB
  • sloc: ruby: 669,910; java: 253,056; xml: 35,152; ansic: 9,187; yacc: 7,267; cpp: 5,244; sh: 1,036; makefile: 345; jsp: 48; tcl: 40
file content (85 lines) | stat: -rw-r--r-- 2,549 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
require File.expand_path('../../../spec_helper', __FILE__)

ruby_version_is "1.9" do
  describe "Math.gamma" do
    before :all do
      @factorial1 = 1
      @factorial2 = 1124000727777607680000  # 22!
    end

    it "returns +infinity given 0" do
      Math.gamma(0).should == Float::INFINITY
    end

    it "returns -infinity given -0.0" do
      Math.gamma(-0.0).should == -Float::INFINITY
    end

    it "returns Math.sqrt(Math::PI) given 0.5" do
      Math.gamma(0.5).should be_close(Math.sqrt(Math::PI), TOLERANCE)
    end

    # stop at n == 23 because 23! cannot be exactly represented by IEEE 754 double
    2.upto(23) do |n|
      it "returns exactly #{n-1}! given #{n}" do
        @factorial1 *= n - 1
        Math.gamma(n).should == @factorial1
      end
    end

    24.upto(30) do |n|
      it "returns approximately #{n-1}! given #{n}" do
        @factorial2 *= n - 1
        # compare only the first 12 places, tolerate the rest
        Math.gamma(n).should be_close(@factorial2, @factorial2.to_s[12..-1].to_i)
      end
    end

    it "returns good numerical approximation for gamma(3.2)" do
      Math.gamma(3.2).should be_close(2.423965, TOLERANCE)
    end

    it "returns good numerical approximation for gamma(-2.15)" do
      Math.gamma(-2.15).should be_close(-2.999619, TOLERANCE)
    end

    it "returns good numerical approximation for gamma(0.00001)" do
      Math.gamma(0.00001).should be_close(99999.422794, TOLERANCE)
    end

    it "returns good numerical approximation for gamma(-0.00001)" do
      Math.gamma(-0.00001).should be_close(-100000.577225, TOLERANCE)
    end

    ruby_version_is ""..."1.9" do
      it "raises Errno::EDOM given -1" do
        lambda { Math.gamma(-1) }.should raise_error(Errno::EDOM)
      end
    end

    ruby_version_is "1.9" do
      it "raises Math::DomainError given -1" do
        lambda { Math.gamma(-1) }.should raise_error(Math::DomainError)
      end
    end

    # See http://redmine.ruby-lang.org/issues/show/2189
    it "returns +infinity given +infinity" do
      Math.gamma(infinity_value).infinite?.should == 1
    end

    ruby_version_is ""..."1.9" do
      it "raises Errno::EDOM given negative infinity" do
        lambda { Math.gamma(-infinity_value) }.should raise_error(Errno::EDOM)
      end
    end

    it "raises Math::DomainError given negative infinity" do
      lambda { Math.gamma(-Float::INFINITY) }.should raise_error(Math::DomainError)
    end

    it "returns NaN given NaN" do
      Math.gamma(nan_value).nan?.should be_true
    end
  end
end