1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
(*
* ALMABENCH 1.0.1
* Objective Caml version
*
* A number-crunching benchmark designed for cross-language and vendor
* comparisons.
*
* Written by Shawn Wagner, from Scott Robert Ladd's versions for
* C++ and java.
*
* No rights reserved. This is public domain software, for use by anyone.
*
* This program calculates the daily ephemeris (at noon) for the years
* 2000-2099 using an algorithm developed by J.L. Simon, P. Bretagnon, J.
* Chapront, M. Chapront-Touze, G. Francou and J. Laskar of the Bureau des
* Longitudes, Paris, France), as detailed in Astronomy & Astrophysics
* 282, 663 (1994)
*
* Note that the code herein is design for the purpose of testing
* computational performance; error handling and other such "niceties"
* is virtually non-existent.
*
* Actual (and oft-updated) benchmark results can be found at:
* http://www.coyotegulch.com
*
* Please do not use this information or algorithm in any way that might
* upset the balance of the universe or otherwise cause planets to impact
* upon one another.
*)
let pic = 3.14159265358979323846
and j2000 = 2451545.0
and jcentury = 36525.0
and jmillenia = 365250.0
let twopi = 2.0 *. pic
and a2r = pic /. 648000.0
and r2h = 12.0 /. pic
and r2d = 180.0 /. pic
and gaussk = 0.01720209895
(* number of days to include in test *)
let test_loops = 5
(* was: 20 *)
and test_length = 36525
(* sin and cos of j2000 mean obliquity (iau 1976) *)
and sineps = 0.3977771559319137
and coseps = 0.9174820620691818
and amas =
[| 6023600.0; 408523.5; 328900.5; 3098710.0; 1047.355; 3498.5; 22869.0; 19314.0 |]
(*
* tables giving the mean keplerian elements, limited to t**2 terms:
* a semi-major axis (au)
* dlm mean longitude (degree and arcsecond)
* e eccentricity
* pi longitude of the perihelion (degree and arcsecond)
* dinc inclination (degree and arcsecond)
* omega longitude of the ascending node (degree and arcsecond)
*)
and a =
[| [| 0.3870983098; 0.0; 0.0 |]
; [| 0.7233298200; 0.0; 0.0 |]
; [| 1.0000010178; 0.0; 0.0 |]
; [| 1.5236793419; 3e-10; 0.0 |]
; [| 5.2026032092; 19132e-10; -39e-10 |]
; [| 9.5549091915; -0.0000213896; 444e-10 |]
; [| 19.2184460618; -3716e-10; 979e-10 |]
; [| 30.1103868694; -16635e-10; 686e-10 |]
|]
and dlm =
[| [| 252.25090552; 5381016286.88982; -1.92789 |]
; [| 181.97980085; 2106641364.33548; 0.59381 |]
; [| 100.46645683; 1295977422.83429; -2.04411 |]
; [| 355.43299958; 689050774.93988; 0.94264 |]
; [| 34.35151874; 109256603.77991; -30.60378 |]
; [| 50.07744430; 43996098.55732; 75.61614 |]
; [| 314.05500511; 15424811.93933; -1.75083 |]
; [| 304.34866548; 7865503.20744; 0.21103 |]
|]
and e =
[| [| 0.2056317526; 0.0002040653; -28349e-10 |]
; [| 0.0067719164; -0.0004776521; 98127e-10 |]
; [| 0.0167086342; -0.0004203654; -0.0000126734 |]
; [| 0.0934006477; 0.0009048438; -80641e-10 |]
; [| 0.0484979255; 0.0016322542; -0.0000471366 |]
; [| 0.0555481426; -0.0034664062; -0.0000643639 |]
; [| 0.0463812221; -0.0002729293; 0.0000078913 |]
; [| 0.0094557470; 0.0000603263; 0.0 |]
|]
and pi =
[| [| 77.45611904; 5719.11590; -4.83016 |]
; [| 131.56370300; 175.48640; -498.48184 |]
; [| 102.93734808; 11612.35290; 53.27577 |]
; [| 336.06023395; 15980.45908; -62.32800 |]
; [| 14.33120687; 7758.75163; 259.95938 |]
; [| 93.05723748; 20395.49439; 190.25952 |]
; [| 173.00529106; 3215.56238; -34.09288 |]
; [| 48.12027554; 1050.71912; 27.39717 |]
|]
and dinc =
[| [| 7.00498625; -214.25629; 0.28977 |]
; [| 3.39466189; -30.84437; -11.67836 |]
; [| 0.0; 469.97289; -3.35053 |]
; [| 1.84972648; -293.31722; -8.11830 |]
; [| 1.30326698; -71.55890; 11.95297 |]
; [| 2.48887878; 91.85195; -17.66225 |]
; [| 0.77319689; -60.72723; 1.25759 |]
; [| 1.76995259; 8.12333; 0.08135 |]
|]
and omega =
[| [| 48.33089304; -4515.21727; -31.79892 |]
; [| 76.67992019; -10008.48154; -51.32614 |]
; [| 174.87317577; -8679.27034; 15.34191 |]
; [| 49.55809321; -10620.90088; -230.57416 |]
; [| 100.46440702; 6362.03561; 326.52178 |]
; [| 113.66550252; -9240.19942; -66.23743 |]
; [| 74.00595701; 2669.15033; 145.93964 |]
; [| 131.78405702; -221.94322; -0.78728 |]
|]
(* tables for trigonometric terms to be added to the mean elements
of the semi-major axes. *)
and kp =
[| [| 69613.0; 75645.0; 88306.0; 59899.0; 15746.0; 71087.0; 142173.0; 3086.0; 0.0 |]
; [| 21863.0; 32794.0; 26934.0; 10931.0; 26250.0; 43725.0; 53867.0; 28939.0; 0.0 |]
; [| 16002.0; 21863.0; 32004.0; 10931.0; 14529.0; 16368.0; 15318.0; 32794.0; 0.0 |]
; [| 6345.0; 7818.0; 15636.0; 7077.0; 8184.0; 14163.0; 1107.0; 4872.0; 0.0 |]
; [| 1760.0; 1454.0; 1167.0; 880.0; 287.0; 2640.0; 19.0; 2047.0; 1454.0 |]
; [| 574.0; 0.0; 880.0; 287.0; 19.0; 1760.0; 1167.0; 306.0; 574.0 |]
; [| 204.0; 0.0; 177.0; 1265.0; 4.0; 385.0; 200.0; 208.0; 204.0 |]
; [| 0.0; 102.0; 106.0; 4.0; 98.0; 1367.0; 487.0; 204.0; 0.0 |]
|]
and ca =
[| [| 4.0; -13.0; 11.0; -9.0; -9.0; -3.0; -1.0; 4.0; 0.0 |]
; [| -156.0; 59.0; -42.0; 6.0; 19.0; -20.0; -10.0; -12.0; 0.0 |]
; [| 64.0; -152.0; 62.0; -8.0; 32.0; -41.0; 19.0; -11.0; 0.0 |]
; [| 124.0; 621.0; -145.0; 208.0; 54.0; -57.0; 30.0; 15.0; 0.0 |]
; [| -23437.0; -2634.0; 6601.0; 6259.0; -1507.0; -1821.0; 2620.0; -2115.0; -1489.0 |]
; [| 62911.0
; -119919.0
; 79336.0
; 17814.0
; -24241.0
; 12068.0
; 8306.0
; -4893.0
; 8902.0
|]
; [| 389061.0
; -262125.0
; -44088.0
; 8387.0
; -22976.0
; -2093.0
; -615.0
; -9720.0
; 6633.0
|]
; [| -412235.0; -157046.0; -31430.0; 37817.0; -9740.0; -13.0; -7449.0; 9644.0; 0.0 |]
|]
and sa =
[| [| -29.0; -1.0; 9.0; 6.0; -6.0; 5.0; 4.0; 0.0; 0.0 |]
; [| -48.0; -125.0; -26.0; -37.0; 18.0; -13.0; -20.0; -2.0; 0.0 |]
; [| -150.0; -46.0; 68.0; 54.0; 14.0; 24.0; -28.0; 22.0; 0.0 |]
; [| -621.0; 532.0; -694.0; -20.0; 192.0; -94.0; 71.0; -73.0; 0.0 |]
; [| -14614.0; -19828.0; -5869.0; 1881.0; -4372.0; -2255.0; 782.0; 930.0; 913.0 |]
; [| 139737.0; 0.0; 24667.0; 51123.0; -5102.0; 7429.0; -4095.0; -1976.0; -9566.0 |]
; [| -138081.0
; 0.0
; 37205.0
; -49039.0
; -41901.0
; -33872.0
; -27037.0
; -12474.0
; 18797.0
|]
; [| 0.0; 28492.0; 133236.0; 69654.0; 52322.0; -49577.0; -26430.0; -3593.0; 0.0 |]
|]
(* tables giving the trigonometric terms to be added to the mean elements of
the mean longitudes . *)
and kq =
[| [| 3086.0; 15746.0; 69613.0; 59899.0; 75645.0; 88306.0; 12661.0; 2658.0; 0.0; 0.0 |]
; [| 21863.0; 32794.0; 10931.0; 73.0; 4387.0; 26934.0; 1473.0; 2157.0; 0.0; 0.0 |]
; [| 10.0; 16002.0; 21863.0; 10931.0; 1473.0; 32004.0; 4387.0; 73.0; 0.0; 0.0 |]
; [| 10.0; 6345.0; 7818.0; 1107.0; 15636.0; 7077.0; 8184.0; 532.0; 10.0; 0.0 |]
; [| 19.0; 1760.0; 1454.0; 287.0; 1167.0; 880.0; 574.0; 2640.0; 19.0; 1454.0 |]
; [| 19.0; 574.0; 287.0; 306.0; 1760.0; 12.0; 31.0; 38.0; 19.0; 574.0 |]
; [| 4.0; 204.0; 177.0; 8.0; 31.0; 200.0; 1265.0; 102.0; 4.0; 204.0 |]
; [| 4.0; 102.0; 106.0; 8.0; 98.0; 1367.0; 487.0; 204.0; 4.0; 102.0 |]
|]
and cl =
[| [| 21.0; -95.0; -157.0; 41.0; -5.0; 42.0; 23.0; 30.0; 0.0; 0.0 |]
; [| -160.0; -313.0; -235.0; 60.0; -74.0; -76.0; -27.0; 34.0; 0.0; 0.0 |]
; [| -325.0; -322.0; -79.0; 232.0; -52.0; 97.0; 55.0; -41.0; 0.0; 0.0 |]
; [| 2268.0; -979.0; 802.0; 602.0; -668.0; -33.0; 345.0; 201.0; -55.0; 0.0 |]
; [| 7610.0
; -4997.0
; -7689.0
; -5841.0
; -2617.0
; 1115.0
; -748.0
; -607.0
; 6074.0
; 354.0
|]
; [| -18549.0
; 30125.0
; 20012.0
; -730.0
; 824.0
; 23.0
; 1289.0
; -352.0
; -14767.0
; -2062.0
|]
; [| -135245.0
; -14594.0
; 4197.0
; -4030.0
; -5630.0
; -2898.0
; 2540.0
; -306.0
; 2939.0
; 1986.0
|]
; [| 89948.0; 2103.0; 8963.0; 2695.0; 3682.0; 1648.0; 866.0; -154.0; -1963.0; -283.0 |]
|]
and sl =
[| [| -342.0; 136.0; -23.0; 62.0; 66.0; -52.0; -33.0; 17.0; 0.0; 0.0 |]
; [| 524.0; -149.0; -35.0; 117.0; 151.0; 122.0; -71.0; -62.0; 0.0; 0.0 |]
; [| -105.0; -137.0; 258.0; 35.0; -116.0; -88.0; -112.0; -80.0; 0.0; 0.0 |]
; [| 854.0; -205.0; -936.0; -240.0; 140.0; -341.0; -97.0; -232.0; 536.0; 0.0 |]
; [| -56980.0; 8016.0; 1012.0; 1448.0; -3024.0; -3710.0; 318.0; 503.0; 3767.0; 577.0 |]
; [| 138606.0
; -13478.0
; -4964.0
; 1441.0
; -1319.0
; -1482.0
; 427.0
; 1236.0
; -9167.0
; -1918.0
|]
; [| 71234.0
; -41116.0
; 5334.0
; -4935.0
; -1848.0
; 66.0
; 434.0
; -1748.0
; 3780.0
; -701.0
|]
; [| -47645.0; 11647.0; 2166.0; 3194.0; 679.0; 0.0; -244.0; -419.0; -2531.0; 48.0 |]
|]
(* Normalize angle into the range -pi <= A < +pi. *)
let anpm a =
let w = mod_float a twopi in
if abs_float w >= pic then if a < 0.0 then w +. twopi else w -. twopi else w
(* The reference frame is equatorial and is with respect to the
* mean equator and equinox of epoch j2000. *)
let planetpv epoch np pv =
(* time: julian millennia since j2000. *)
let t = (epoch.(0) -. j2000 +. epoch.(1)) /. jmillenia in
(* compute the mean elements. *)
let da = ref (a.(np).(0) +. ((a.(np).(1) +. (a.(np).(2) *. t)) *. t))
and dl =
ref (((3600.0 *. dlm.(np).(0)) +. ((dlm.(np).(1) +. (dlm.(np).(2) *. t)) *. t)) *. a2r)
and de = e.(np).(0) +. ((e.(np).(1) +. (e.(np).(2) *. t)) *. t)
and dp =
anpm (((3600.0 *. pi.(np).(0)) +. ((pi.(np).(1) +. (pi.(np).(2) *. t)) *. t)) *. a2r)
and di =
((3600.0 *. dinc.(np).(0)) +. ((dinc.(np).(1) +. (dinc.(np).(2) *. t)) *. t)) *. a2r
and doh =
anpm
(((3600.0 *. omega.(np).(0)) +. ((omega.(np).(1) +. (omega.(np).(2) *. t)) *. t))
*. a2r)
(* apply the trigonometric terms. *)
and dmu = 0.35953620 *. t in
(* loop invariant *)
let kp = kp.(np)
and kq = kq.(np)
and ca = ca.(np)
and sa = sa.(np)
and cl = cl.(np)
and sl = sl.(np) in
for k = 0 to 7 do
let arga = kp.(k) *. dmu and argl = kq.(k) *. dmu in
da := !da +. (((ca.(k) *. cos arga) +. (sa.(k) *. sin arga)) *. 0.0000001);
dl := !dl +. (((cl.(k) *. cos argl) +. (sl.(k) *. sin argl)) *. 0.0000001)
done;
(let arga = kp.(8) *. dmu in
da := !da +. (t *. ((ca.(8) *. cos arga) +. (sa.(8) *. sin arga)) *. 0.0000001);
for k = 8 to 9 do
let argl = kq.(k) *. dmu in
dl := !dl +. (t *. ((cl.(k) *. cos argl) +. (sl.(k) *. sin argl)) *. 0.0000001)
done);
dl := mod_float !dl twopi;
(* iterative solution of kepler's equation to get eccentric anomaly. *)
let am = !dl -. dp in
let ae = ref (am +. (de *. sin am)) and k = ref 0 in
let dae = ref ((am -. !ae +. (de *. sin !ae)) /. (1.0 -. (de *. cos !ae))) in
ae := !ae +. !dae;
incr k;
while !k < 10 || abs_float !dae >= 1e-12 do
dae := (am -. !ae +. (de *. sin !ae)) /. (1.0 -. (de *. cos !ae));
ae := !ae +. !dae;
incr k
done;
(* true anomaly. *)
let ae2 = !ae /. 2.0 in
let at = 2.0 *. atan2 (sqrt ((1.0 +. de) /. (1.0 -. de)) *. sin ae2) (cos ae2)
(* distance (au) and speed (radians per day). *)
and r = !da *. (1.0 -. (de *. cos !ae))
and v = gaussk *. sqrt ((1.0 +. (1.0 /. amas.(np))) /. (!da *. !da *. !da))
and si2 = sin (di /. 2.0) in
let xq = si2 *. cos doh and xp = si2 *. sin doh and tl = at +. dp in
let xsw = sin tl and xcw = cos tl in
let xm2 = 2.0 *. ((xp *. xcw) -. (xq *. xsw))
and xf = !da /. sqrt (1.0 -. (de *. de))
and ci2 = cos (di /. 2.0) in
let xms = ((de *. sin dp) +. xsw) *. xf
and xmc = ((de *. cos dp) +. xcw) *. xf
and xpxq2 = 2.0 *. xp *. xq in
(* position (j2000 ecliptic x,y,z in au). *)
let x = r *. (xcw -. (xm2 *. xp))
and y = r *. (xsw +. (xm2 *. xq))
and z = r *. (-.xm2 *. ci2) in
(* rotate to equatorial. *)
pv.(0).(0) <- x;
pv.(0).(1) <- (y *. coseps) -. (z *. sineps);
pv.(0).(2) <- (y *. sineps) +. (z *. coseps);
(* velocity (j2000 ecliptic xdot,ydot,zdot in au/d). *)
let x = v *. (((-1.0 +. (2.0 *. xp *. xp)) *. xms) +. (xpxq2 *. xmc))
and y = v *. (((1.0 -. (2.0 *. xq *. xq)) *. xmc) -. (xpxq2 *. xms))
and z = v *. (2.0 *. ci2 *. ((xp *. xms) +. (xq *. xmc))) in
(* rotate to equatorial *)
pv.(1).(0) <- x;
pv.(1).(1) <- (y *. coseps) -. (z *. sineps);
pv.(1).(2) <- (y *. sineps) +. (z *. coseps)
(* Computes RA, Declination, and distance from a state vector returned by
* planetpv. *)
let radecdist state rdd =
(* Distance *)
rdd.(2) <-
sqrt
((state.(0).(0) *. state.(0).(0))
+. (state.(0).(1) *. state.(0).(1))
+. (state.(0).(2) *. state.(0).(2)));
(* RA *)
rdd.(0) <- atan2 state.(0).(1) state.(0).(0) *. r2h;
if rdd.(0) < 0.0 then rdd.(0) <- rdd.(0) +. 24.0;
(* Declination *)
rdd.(1) <- asin (state.(0).(2) /. rdd.(2)) *. r2d
(* Entry point. Calculate RA and Dec for noon on every day in 1900-2100 *)
let _ =
let jd = [| 0.0; 0.0 |]
and pv = [| [| 0.0; 0.0; 0.0 |]; [| 0.0; 0.0; 0.0 |] |]
and position = [| 0.0; 0.0; 0.0 |] in
(* Test *)
jd.(0) <- j2000;
jd.(1) <- 1.0;
for p = 0 to 7 do
planetpv jd p pv;
radecdist pv position
(* Printf.printf "%d %.2f %.2f\n%!" p position.(0) position.(1)*)
done;
(* Benchmark *)
for _ = 0 to test_loops - 1 do
jd.(0) <- j2000;
jd.(1) <- 0.0;
for _ = 0 to test_length - 1 do
jd.(0) <- jd.(0) +. 1.0;
for p = 0 to 7 do
planetpv jd p pv;
radecdist pv position
done
done
done
|