1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
|
(* Js_of_ocaml compiler
* http://www.ocsigen.org/js_of_ocaml/
* Copyright (C) 2010 Jérôme Vouillon
* Laboratoire PPS - CNRS Université Paris Diderot
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, with linking exception;
* either version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*)
open! Stdlib
let debug = Debug.find "flow"
let times = Debug.find "times"
open Code
(****)
let add_var = Var.ISet.add
type def =
| Phi of Var.Set.t
| Expr of Code.expr
| Param
module Info = struct
type t =
{ info_defs : def array
; info_known_origins : Code.Var.Set.t Code.Var.Tbl.t
; info_maybe_unknown : bool Code.Var.Tbl.t
; info_possibly_mutable : Var.ISet.t
}
let def t x =
match t.info_defs.(Code.Var.idx x) with
| Phi _ | Param -> None
| Expr x -> Some x
let possibly_mutable t x = Code.Var.ISet.mem t.info_possibly_mutable x
let update_def { info_defs; _ } x exp =
let idx = Code.Var.idx x in
info_defs.(idx) <- Expr exp
end
let undefined = Phi Var.Set.empty
let is_undefined d =
match d with
| Phi s -> Var.Set.is_empty s
| _ -> false
let add_expr_def defs x e =
let idx = Var.idx x in
assert (is_undefined defs.(idx));
defs.(idx) <- Expr e
let add_assign_def vars defs x y =
add_var vars x;
let idx = Var.idx x in
match defs.(idx) with
| Expr _ | Param -> assert false
| Phi s -> defs.(idx) <- Phi (Var.Set.add y s)
let add_param_def vars defs x =
add_var vars x;
let idx = Var.idx x in
assert (is_undefined defs.(idx) || Poly.(defs.(idx) = Param));
defs.(idx) <- Param
(* x depends on y *)
let add_dep deps x y =
let idx = Var.idx y in
deps.(idx) <- Var.Set.add x deps.(idx)
let rec arg_deps vars deps defs params args =
match params, args with
| x :: params, y :: args ->
add_dep deps x y;
add_assign_def vars defs x y;
arg_deps vars deps defs params args
| [], [] -> ()
| _ -> assert false
let cont_deps blocks vars deps defs (pc, args) =
let block = Addr.Map.find pc blocks in
arg_deps vars deps defs block.params args
let expr_deps blocks vars deps defs x e =
match e with
| Constant _ | Apply _ | Prim _ | Special _ -> ()
| Closure (l, cont) ->
List.iter l ~f:(fun x -> add_param_def vars defs x);
cont_deps blocks vars deps defs cont
| Block (_, a, _, _) -> Array.iter a ~f:(fun y -> add_dep deps x y)
| Field (y, _, _) -> add_dep deps x y
let program_deps { blocks; _ } =
let nv = Var.count () in
let vars = Var.ISet.empty () in
let deps = Array.make nv Var.Set.empty in
let defs = Array.make nv undefined in
Addr.Map.iter
(fun _ block ->
List.iter block.body ~f:(fun i ->
match i with
| Let (x, e) ->
add_var vars x;
add_expr_def defs x e;
expr_deps blocks vars deps defs x e
| Assign (x, y) ->
add_dep deps x y;
add_assign_def vars defs x y
| Event _ | Set_field _ | Array_set _ | Offset_ref _ -> ());
match block.branch with
| Return _ | Raise _ | Stop -> ()
| Branch cont | Poptrap cont -> cont_deps blocks vars deps defs cont
| Cond (_, cont1, cont2) ->
cont_deps blocks vars deps defs cont1;
cont_deps blocks vars deps defs cont2
| Switch (_, a1) ->
Array.iter a1 ~f:(fun cont -> cont_deps blocks vars deps defs cont)
| Pushtrap (cont, x, cont_h) ->
add_param_def vars defs x;
cont_deps blocks vars deps defs cont_h;
cont_deps blocks vars deps defs cont)
blocks;
vars, deps, defs
let var_set_lift f s = Var.Set.fold (fun y s -> Var.Set.union (f y) s) s Var.Set.empty
let propagate1 deps defs st x =
match defs.(Var.idx x) with
| Param -> Var.Set.singleton x
| Phi s -> var_set_lift (fun y -> Var.Tbl.get st y) s
| Expr e -> (
match e with
| Constant _ | Apply _ | Prim _ | Special _ | Closure _ | Block _ ->
Var.Set.singleton x
| Field (y, n, _) ->
var_set_lift
(fun z ->
match defs.(Var.idx z) with
| Expr (Block (_, a, _, _)) when n < Array.length a ->
let t = a.(n) in
add_dep deps x t;
Var.Tbl.get st t
| Phi _ | Param | Expr _ -> Var.Set.empty)
(Var.Tbl.get st y))
module G = Dgraph.Make_Imperative (Var) (Var.ISet) (Var.Tbl)
module Domain1 = struct
type t = Var.Set.t
let equal = Var.Set.equal
let bot = Var.Set.empty
end
module Solver1 = G.Solver (Domain1)
let solver1 vars deps defs =
let g =
{ G.domain = vars; G.iter_children = (fun f x -> Var.Set.iter f deps.(Var.idx x)) }
in
Solver1.f () g (propagate1 deps defs)
(****)
type mutability_state =
{ defs : def array
; known_origins : Code.Var.Set.t Code.Var.Tbl.t
; may_escape : Code.Var.ISet.t
; possibly_mutable : Code.Var.ISet.t
}
let rec block_escape st x =
Var.Set.iter
(fun y ->
if not (Code.Var.ISet.mem st.may_escape y)
then (
Code.Var.ISet.add st.may_escape y;
match st.defs.(Var.idx y) with
| Expr (Block (_, l, _, mut)) ->
(match mut with
| Immutable -> ()
| Maybe_mutable -> Code.Var.ISet.add st.possibly_mutable y);
Array.iter l ~f:(fun z -> block_escape st z)
| _ -> Code.Var.ISet.add st.possibly_mutable y))
(Var.Tbl.get st.known_origins x)
let expr_escape st _x e =
match e with
| Special _ | Constant _ | Closure _ | Block _ | Field _ -> ()
| Apply { args; _ } -> List.iter args ~f:(fun x -> block_escape st x)
| Prim (Array_get, [ Pv x; _ ]) -> block_escape st x
| Prim ((Vectlength | Array_get | Not | IsInt | Eq | Neq | Lt | Le | Ult), _) -> ()
| Prim (Extern name, l) ->
let ka =
match Primitive.kind_args name with
| Some l -> l
| None -> (
match Primitive.kind name with
| `Mutable | `Mutator -> []
| `Pure -> List.map l ~f:(fun _ -> `Const))
in
let rec loop args ka =
match args, ka with
| [], _ -> ()
| Pc _ :: ax, [] -> loop ax []
| Pv a :: ax, [] ->
block_escape st a;
loop ax []
| a :: ax, k :: kx ->
(match a, k with
| _, `Const | Pc _, _ -> ()
| Pv v, `Shallow_const -> (
match st.defs.(Var.idx v) with
| Expr (Constant (Tuple _)) -> ()
| Expr (Block (_, a, _, _)) ->
Array.iter a ~f:(fun x -> block_escape st x)
| _ -> block_escape st v)
| Pv v, `Object_literal -> (
match st.defs.(Var.idx v) with
| Expr (Constant (Tuple _)) -> ()
| Expr (Block (_, a, _, _)) ->
Array.iter a ~f:(fun x ->
match st.defs.(Var.idx x) with
| Expr (Block (_, [| _k; v |], _, _)) -> block_escape st v
| Expr (Constant _) -> ()
| _ -> block_escape st x)
| _ -> block_escape st v)
| Pv v, `Mutable -> block_escape st v);
loop ax kx
in
loop l ka
let program_escape defs known_origins { blocks; _ } =
let may_escape = Var.ISet.empty () in
let possibly_mutable = Var.ISet.empty () in
let st = { defs; known_origins; may_escape; possibly_mutable } in
Addr.Map.iter
(fun _ block ->
List.iter block.body ~f:(fun i ->
match i with
| Let (x, e) -> expr_escape st x e
| Event _ | Assign _ -> ()
| Set_field (x, _, _, y) | Array_set (x, _, y) ->
Var.Set.iter
(fun y -> Var.ISet.add possibly_mutable y)
(Var.Tbl.get known_origins x);
block_escape st y
| Offset_ref (x, _) ->
Var.Set.iter
(fun y -> Var.ISet.add possibly_mutable y)
(Var.Tbl.get known_origins x));
match block.branch with
| Return x | Raise (x, _) -> block_escape st x
| Stop | Branch _ | Cond _ | Switch _ | Pushtrap _ | Poptrap _ -> ())
blocks;
possibly_mutable
(****)
let propagate2 ?(skip_param = false) defs known_origins possibly_mutable st x =
match defs.(Var.idx x) with
| Param -> skip_param
| Phi s -> Var.Set.exists (fun y -> Var.Tbl.get st y) s
| Expr e -> (
match e with
| Constant _ | Closure _ | Apply _ | Prim _ | Block _ | Special _ -> false
| Field (y, n, _) ->
Var.Tbl.get st y
|| Var.Set.exists
(fun z ->
match defs.(Var.idx z) with
| Expr (Block (_, a, _, _)) ->
n >= Array.length a
|| Var.ISet.mem possibly_mutable z
|| Var.Tbl.get st a.(n)
| Phi _ | Param | Expr _ -> true)
(Var.Tbl.get known_origins y))
module Domain2 = struct
type t = bool
let equal = Bool.equal
let bot = false
end
module Solver2 = G.Solver (Domain2)
let solver2 ?skip_param vars deps defs known_origins possibly_mutable =
let g =
{ G.domain = vars; G.iter_children = (fun f x -> Var.Set.iter f deps.(Var.idx x)) }
in
Solver2.f () g (propagate2 ?skip_param defs known_origins possibly_mutable)
let get_approx
{ Info.info_defs = _; info_known_origins; info_maybe_unknown; _ }
f
top
join
x =
let s = Var.Tbl.get info_known_origins x in
if Var.Tbl.get info_maybe_unknown x
then top
else
match Var.Set.cardinal s with
| 0 -> top
| 1 -> f (Var.Set.choose s)
| _ -> Var.Set.fold (fun x u -> join (f x) u) s (f (Var.Set.choose s))
let the_def_of info x =
match x with
| Pv x ->
get_approx
info
(fun x ->
match info.info_defs.(Var.idx x) with
| Expr (Constant (Float _ | Int _ | NativeString _) as e) -> Some e
| Expr (Constant (String _) as e) when Config.Flag.safe_string () -> Some e
| Expr e -> if Var.ISet.mem info.info_possibly_mutable x then None else Some e
| _ -> None)
None
(fun _ _ -> None)
x
| Pc c -> Some (Constant c)
(* If [constant_identical a b = true], then the two values cannot be
distinguished, i.e., they are not different objects (and [caml_js_equals a b
= true]) and if both are floats, they are bitwise equal. *)
let constant_identical ~(target : [ `JavaScript | `Wasm ]) a b =
match a, b, target with
| Int i, Int j, _ -> Targetint.equal i j
| Float a, Float b, `JavaScript -> Float.bitwise_equal a b
| Float _, Float _, `Wasm -> false
| NativeString a, NativeString b, `JavaScript -> Native_string.equal a b
| NativeString _, NativeString _, `Wasm ->
false
(* Native strings are boxed (JavaScript objects) in Wasm and are
possibly different objects *)
| String a, String b, `JavaScript -> Config.Flag.use_js_string () && String.equal a b
| String _, String _, `Wasm ->
false (* Strings are boxed in Wasm and are possibly different objects *)
| Int32 _, Int32 _, `Wasm ->
false (* [Int32]s are boxed in Wasm and are possibly different objects *)
| Int32 _, Int32 _, `JavaScript -> assert false
| NativeInt _, NativeInt _, `Wasm ->
false (* [NativeInt]s are boxed in Wasm and are possibly different objects *)
| NativeInt _, NativeInt _, `JavaScript -> assert false
(* All other values may be distinct objects and thus different by [caml_js_equals]. *)
| Int64 _, Int64 _, _ -> false
| Tuple _, Tuple _, _ -> false
| Float_array _, Float_array _, _ -> false
| (Int _ | Float _ | Int64 _ | Int32 _ | NativeInt _), _, _ -> false
| (String _ | NativeString _), _, _ -> false
| (Float_array _ | Tuple _), _, _ -> false
let the_const_of ~target info x =
match x with
| Pv x ->
get_approx
info
(fun x ->
match info.info_defs.(Var.idx x) with
| Expr (Constant ((Float _ | Int _ | NativeString _) as c)) -> Some c
| Expr (Constant (String _ as c)) when Config.Flag.safe_string () -> Some c
| Expr (Constant c) ->
if Var.ISet.mem info.info_possibly_mutable x then None else Some c
| _ -> None)
None
(fun u v ->
match u, v with
| Some i, Some j when constant_identical ~target i j -> u
| _ -> None)
x
| Pc c -> Some c
let the_int ~target info x =
match the_const_of ~target info x with
| Some (Int i) -> Some i
| _ -> None
let the_string_of ~target info x =
match the_const_of info ~target x with
| Some (String i) -> Some i
| _ -> None
let the_native_string_of ~target info x =
match the_const_of ~target info x with
| Some (NativeString i) -> Some i
| _ -> None
(*XXX Maybe we could iterate? *)
let direct_approx (info : Info.t) x =
match info.info_defs.(Var.idx x) with
| Expr (Field (y, n, _)) ->
get_approx
info
(fun z ->
if Var.ISet.mem info.info_possibly_mutable z
then None
else
match info.info_defs.(Var.idx z) with
| Expr (Block (_, a, _, _)) when n < Array.length a -> Some a.(n)
| _ -> None)
None
(fun u v ->
match u, v with
| Some n, Some m when Var.compare n m = 0 -> u
| _ -> None)
y
| _ -> None
let build_subst (info : Info.t) vars =
let nv = Var.count () in
let subst = Array.init nv ~f:(fun i -> Var.of_idx i) in
Var.ISet.iter
(fun x ->
let x_idx = Var.idx x in
let u = Var.Tbl.get info.info_maybe_unknown x in
(if not u
then
let s = Var.Tbl.get info.info_known_origins x in
if Var.Set.cardinal s = 1 then subst.(x_idx) <- Var.Set.choose s);
(if Var.equal subst.(x_idx) x
then
match direct_approx info x with
| None -> ()
| Some y -> subst.(x_idx) <- y);
if Var.equal subst.(x_idx) x then () else Var.propagate_name x subst.(x_idx))
vars;
subst
(****)
let f ?skip_param p =
Code.invariant p;
let t = Timer.make () in
let t1 = Timer.make () in
let vars, deps, defs = program_deps p in
if times () then Format.eprintf " flow analysis 1: %a@." Timer.print t1;
let t2 = Timer.make () in
let known_origins = solver1 vars deps defs in
if times () then Format.eprintf " flow analysis 2: %a@." Timer.print t2;
let t3 = Timer.make () in
let possibly_mutable = program_escape defs known_origins p in
if times () then Format.eprintf " flow analysis 3: %a@." Timer.print t3;
let t4 = Timer.make () in
let maybe_unknown = solver2 ?skip_param vars deps defs known_origins possibly_mutable in
if times () then Format.eprintf " flow analysis 4: %a@." Timer.print t4;
if debug ()
then
Var.ISet.iter
(fun x ->
let s = Var.Tbl.get known_origins x in
if not (Var.Set.is_empty s) (*&& Var.Set.choose s <> x*)
then
Format.eprintf
"%a: {%a} / %s@."
Var.print
x
Code.Print.var_list
(Var.Set.elements s)
(if Var.Tbl.get maybe_unknown x then "any" else "known"))
vars;
let t5 = Timer.make () in
let info =
{ Info.info_defs = defs
; info_known_origins = known_origins
; info_maybe_unknown = maybe_unknown
; info_possibly_mutable = possibly_mutable
}
in
let s = build_subst info vars in
let p = Subst.program (Subst.from_array s) p in
if times () then Format.eprintf " flow analysis 5: %a@." Timer.print t5;
if times () then Format.eprintf " flow analysis: %a@." Timer.print t;
Code.invariant p;
p, info
|