1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
|
(* Js_of_ocaml compiler
* http://www.ocsigen.org/js_of_ocaml/
* Copyright (C) 2010 Jérôme Vouillon
* Laboratoire PPS - CNRS Université Paris Diderot
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, with linking exception;
* either version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*)
open! Stdlib
module Addr = struct
type t = int
module Set = Set.Make (Int)
module Map = Map.Make (Int)
let to_string = string_of_int
let zero = 0
let pred = pred
let succ = succ
end
module DebugAddr : sig
type t = private Addr.t
val of_addr : Addr.t -> t
val to_addr : t -> Addr.t
val no : t
end = struct
type t = int
let of_addr (x : Addr.t) : t = x
let no = 0
let to_addr (x : t) : Addr.t = x
end
module Var : sig
type t [@@ocaml.immediate]
val print : Format.formatter -> t -> unit
val equal : t -> t -> bool
val idx : t -> int
val of_idx : int -> t
val to_string : ?origin:t -> t -> string
val fresh : unit -> t
val fresh_n : string -> t
val fork : t -> t
val count : unit -> int
val compare : t -> t -> int
val name : t -> string -> unit
val get_name : t -> string option
val propagate_name : t -> t -> unit
val reset : unit -> unit
val set_pretty : bool -> unit
val set_stable : bool -> unit
module Set : Set.S with type elt = t
module Map : Map.S with type key = t
module Hashtbl : Hashtbl.S with type key = t
module Tbl : sig
type key = t
type 'a t
module DataSet : sig
type 'a t
val iter : ('a -> unit) -> 'a t -> unit
val fold : ('a -> 'acc -> 'acc) -> 'a t -> 'acc -> 'acc
end
type size = unit
val get : 'a t -> key -> 'a
val set : 'a t -> key -> 'a -> unit
val make : size -> 'a -> 'a t
val make_set : size -> 'a DataSet.t t
val add_set : 'a DataSet.t t -> key -> 'a -> unit
val iter : (key -> 'a -> unit) -> 'a t -> unit
end
module ISet : sig
type elt = t
type t
val empty : unit -> t
val iter : (elt -> unit) -> t -> unit
val mem : t -> elt -> bool
val add : t -> elt -> unit
val remove : t -> elt -> unit
val copy : t -> t
end
end = struct
module T = struct
type t = int
let compare : t -> t -> int = compare
let equal (a : t) (b : t) = a = b
let hash x = x
end
include T
let printer = Var_printer.create Var_printer.Alphabet.javascript
let last_var = ref 0
let reset () =
last_var := 0;
Var_printer.reset printer
let to_string ?origin i = Var_printer.to_string printer ?origin i
let print f x = Format.fprintf f "v%d" x
(* Format.fprintf f "%s" (to_string x) *)
let name i nm = Var_printer.name printer i nm
let fresh () =
incr last_var;
!last_var
let fresh_n nm =
incr last_var;
name !last_var nm;
!last_var
let count () = !last_var + 1
let idx v = v
let of_idx v = v
let get_name i = Var_printer.get_name printer i
let propagate_name i j = Var_printer.propagate_name printer i j
let set_pretty b = Var_printer.set_pretty printer b
let set_stable b = Var_printer.set_stable printer b
let fork o =
let n = fresh () in
propagate_name o n;
n
module Set = Set.Make (T)
module Map = Map.Make (T)
module Tbl = struct
type 'a t = 'a array
module DataSet = struct
type 'a t =
| Empty
| One of 'a
| Many of ('a, unit) Hashtbl.t
let iter f = function
| Empty -> ()
| One a -> f a
| Many t -> Hashtbl.iter (fun k () -> f k) t
let fold f t acc =
match t with
| Empty -> acc
| One a -> f a acc
| Many t -> Hashtbl.fold (fun k () acc -> f k acc) t acc
end
type key = T.t
type size = unit
let get t x = t.(x)
let set t x v = t.(x) <- v
let make () v = Array.make (count ()) v
let make_set () = Array.make (count ()) DataSet.Empty
let add_set t x k =
match t.(x) with
| DataSet.Empty -> t.(x) <- One k
| One k' ->
let tbl = Hashtbl.create 0 in
Hashtbl.replace tbl k' ();
Hashtbl.replace tbl k ();
t.(x) <- Many tbl
| Many tbl -> Hashtbl.replace tbl k ()
let iter f t =
for i = 0 to Array.length t - 1 do
f i (Array.unsafe_get t i)
done
end
module Hashtbl = Hashtbl.Make (T)
module ISet = struct
type t = BitSet.t
type elt = T.t
let iter f t = BitSet.iter ~f t
let mem t x = BitSet.mem t x
let add t (x : int) = BitSet.set t x
let remove t x = BitSet.unset t x
let copy = BitSet.copy
let empty _v = BitSet.create' (count ())
end
end
type cont = Addr.t * Var.t list
type prim =
| Vectlength
| Array_get
| Extern of string
| Not
| IsInt
| Eq
| Neq
| Lt
| Le
| Ult
type array_or_not =
| Array
| NotArray
| Unknown
module Native_string = struct
type t =
| Byte of string
| Utf of Utf8_string.t
let of_string x = Utf (Utf8_string.of_string_exn x)
let of_bytestring x = if String.is_ascii x then of_string x else Byte x
let equal a b =
match a, b with
| Byte x, Byte y -> String.equal x y
| Utf (Utf8 x), Utf (Utf8 y) -> String.equal x y
| Utf _, Byte _ | Byte _, Utf _ -> false
end
type constant =
| String of string
| NativeString of Native_string.t
| Float of float
| Float_array of float array
| Int of Targetint.t
| Int32 of Int32.t
| Int64 of Int64.t
| NativeInt of Int32.t (* Native int are 32bit on all known backend *)
| Tuple of int * constant array * array_or_not
module Constant = struct
type t = constant
let rec ocaml_equal a b =
match a, b with
| String a, String b -> Some (String.equal a b)
| NativeString a, NativeString b -> Some (Native_string.equal a b)
| Tuple (ta, a, _), Tuple (tb, b, _) ->
if ta <> tb || Array.length a <> Array.length b
then Some false
else
let same = ref (Some true) in
for i = 0 to Array.length a - 1 do
match !same, ocaml_equal a.(i) b.(i) with
| None, _ -> ()
| _, None -> same := None
| Some s, Some c -> same := Some (s && c)
done;
!same
| Int a, Int b -> Some (Targetint.equal a b)
| Int32 a, Int32 b -> Some (Int32.equal a b)
| Int64 a, Int64 b -> Some (Int64.equal a b)
| NativeInt a, NativeInt b -> Some (Int32.equal a b)
| Float_array a, Float_array b -> Some (Array.equal Float.ieee_equal a b)
| Float a, Float b -> Some (Float.ieee_equal a b)
| String _, NativeString _ | NativeString _, String _ -> None
| Int _, Float _ | Float _, Int _ -> None
| Tuple ((0 | 254), _, _), Float_array _ -> None
| Float_array _, Tuple ((0 | 254), _, _) -> None
| ( Tuple _
, ( String _
| NativeString _
| Int64 _
| Int _
| Int32 _
| NativeInt _
| Float _
| Float_array _ ) ) -> Some false
| ( Float_array _
, ( String _
| NativeString _
| Int64 _
| Int _
| Int32 _
| NativeInt _
| Float _
| Tuple _ ) ) -> Some false
| ( String _
, (Int64 _ | Int _ | Int32 _ | NativeInt _ | Float _ | Tuple _ | Float_array _) ) ->
Some false
| ( NativeString _
, (Int64 _ | Int _ | Int32 _ | NativeInt _ | Float _ | Tuple _ | Float_array _) ) ->
Some false
| ( Int64 _
, ( String _
| NativeString _
| Int _
| Int32 _
| NativeInt _
| Float _
| Tuple _
| Float_array _ ) ) -> Some false
| Float _, (String _ | NativeString _ | Float_array _ | Int64 _ | Tuple (_, _, _)) ->
Some false
| ( (Int _ | Int32 _ | NativeInt _)
, (String _ | NativeString _ | Float_array _ | Int64 _ | Tuple (_, _, _)) ) ->
Some false
(* Note: the following cases should not occur when compiling to Javascript *)
| Int _, (Int32 _ | NativeInt _)
| Int32 _, (Int _ | NativeInt _)
| NativeInt _, (Int _ | Int32 _)
| (Int32 _ | NativeInt _), Float _
| Float _, (Int32 _ | NativeInt _) -> None
end
type loc =
| No
| Before of Addr.t
| After of Addr.t
type prim_arg =
| Pv of Var.t
| Pc of constant
type special = Alias_prim of string
type mutability =
| Immutable
| Maybe_mutable
type field_type =
| Non_float
| Float
type expr =
| Apply of
{ f : Var.t
; args : Var.t list
; exact : bool
}
| Block of int * Var.t array * array_or_not * mutability
| Field of Var.t * int * field_type
| Closure of Var.t list * cont
| Constant of constant
| Prim of prim * prim_arg list
| Special of special
type instr =
| Let of Var.t * expr
| Assign of Var.t * Var.t
| Set_field of Var.t * int * field_type * Var.t
| Offset_ref of Var.t * int
| Array_set of Var.t * Var.t * Var.t
| Event of Parse_info.t
type last =
| Return of Var.t
| Raise of Var.t * [ `Normal | `Notrace | `Reraise ]
| Stop
| Branch of cont
| Cond of Var.t * cont * cont
| Switch of Var.t * cont array
| Pushtrap of cont * Var.t * cont
| Poptrap of cont
type block =
{ params : Var.t list
; body : instr list
; branch : last
}
type program =
{ start : Addr.t
; blocks : block Addr.Map.t
; free_pc : Addr.t
}
let noloc = No
let location_of_pc pc = Before pc
(****)
module Print = struct
let rec list pr f l =
match l with
| [] -> ()
| [ x ] -> pr f x
| x :: r -> Format.fprintf f "%a, %a" pr x (list pr) r
let var_list = list Var.print
let cont f (pc, args) = Format.fprintf f "%d (%a)" pc var_list args
let rec constant f x =
match x with
| String s -> Format.fprintf f "%S" s
| NativeString (Byte s) -> Format.fprintf f "%Sj" s
| NativeString (Utf (Utf8 s)) -> Format.fprintf f "%Sj" s
| Float fl -> Format.fprintf f "%.12g" fl
| Float_array a ->
Format.fprintf f "[|";
for i = 0 to Array.length a - 1 do
if i > 0 then Format.fprintf f ", ";
Format.fprintf f "%.12g" a.(i)
done;
Format.fprintf f "|]"
| Int i -> Format.fprintf f "%s" (Targetint.to_string i)
| Int32 i -> Format.fprintf f "%ldl" i
| Int64 i -> Format.fprintf f "%LdL" i
| NativeInt i -> Format.fprintf f "%ldn" i
| Tuple (tag, a, _) -> (
Format.fprintf f "<%d>" tag;
match Array.length a with
| 0 -> ()
| 1 ->
Format.fprintf f "(";
constant f a.(0);
Format.fprintf f ")"
| n ->
Format.fprintf f "(";
constant f a.(0);
for i = 1 to n - 1 do
Format.fprintf f ", ";
constant f a.(i)
done;
Format.fprintf f ")")
let arg f a =
match a with
| Pv x -> Var.print f x
| Pc c -> constant f c
let binop s =
match s with
| "%int_add" -> "+"
| "%int_sub" -> "-"
| "%int_mul" -> "*"
| "%int_div" -> "/"
| "%int_mod" -> "%"
| "%int_and" -> "&"
| "%int_or" -> "|"
| "%int_xor" -> "^"
| "%int_lsl" -> "<<"
| "%int_lsr" -> ">>>"
| "%int_asr" -> ">>"
| _ -> raise Not_found
let unop s =
match s with
| "%int_neg" -> "-"
| _ -> raise Not_found
let prim f p l =
match p, l with
| Vectlength, [ x ] -> Format.fprintf f "%a.length" arg x
| Array_get, [ x; y ] -> Format.fprintf f "%a[%a]" arg x arg y
| Extern s, [ x; y ] -> (
try Format.fprintf f "%a %s %a" arg x (binop s) arg y
with Not_found -> Format.fprintf f "\"%s\"(%a)" s (list arg) l)
| Extern s, [ x ] -> (
try Format.fprintf f "%s %a" (unop s) arg x
with Not_found -> Format.fprintf f "\"%s\"(%a)" s (list arg) l)
| Extern s, _ -> Format.fprintf f "\"%s\"(%a)" s (list arg) l
| Not, [ x ] -> Format.fprintf f "!%a" arg x
| IsInt, [ x ] -> Format.fprintf f "is_int(%a)" arg x
| Eq, [ x; y ] -> Format.fprintf f "%a === %a" arg x arg y
| Neq, [ x; y ] -> Format.fprintf f "!(%a === %a)" arg x arg y
| Lt, [ x; y ] -> Format.fprintf f "%a < %a" arg x arg y
| Le, [ x; y ] -> Format.fprintf f "%a <= %a" arg x arg y
| Ult, [ x; y ] -> Format.fprintf f "%a <= %a" arg x arg y
| _ -> assert false
let special f s =
match s with
| Alias_prim s -> Format.fprintf f "alias %s" s
let expr f e =
match e with
| Apply { f = g; args; exact } ->
if exact
then Format.fprintf f "%a!(%a)" Var.print g var_list args
else Format.fprintf f "%a(%a)" Var.print g var_list args
| Block (t, a, _, mut) ->
Format.fprintf
f
"%s{tag=%d"
(match mut with
| Immutable -> "imm"
| Maybe_mutable -> "")
t;
for i = 0 to Array.length a - 1 do
Format.fprintf f "; %d = %a" i Var.print a.(i)
done;
Format.fprintf f "}"
| Field (x, i, Non_float) -> Format.fprintf f "%a[%d]" Var.print x i
| Field (x, i, Float) -> Format.fprintf f "FLOAT{%a[%d]}" Var.print x i
| Closure (l, c) -> Format.fprintf f "fun(%a){%a}" var_list l cont c
| Constant c -> Format.fprintf f "CONST{%a}" constant c
| Prim (p, l) -> prim f p l
| Special s -> special f s
let instr f i =
match i with
| Let (x, e) -> Format.fprintf f "%a = %a" Var.print x expr e
| Assign (x, y) -> Format.fprintf f "(assign) %a = %a" Var.print x Var.print y
| Set_field (x, i, Non_float, y) ->
Format.fprintf f "%a[%d] = %a" Var.print x i Var.print y
| Set_field (x, i, Float, y) ->
Format.fprintf f "FLOAT{%a[%d]} = %a" Var.print x i Var.print y
| Offset_ref (x, i) -> Format.fprintf f "%a[0] += %d" Var.print x i
| Array_set (x, y, z) ->
Format.fprintf f "%a[%a] = %a" Var.print x Var.print y Var.print z
| Event loc -> Format.fprintf f "event %s" (Parse_info.to_string loc)
let last f l =
match l with
| Return x -> Format.fprintf f "return %a" Var.print x
| Raise (x, `Normal) -> Format.fprintf f "raise %a" Var.print x
| Raise (x, `Reraise) -> Format.fprintf f "reraise %a" Var.print x
| Raise (x, `Notrace) -> Format.fprintf f "raise_notrace %a" Var.print x
| Stop -> Format.fprintf f "stop"
| Branch c -> Format.fprintf f "branch %a" cont c
| Cond (x, cont1, cont2) ->
Format.fprintf f "if %a then %a else %a" Var.print x cont cont1 cont cont2
| Switch (x, a1) ->
Format.fprintf f "switch %a {" Var.print x;
Array.iteri a1 ~f:(fun i c -> Format.fprintf f "int %d -> %a; " i cont c);
Format.fprintf f "}"
| Pushtrap (cont1, x, cont2) ->
Format.fprintf f "pushtrap %a handler %a => %a" cont cont1 Var.print x cont cont2
| Poptrap c -> Format.fprintf f "poptrap %a" cont c
type xinstr =
| Instr of instr
| Last of last
let block annot pc block =
Format.eprintf "==== %d (%a) ====@." pc var_list block.params;
List.iter block.body ~f:(fun i ->
Format.eprintf " %s %a@." (annot pc (Instr i)) instr i);
Format.eprintf " %s %a@." (annot pc (Last block.branch)) last block.branch;
Format.eprintf "@."
let program annot { start; blocks; _ } =
Format.eprintf "Entry point: %d@.@." start;
Addr.Map.iter (block annot) blocks
end
(****)
let fold_closures p f accu =
Addr.Map.fold
(fun _ block accu ->
List.fold_left block.body ~init:accu ~f:(fun accu i ->
match i with
| Let (x, Closure (params, cont)) -> f (Some x) params cont accu
| _ -> accu))
p.blocks
(f None [] (p.start, []) accu)
(****)
let prepend ({ start; blocks; free_pc } as p) body =
match body with
| [] -> p
| _ -> (
match Addr.Map.find start blocks with
| block ->
{ p with
blocks = Addr.Map.add start { block with body = body @ block.body } blocks
}
| exception Not_found ->
let new_start = free_pc in
let blocks =
Addr.Map.add new_start { params = []; body; branch = Stop } blocks
in
let free_pc = free_pc + 1 in
{ start = new_start; blocks; free_pc })
let empty_block = { params = []; body = []; branch = Stop }
let empty =
let start = 0 in
let blocks = Addr.Map.singleton start empty_block in
{ start; blocks; free_pc = start + 1 }
let is_empty p =
match Addr.Map.cardinal p.blocks with
| 0 -> true
| 1 -> (
let _, v = Addr.Map.choose p.blocks in
match v with
| { body; branch = Stop; params = _ } -> (
match body with
| ([] | [ Let (_, Prim (Extern "caml_get_global_data", _)) ]) when true -> true
| _ -> false)
| _ -> false)
| _ -> false
let poptraps blocks pc =
let rec loop blocks pc visited depth acc =
if Addr.Set.mem pc visited
then acc, visited
else
let visited = Addr.Set.add pc visited in
let block = Addr.Map.find pc blocks in
match block.branch with
| Return _ | Raise _ | Stop -> acc, visited
| Branch (pc', _) -> loop blocks pc' visited depth acc
| Poptrap (pc', _) ->
if depth = 0
then Addr.Set.add pc' acc, visited
else loop blocks pc' visited (depth - 1) acc
| Pushtrap ((pc', _), _, (pc_h, _)) ->
let acc, visited = loop blocks pc' visited (depth + 1) acc in
let acc, visited = loop blocks pc_h visited depth acc in
acc, visited
| Cond (_, (pc1, _), (pc2, _)) ->
let acc, visited = loop blocks pc1 visited depth acc in
let acc, visited = loop blocks pc2 visited depth acc in
acc, visited
| Switch (_, a) ->
let acc, visited =
Array.fold_right
~init:(acc, visited)
~f:(fun (pc, _) (acc, visited) -> loop blocks pc visited depth acc)
a
in
acc, visited
in
loop blocks pc Addr.Set.empty 0 Addr.Set.empty |> fst
let fold_children blocks pc f accu =
let block = Addr.Map.find pc blocks in
match block.branch with
| Return _ | Raise _ | Stop -> accu
| Branch (pc', _) | Poptrap (pc', _) -> f pc' accu
| Pushtrap ((pc', _), _, (pc_h, _)) ->
let accu = f pc' accu in
let accu = f pc_h accu in
accu
| Cond (_, (pc1, _), (pc2, _)) ->
let accu = f pc1 accu in
let accu = f pc2 accu in
accu
| Switch (_, a1) ->
let accu = Array.fold_right ~init:accu ~f:(fun (pc, _) accu -> f pc accu) a1 in
accu
let fold_children_skip_try_body blocks pc f accu =
let block = Addr.Map.find pc blocks in
match block.branch with
| Return _ | Raise _ | Stop -> accu
| Branch (pc', _) | Poptrap (pc', _) -> f pc' accu
| Pushtrap ((pc', _), _, (pc_h, _)) ->
let accu = Addr.Set.fold f (poptraps blocks pc') accu in
let accu = f pc_h accu in
accu
| Cond (_, (pc1, _), (pc2, _)) ->
let accu = f pc1 accu in
let accu = f pc2 accu in
accu
| Switch (_, a1) ->
let accu = Array.fold_right ~init:accu ~f:(fun (pc, _) accu -> f pc accu) a1 in
accu
type 'c fold_blocs = block Addr.Map.t -> Addr.t -> (Addr.t -> 'c -> 'c) -> 'c -> 'c
type fold_blocs_poly = { fold : 'a. 'a fold_blocs } [@@unboxed]
let rec traverse' { fold } f pc visited blocks acc =
if not (Addr.Set.mem pc visited)
then
let visited = Addr.Set.add pc visited in
let visited, acc =
fold
blocks
pc
(fun pc (visited, acc) ->
let visited, acc = traverse' { fold } f pc visited blocks acc in
visited, acc)
(visited, acc)
in
let acc = f pc acc in
visited, acc
else visited, acc
let traverse fold f pc blocks acc = snd (traverse' fold f pc Addr.Set.empty blocks acc)
let rec preorder_traverse' { fold } f pc visited blocks acc =
if not (Addr.Set.mem pc visited)
then
let visited = Addr.Set.add pc visited in
let acc = f pc acc in
fold
blocks
pc
(fun pc (visited, acc) ->
let visited, acc = preorder_traverse' { fold } f pc visited blocks acc in
visited, acc)
(visited, acc)
else visited, acc
let preorder_traverse fold f pc blocks acc =
snd (preorder_traverse' fold f pc Addr.Set.empty blocks acc)
let fold_closures_innermost_first { start; blocks; _ } f accu =
let rec visit blocks pc f accu =
traverse
{ fold = fold_children }
(fun pc accu ->
let block = Addr.Map.find pc blocks in
List.fold_left block.body ~init:accu ~f:(fun accu i ->
match i with
| Let (x, Closure (params, cont)) ->
let accu = visit blocks (fst cont) f accu in
f (Some x) params cont accu
| _ -> accu))
pc
blocks
accu
in
let accu = visit blocks start f accu in
f None [] (start, []) accu
let fold_closures_outermost_first { start; blocks; _ } f accu =
let rec visit blocks pc f accu =
traverse
{ fold = fold_children }
(fun pc accu ->
let block = Addr.Map.find pc blocks in
List.fold_left block.body ~init:accu ~f:(fun accu i ->
match i with
| Let (x, Closure (params, cont)) ->
let accu = f (Some x) params cont accu in
visit blocks (fst cont) f accu
| _ -> accu))
pc
blocks
accu
in
let accu = f None [] (start, []) accu in
visit blocks start f accu
let eq p1 p2 =
p1.start = p2.start
&& Addr.Map.cardinal p1.blocks = Addr.Map.cardinal p2.blocks
&& Addr.Map.fold
(fun pc block1 b ->
b
&&
try
let block2 = Addr.Map.find pc p2.blocks in
Poly.(block1.params = block2.params)
&& Poly.(block1.branch = block2.branch)
&& Poly.(block1.body = block2.body)
with Not_found -> false)
p1.blocks
true
let with_invariant = Debug.find "invariant"
let check_defs = false
let invariant { blocks; start; _ } =
let target = Config.target () in
if with_invariant ()
then (
assert (Addr.Map.mem start blocks);
let defs = Var.ISet.empty () in
let check_cont (cont, args) =
let b = Addr.Map.find cont blocks in
assert (List.length args = List.length b.params)
in
let define x =
if check_defs
then (
assert (not (Var.ISet.mem defs x));
Var.ISet.add defs x)
in
let check_constant = function
| NativeInt _ | Int32 _ ->
assert (
match target with
| `Wasm -> true
| _ -> false)
| String _ | NativeString _ | Float _ | Float_array _ | Int _ | Int64 _
| Tuple (_, _, _) -> ()
in
let check_prim_arg = function
| Pc c -> check_constant c
| Pv _ -> ()
in
let check_expr = function
| Apply _ -> ()
| Block (_, _, _, _) -> ()
| Field (_, _, _) -> ()
| Closure (l, cont) ->
List.iter l ~f:define;
check_cont cont
| Constant c -> check_constant c
| Prim (_, args) -> List.iter ~f:check_prim_arg args
| Special _ -> ()
in
let check_instr i =
match i with
| Let (x, e) ->
define x;
check_expr e
| Assign _ -> ()
| Set_field (_, _i, _, _) -> ()
| Offset_ref (_x, _i) -> ()
| Array_set (_x, _y, _z) -> ()
| Event _ -> ()
in
let rec check_events l =
match l with
| Event _ :: Event _ :: _ -> assert false
| _ :: r -> check_events r
| [] -> ()
in
let check_last l =
match l with
| Return _ -> ()
| Raise _ -> ()
| Stop -> ()
| Branch cont -> check_cont cont
| Cond (_x, cont1, cont2) ->
check_cont cont1;
check_cont cont2
| Switch (_x, a1) -> Array.iteri a1 ~f:(fun _ cont -> check_cont cont)
| Pushtrap (cont1, _x, cont2) ->
check_cont cont1;
check_cont cont2
| Poptrap cont -> check_cont cont
in
Addr.Map.iter
(fun _pc block ->
List.iter block.params ~f:define;
List.iter block.body ~f:check_instr;
check_events block.body;
check_last block.branch)
blocks)
|