File: kb.ml

package info (click to toggle)
js-of-ocaml 5.9.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 32,020 kB
  • sloc: ml: 91,250; javascript: 57,289; ansic: 315; makefile: 271; lisp: 23; sh: 6; perl: 4
file content (611 lines) | stat: -rw-r--r-- 19,701 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
let print_string _ = ()

let print_int _ = ()

let print_newline _ = ()

(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id: terms.ml 2553 1999-11-17 18:59:06Z xleroy $ *)

(****************** Term manipulations *****************)

type term =
  | Var of int
  | Term of string * term list

let rec union l1 l2 =
  match l1 with
  | [] -> l2
  | a :: r -> if List.mem a l2 then union r l2 else a :: union r l2

let rec vars = function
  | Var n -> [ n ]
  | Term (_, l) -> vars_of_list l

and vars_of_list = function
  | [] -> []
  | t :: r -> union (vars t) (vars_of_list r)

let rec substitute subst = function
  | Term (oper, sons) -> Term (oper, List.map (substitute subst) sons)
  | Var n as t -> ( try List.assoc n subst with Not_found -> t)

(* Term replacement: replace M u N is M[u<-N]. *)

let rec replace m u n =
  match u, m with
  | [], _ -> n
  | i :: u, Term (oper, sons) -> Term (oper, replace_nth i sons u n)
  | _ -> failwith "replace"

and replace_nth i sons u n =
  match sons with
  | s :: r -> if i = 1 then replace s u n :: r else s :: replace_nth (i - 1) r u n
  | [] -> failwith "replace_nth"

(* Term matching. *)

let matching term1 term2 =
  let rec match_rec subst t1 t2 =
    match t1, t2 with
    | Var v, _ ->
        if List.mem_assoc v subst
        then if t2 = List.assoc v subst then subst else failwith "matching"
        else (v, t2) :: subst
    | Term (op1, sons1), Term (op2, sons2) ->
        if op1 = op2
        then List.fold_left2 match_rec subst sons1 sons2
        else failwith "matching"
    | _ -> failwith "matching"
  in
  match_rec [] term1 term2

(* A naive unification algorithm. *)

let compsubst subst1 subst2 =
  List.map (fun (v, t) -> v, substitute subst1 t) subst2 @ subst1

let rec occurs n = function
  | Var m -> m = n
  | Term (_, sons) -> List.exists (occurs n) sons

let rec unify term1 term2 =
  match term1, term2 with
  | Var n1, _ ->
      if term1 = term2
      then []
      else if occurs n1 term2
      then failwith "unify"
      else [ n1, term2 ]
  | term1, Var n2 -> if occurs n2 term1 then failwith "unify" else [ n2, term1 ]
  | Term (op1, sons1), Term (op2, sons2) ->
      if op1 = op2
      then
        List.fold_left2
          (fun s t1 t2 -> compsubst (unify (substitute s t1) (substitute s t2)) s)
          []
          sons1
          sons2
      else failwith "unify"

(* We need to print terms with variables independently from input terms
   obtained by parsing. We give arbitrary names v1,v2,... to their variables.
*)

let infixes = [ "+"; "*" ]

let pretty_term _ = ()

let pretty_close _ = ()

(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id: equations.ml 2553 1999-11-17 18:59:06Z xleroy $ *)

(****************** Equation manipulations *************)

type rule =
  { number : int
  ; numvars : int
  ; lhs : term
  ; rhs : term
  }

(* standardizes an equation so its variables are 1,2,... *)

let mk_rule num m n =
  let all_vars = union (vars m) (vars n) in
  let counter = ref 0 in
  let subst =
    List.map
      (fun v ->
        incr counter;
        v, Var !counter)
      (List.rev all_vars)
  in
  { number = num; numvars = !counter; lhs = substitute subst m; rhs = substitute subst n }

(* checks that rules are numbered in sequence and returns their number *)

let check_rules rules =
  let counter = ref 0 in
  List.iter
    (fun r ->
      incr counter;
      if r.number <> !counter then failwith "Rule numbers not in sequence")
    rules;
  !counter

let pretty_rule rule =
  print_int rule.number;
  print_string " : ";
  pretty_term rule.lhs;
  print_string " = ";
  pretty_term rule.rhs;
  print_newline ()

let pretty_rules rules = List.iter pretty_rule rules

(****************** Rewriting **************************)

(* Top-level rewriting. Let eq:L=R be an equation, M be a term such that L<=M.
   With sigma = matching L M, we define the image of M by eq as sigma(R) *)
let reduce l m r = substitute (matching l m) r

(* Test whether m can be reduced by l, i.e. m contains an instance of l. *)

let can_match l m =
  try
    let _ = matching l m in
    true
  with Failure _ -> false

let rec reducible l m =
  can_match l m
  ||
  match m with
  | Term (_, sons) -> List.exists (reducible l) sons
  | _ -> false

(* Top-level rewriting with multiple rules. *)

let rec mreduce rules m =
  match rules with
  | [] -> failwith "mreduce"
  | rule :: rest -> ( try reduce rule.lhs m rule.rhs with Failure _ -> mreduce rest m)

(* One step of rewriting in leftmost-outermost strategy,
   with multiple rules. Fails if no redex is found *)

let rec mrewrite1 rules m =
  try mreduce rules m
  with Failure _ -> (
    match m with
    | Var _ -> failwith "mrewrite1"
    | Term (f, sons) -> Term (f, mrewrite1_sons rules sons))

and mrewrite1_sons rules = function
  | [] -> failwith "mrewrite1"
  | son :: rest -> (
      try mrewrite1 rules son :: rest with Failure _ -> son :: mrewrite1_sons rules rest)

(* Iterating rewrite1. Returns a normal form. May loop forever *)

let rec mrewrite_all rules m =
  try mrewrite_all rules (mrewrite1 rules m) with Failure _ -> m

(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id: orderings.ml 2553 1999-11-17 18:59:06Z xleroy $ *)

(*********************** Recursive Path Ordering ****************************)

type ordering =
  | Greater
  | Equal
  | NotGE

let ge_ord order pair =
  match order pair with
  | NotGE -> false
  | _ -> true

and gt_ord order pair =
  match order pair with
  | Greater -> true
  | _ -> false

and eq_ord order pair =
  match order pair with
  | Equal -> true
  | _ -> false

let rec rem_eq equiv x = function
  | [] -> failwith "rem_eq"
  | y :: l -> if equiv (x, y) then l else y :: rem_eq equiv x l

let diff_eq equiv (x, y) =
  let rec diffrec = function
    | ([], _) as p -> p
    | h :: t, y -> (
        try diffrec (t, rem_eq equiv h y)
        with Failure _ ->
          let x', y' = diffrec (t, y) in
          h :: x', y')
  in
  if List.length x > List.length y then diffrec (y, x) else diffrec (x, y)

(* Multiset extension of order *)

let mult_ext order = function
  | Term (_, sons1), Term (_, sons2) -> (
      match diff_eq (eq_ord order) (sons1, sons2) with
      | [], [] -> Equal
      | l1, l2 ->
          if List.for_all (fun n -> List.exists (fun m -> gt_ord order (m, n)) l1) l2
          then Greater
          else NotGE)
  | _ -> failwith "mult_ext"

(* Lexicographic extension of order *)

let lex_ext order = function
  | (Term (_, sons1) as m), (Term (_, sons2) as n) ->
      let rec lexrec = function
        | [], [] -> Equal
        | [], _ -> NotGE
        | _, [] -> Greater
        | x1 :: l1, x2 :: l2 -> (
            match order (x1, x2) with
            | Greater ->
                if List.for_all (fun n' -> gt_ord order (m, n')) l2
                then Greater
                else NotGE
            | Equal -> lexrec (l1, l2)
            | NotGE ->
                if List.exists (fun m' -> ge_ord order (m', n)) l1 then Greater else NotGE
            )
      in
      lexrec (sons1, sons2)
  | _ -> failwith "lex_ext"

(* Recursive path ordering *)

let rpo op_order ext =
  let rec rporec (m, n) =
    if m = n
    then Equal
    else
      match m with
      | Var _ -> NotGE
      | Term (op1, sons1) -> (
          match n with
          | Var vn -> if occurs vn m then Greater else NotGE
          | Term (op2, sons2) -> (
              match op_order op1 op2 with
              | Greater ->
                  if List.for_all (fun n' -> gt_ord rporec (m, n')) sons2
                  then Greater
                  else NotGE
              | Equal -> ext rporec (m, n)
              | NotGE ->
                  if List.exists (fun m' -> ge_ord rporec (m', n)) sons1
                  then Greater
                  else NotGE))
  in
  rporec

(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id: kb.ml 2553 1999-11-17 18:59:06Z xleroy $ *)

(****************** Critical pairs *********************)

(* All (u,subst) such that N/u (&var) unifies with M,
   with principal unifier subst *)

let rec super m = function
  | Term (_, sons) as n -> (
      let rec collate n = function
        | [] -> []
        | son :: rest ->
            List.map (fun (u, subst) -> n :: u, subst) (super m son)
            @ collate (n + 1) rest
      in
      let insides = collate 1 sons in
      try ([], unify m n) :: insides with Failure _ -> insides)
  | _ -> []

(* Ex :
   let (m,_) = <<F(A,B)>>
   and (n,_) = <<H(F(A,x),F(x,y))>> in super m n
   ==> [[1],[2,Term ("B",[])];                      x <- B
        [2],[2,Term ("A",[]); 1,Term ("B",[])]]     x <- A  y <- B
*)

(* All (u,subst), u&[], such that n/u unifies with m *)

let super_strict m = function
  | Term (_, sons) ->
      let rec collate n = function
        | [] -> []
        | son :: rest ->
            List.map (fun (u, subst) -> n :: u, subst) (super m son)
            @ collate (n + 1) rest
      in
      collate 1 sons
  | _ -> []

(* Critical pairs of l1=r1 with l2=r2 *)
(* critical_pairs : term_pair -> term_pair -> term_pair list *)
let critical_pairs (l1, r1) (l2, r2) =
  let mk_pair (u, subst) = substitute subst (replace l2 u r1), substitute subst r2 in
  List.map mk_pair (super l1 l2)

(* Strict critical pairs of l1=r1 with l2=r2 *)
(* strict_critical_pairs : term_pair -> term_pair -> term_pair list *)
let strict_critical_pairs (l1, r1) (l2, r2) =
  let mk_pair (u, subst) = substitute subst (replace l2 u r1), substitute subst r2 in
  List.map mk_pair (super_strict l1 l2)

(* All critical pairs of eq1 with eq2 *)
let mutual_critical_pairs eq1 eq2 = strict_critical_pairs eq1 eq2 @ critical_pairs eq2 eq1

(* Renaming of variables *)

let rename n (t1, t2) =
  let rec ren_rec = function
    | Var k -> Var (k + n)
    | Term (op, sons) -> Term (op, List.map ren_rec sons)
  in
  ren_rec t1, ren_rec t2

(************************ Completion ******************************)

let deletion_message rule =
  print_string "Rule ";
  print_int rule.number;
  print_string " deleted";
  print_newline ()

(* Generate failure message *)
let non_orientable (m, n) =
  pretty_term m;
  print_string " = ";
  pretty_term n;
  print_newline ()

let rec partition p = function
  | [] -> [], []
  | x :: l ->
      let l1, l2 = partition p l in
      if p x then x :: l1, l2 else l1, x :: l2

let rec get_rule n = function
  | [] -> raise Not_found
  | r :: l -> if n = r.number then r else get_rule n l

(* Improved Knuth-Bendix completion procedure *)

let kb_completion greater =
  let rec kbrec j rules =
    let rec process failures (k, l) eqs =
      (*
        {[
          print_string "***kb_completion "; print_int j; print_newline();
          pretty_rules rules;
          List.iter non_orientable failures;
          print_int k; print_string " "; print_int l; print_newline();
          List.iter non_orientable eqs;
        ]}
      *)
      match eqs with
      | [] -> (
          if k < l
          then next_criticals failures (k + 1, l)
          else if l < j
          then next_criticals failures (1, l + 1)
          else
            match failures with
            | [] -> rules (* successful completion *)
            | _ ->
                print_string "Non-orientable equations :";
                print_newline ();
                List.iter non_orientable failures;
                failwith "kb_completion")
      | (m, n) :: eqs ->
          let m' = mrewrite_all rules m
          and n' = mrewrite_all rules n
          and enter_rule (left, right) =
            let new_rule = mk_rule (j + 1) left right in
            pretty_rule new_rule;
            let left_reducible rule = reducible left rule.lhs in
            let redl, irredl = partition left_reducible rules in
            List.iter deletion_message redl;
            let right_reduce rule =
              mk_rule rule.number rule.lhs (mrewrite_all (new_rule :: rules) rule.rhs)
            in
            let irreds = List.map right_reduce irredl in
            let eqs' = List.map (fun rule -> rule.lhs, rule.rhs) redl in
            kbrec (j + 1) (new_rule :: irreds) [] (k, l) (eqs @ eqs' @ failures)
          in
          (* {[
                print_string "--- Considering "; non_orientable (m', n');
             ]}
          *)
          if m' = n'
          then process failures (k, l) eqs
          else if greater (m', n')
          then enter_rule (m', n')
          else if greater (n', m')
          then enter_rule (n', m')
          else process ((m', n') :: failures) (k, l) eqs
    and next_criticals failures (k, l) =
      (* {[
            print_string "***next_criticals ";
            print_int k; print_string " "; print_int l ; print_newline();
         ]}
      *)
      try
        let rl = get_rule l rules in
        let el = rl.lhs, rl.rhs in
        if k = l
        then process failures (k, l) (strict_critical_pairs el (rename rl.numvars el))
        else
          try
            let rk = get_rule k rules in
            let ek = rk.lhs, rk.rhs in
            process failures (k, l) (mutual_critical_pairs el (rename rl.numvars ek))
          with Not_found -> next_criticals failures (k + 1, l)
      with Not_found -> next_criticals failures (1, l + 1)
    in
    process
  in
  kbrec

(* complete_rules is assumed locally confluent, and checked Noetherian with
   ordering greater, rules is any list of rules *)

let kb_complete greater complete_rules rules =
  let n = check_rules complete_rules
  and eqs = List.map (fun rule -> rule.lhs, rule.rhs) rules in
  let completed_rules = kb_completion greater n complete_rules [] (n, n) eqs in
  print_string "Canonical set found :";
  print_newline ();
  pretty_rules (List.rev completed_rules)

(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id: kbmain.ml 7017 2005-08-12 09:22:04Z xleroy $ *)

(****
  let group_rules = [
    { number = 1; numvars = 1;
      lhs = Term("*", [Term("U",[]); Var 1]); rhs = Var 1 };
    { number = 2; numvars = 1;
      lhs = Term("*", [Term("I",[Var 1]); Var 1]); rhs = Term("U",[]) };
    { number = 3; numvars = 3;
      lhs = Term("*", [Term("*", [Var 1; Var 2]); Var 3]);
      rhs = Term("*", [Var 1; Term("*", [Var 2; Var 3])]) }
  ]
  ****)

let geom_rules =
  [ { number = 1; numvars = 1; lhs = Term ("*", [ Term ("U", []); Var 1 ]); rhs = Var 1 }
  ; { number = 2
    ; numvars = 1
    ; lhs = Term ("*", [ Term ("I", [ Var 1 ]); Var 1 ])
    ; rhs = Term ("U", [])
    }
  ; { number = 3
    ; numvars = 3
    ; lhs = Term ("*", [ Term ("*", [ Var 1; Var 2 ]); Var 3 ])
    ; rhs = Term ("*", [ Var 1; Term ("*", [ Var 2; Var 3 ]) ])
    }
  ; { number = 4
    ; numvars = 0
    ; lhs = Term ("*", [ Term ("A", []); Term ("B", []) ])
    ; rhs = Term ("*", [ Term ("B", []); Term ("A", []) ])
    }
  ; { number = 5
    ; numvars = 0
    ; lhs = Term ("*", [ Term ("C", []); Term ("C", []) ])
    ; rhs = Term ("U", [])
    }
  ; { number = 6
    ; numvars = 0
    ; lhs =
        Term
          ( "*"
          , [ Term ("C", [])
            ; Term ("*", [ Term ("A", []); Term ("I", [ Term ("C", []) ]) ])
            ] )
    ; rhs = Term ("I", [ Term ("A", []) ])
    }
  ; { number = 7
    ; numvars = 0
    ; lhs =
        Term
          ( "*"
          , [ Term ("C", [])
            ; Term ("*", [ Term ("B", []); Term ("I", [ Term ("C", []) ]) ])
            ] )
    ; rhs = Term ("B", [])
    }
  ]

let group_rank = function
  | "U" -> 0
  | "*" -> 1
  | "I" -> 2
  | "B" -> 3
  | "C" -> 4
  | "A" -> 5
  | _ -> assert false

let group_precedence op1 op2 =
  let r1 = group_rank op1 and r2 = group_rank op2 in
  if r1 = r2 then Equal else if r1 > r2 then Greater else NotGE

let group_order = rpo group_precedence lex_ext

let greater pair =
  match group_order pair with
  | Greater -> true
  | _ -> false

let _ =
  for _ = 1 to 20 do
    kb_complete greater [] geom_rules
  done