1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
|
(* Js_of_ocaml compiler
* http://www.ocsigen.org/js_of_ocaml/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, with linking exception;
* either version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*)
(*
The goal of the analysis is to get a good idea of which function might
be called where, and of which functions might be called from some
unknown location (which function 'escapes'). We also keep track of
blocks, to track functions across modules.
*)
open! Stdlib
let debug = Debug.find "global-flow"
let times = Debug.find "times"
open Code
(****)
(* Compute the list of variables containing the return values of each
function *)
let return_values p =
Code.fold_closures
p
(fun name_opt _ (pc, _) rets ->
match name_opt with
| None -> rets
| Some name ->
let s =
Code.traverse
{ fold = fold_children }
(fun pc s ->
let block = Addr.Map.find pc p.blocks in
match block.branch with
| Return x -> Var.Set.add x s
| _ -> s)
pc
p.blocks
Var.Set.empty
in
Var.Map.add name s rets)
Var.Map.empty
(****)
(* A variable is either let-bound, or a parameter, to which we
associate a set of possible arguments.
*)
type def =
| Expr of Code.expr
| Phi of
{ known : Var.Set.t (* Known arguments *)
; others : bool (* Can there be other arguments *)
}
let undefined = Phi { known = Var.Set.empty; others = false }
let is_undefined d =
match d with
| Expr _ -> false
| Phi { known; others } -> Var.Set.is_empty known && not others
type escape_status =
| Escape
| Escape_constant (* Escapes but we know the value is not modified *)
| No
type state =
{ vars : Var.ISet.t (* Set of all veriables considered *)
; deps : Var.t Var.Tbl.DataSet.t Var.Tbl.t (* Dependency between variables *)
; defs : def array (* Definition of each variable *)
; variable_may_escape : escape_status array
(* Any value bound to this variable may escape *)
; variable_possibly_mutable : Var.ISet.t
(* Any value bound to this variable may be mutable *)
; may_escape : escape_status array (* This value may escape *)
; possibly_mutable : Var.ISet.t (* This value may be mutable *)
; return_values : Var.Set.t Var.Map.t
(* Set of variables holding return values of each function *)
; known_cases : (Var.t, int list) Hashtbl.t
(* Possible tags for a block after a [switch]. This is used to
get a more precise approximation of the effect of a field
access [Field] *)
; applied_functions : (Var.t * Var.t, unit) Hashtbl.t
(* Functions that have been already considered at a call site.
This is to avoid repeated computations *)
; fast : bool
}
let add_var st x = Var.ISet.add st.vars x
(* x depends on y *)
let add_dep st x y = Var.Tbl.add_set st.deps y x
let add_expr_def st x e =
add_var st x;
let idx = Var.idx x in
assert (is_undefined st.defs.(idx));
st.defs.(idx) <- Expr e
let add_assign_def st x y =
add_var st x;
add_dep st x y;
let idx = Var.idx x in
match st.defs.(idx) with
| Expr _ -> assert false
| Phi { known; others } -> st.defs.(idx) <- Phi { known = Var.Set.add y known; others }
let add_param_def st x =
add_var st x;
let idx = Var.idx x in
assert (is_undefined st.defs.(idx));
if st.fast then st.defs.(idx) <- Phi { known = Var.Set.empty; others = true }
let rec arg_deps st ?ignore params args =
match params, args with
| x :: params, y :: args ->
(* This is to deal with the [else] clause of a conditional,
where we know that the value of the tested variable is 0. *)
(match ignore with
| Some y' when Var.equal y y' -> ()
| _ -> add_assign_def st x y);
arg_deps st params args
| [], [] -> ()
| _ -> assert false
let cont_deps blocks st ?ignore (pc, args) =
let block = Addr.Map.find pc blocks in
arg_deps st ?ignore block.params args
let do_escape st level x = st.variable_may_escape.(Var.idx x) <- level
let possibly_mutable st x = Var.ISet.add st.variable_possibly_mutable x
let expr_deps blocks st x e =
match e with
| Constant _ | Prim ((Vectlength | Not | IsInt | Eq | Neq | Lt | Le | Ult), _) | Block _
-> ()
| Special _ -> ()
| Prim
( ( Extern
( "caml_check_bound"
| "caml_check_bound_float"
| "caml_check_bound_gen"
| "caml_array_unsafe_get"
| "caml_floatarray_unsafe_get" )
| Array_get )
, l ) ->
(* The analysis knowns about these primitives, and will compute
an approximation of the value they return based on an
approximation of their arguments *)
(if st.fast
then
match l with
| Pv x :: _ -> do_escape st Escape x
| Pc _ :: _ -> ()
| [] -> assert false);
List.iter
~f:(fun a ->
match a with
| Pc _ -> ()
| Pv y -> add_dep st x y)
l
| Prim (Extern name, l) ->
(* Set the escape status of the arguments *)
let ka =
match Primitive.kind_args name with
| Some l -> l
| None -> (
match Primitive.kind name with
| `Mutable | `Mutator -> []
| `Pure -> List.map l ~f:(fun _ -> `Const))
in
let rec loop args ka =
match args, ka with
| [], _ -> ()
| Pc _ :: ax, [] -> loop ax []
| Pv a :: ax, [] ->
do_escape st Escape a;
loop ax []
| a :: ax, k :: kx ->
(match a, k with
| Pc _, _ -> ()
| Pv v, `Const -> do_escape st Escape_constant v
| Pv v, `Shallow_const -> (
match st.defs.(Var.idx v) with
| Expr (Block (_, a, _, _)) ->
Array.iter a ~f:(fun x -> do_escape st Escape x)
| _ -> do_escape st Escape v)
| Pv v, `Object_literal -> (
match st.defs.(Var.idx v) with
| Expr (Block (_, a, _, _)) ->
Array.iter a ~f:(fun x ->
match st.defs.(Var.idx x) with
| Expr (Block (_, [| _k; v |], _, _)) -> do_escape st Escape v
| _ -> do_escape st Escape x)
| _ -> do_escape st Escape v)
| Pv v, `Mutable -> do_escape st Escape v);
loop ax kx
in
loop l ka
| Apply { f; args; _ } -> (
add_dep st x f;
(* If [f] is obviously a function, we can add appropriate
dependencies right now. This speeds up the analysis
significantly. *)
match st.defs.(Var.idx f) with
| Expr (Closure (params, _)) when List.length args = List.length params ->
Hashtbl.add st.applied_functions (x, f) ();
if st.fast
then List.iter ~f:(fun a -> do_escape st Escape a) args
else List.iter2 ~f:(fun p a -> add_assign_def st p a) params args;
Var.Set.iter (fun y -> add_dep st x y) (Var.Map.find f st.return_values)
| _ -> ())
| Closure (l, cont) ->
List.iter l ~f:(fun x -> add_param_def st x);
cont_deps blocks st cont
| Field (y, _, _) -> add_dep st x y
let program_deps st { start; blocks; _ } =
Code.traverse
{ Code.fold = Code.fold_children }
(fun pc () ->
match Addr.Map.find pc blocks with
| { branch = Return x; _ } -> do_escape st Escape x
| _ -> ())
start
blocks
();
Addr.Map.iter
(fun _ block ->
List.iter block.body ~f:(fun i ->
match i with
| Let (x, e) ->
add_expr_def st x e;
expr_deps blocks st x e
| Assign (x, y) -> add_assign_def st x y
| Set_field (x, _, _, y) | Array_set (x, _, y) ->
possibly_mutable st x;
do_escape st Escape y
| Event _ | Offset_ref _ -> ());
match block.branch with
| Return _ | Stop -> ()
| Raise (x, _) -> do_escape st Escape x
| Branch cont | Poptrap cont -> cont_deps blocks st cont
| Cond (x, cont1, cont2) ->
cont_deps blocks st cont1;
cont_deps blocks st ~ignore:x cont2
| Switch (x, a1) -> (
Array.iter a1 ~f:(fun cont -> cont_deps blocks st cont);
if not st.fast
then
(* looking up the def of x is fine here, because the tag
we're looking for is at addr [pc - 2] (see
parse_bytecode.ml) and [Addr.Map.iter] iterate in
increasing order *)
match st.defs.(Code.Var.idx x) with
| Expr (Prim (Extern "%direct_obj_tag", [ Pv b ])) ->
let h = Hashtbl.create 16 in
Array.iteri a1 ~f:(fun i (pc, _) ->
Hashtbl.replace
h
pc
(i :: (try Hashtbl.find h pc with Not_found -> [])));
Hashtbl.iter
(fun pc tags ->
let block = Addr.Map.find pc blocks in
List.iter
~f:(fun i ->
match i with
| Let (y, Field (x', _, _)) when Var.equal b x' ->
Hashtbl.add st.known_cases y tags
| _ -> ())
block.body)
h
| Expr _ | Phi _ -> ())
| Pushtrap (cont, x, cont_h) ->
add_var st x;
st.defs.(Var.idx x) <- Phi { known = Var.Set.empty; others = true };
cont_deps blocks st cont_h;
cont_deps blocks st cont)
blocks
(* For each variable, we keep track of which values, function or
block, it may contain. Other kinds of values are not relevant and
just ignored. We loose a lot of information when going to [Top]
since we have to assume that all functions might escape. So, having
possibly unknown values does not move us to [Top]; we use a flag
for that instead. *)
type approx =
| Top
| Values of
{ known : Var.Set.t (* List of possible values (functions and blocks) *)
; others : bool (* Whether other functions or blocks are possible *)
}
module Domain = struct
type t = approx
let bot = Values { known = Var.Set.empty; others = false }
let others = Values { known = Var.Set.empty; others = true }
let singleton x = Values { known = Var.Set.singleton x; others = false }
let equal x y =
match x, y with
| Top, Top -> true
| Values { known; others }, Values { known = known'; others = others' } ->
Var.Set.equal known known' && Bool.equal others others'
| Top, Values _ | Values _, Top -> false
let higher_escape_status s s' =
match s, s' with
| Escape, Escape -> false
| Escape, (Escape_constant | No) -> true
| Escape_constant, (Escape | Escape_constant) -> false
| Escape_constant, No -> true
| No, (Escape | Escape_constant | No) -> false
let rec value_escape ~update ~st ~approx s x =
let idx = Var.idx x in
if higher_escape_status s st.may_escape.(idx)
then (
st.may_escape.(idx) <- s;
match st.defs.(idx) with
| Expr (Block (_, a, _, mut)) -> (
Array.iter ~f:(fun y -> variable_escape ~update ~st ~approx s y) a;
match s, mut with
| Escape, Maybe_mutable ->
Var.ISet.add st.possibly_mutable x;
update ~children:true x
| (Escape_constant | No), _ | Escape, Immutable -> ())
| Expr (Closure (params, _)) ->
List.iter
~f:(fun y ->
(match st.defs.(Var.idx y) with
| Phi { known; _ } -> st.defs.(Var.idx y) <- Phi { known; others = true }
| Expr _ -> assert false);
update ~children:false y)
params;
Var.Set.iter
(fun y -> variable_escape ~update ~st ~approx s y)
(Var.Map.find x st.return_values)
| _ -> ())
and variable_escape ~update ~st ~approx s x =
if higher_escape_status s st.variable_may_escape.(Var.idx x)
then (
st.variable_may_escape.(Var.idx x) <- s;
approx_escape ~update ~st ~approx s (Var.Tbl.get approx x))
and approx_escape ~update ~st ~approx s a =
match a with
| Top -> ()
| Values { known; _ } ->
Var.Set.iter (fun x -> value_escape ~update ~st ~approx s x) known
let join ~update ~st ~approx x y =
match x, y with
| Top, _ ->
approx_escape ~update ~st ~approx Escape y;
Top
| _, Top ->
approx_escape ~update ~st ~approx Escape x;
Top
| Values { known; others }, Values { known = known'; others = others' } ->
Values { known = Var.Set.union known known'; others = others || others' }
let join_set ~update ~st ~approx ?others:(o = false) f s =
Var.Set.fold
(fun x a -> join ~update ~st ~approx (f x) a)
s
(if o then others else bot)
let mark_mutable ~update ~st a =
match a with
| Top -> ()
| Values { known; _ } ->
Var.Set.iter
(fun x ->
match st.defs.(Var.idx x) with
| Expr (Block (_, _, _, Maybe_mutable)) ->
if not (Var.ISet.mem st.possibly_mutable x)
then (
Var.ISet.add st.possibly_mutable x;
update ~children:true x)
| Expr (Block (_, _, _, Immutable)) | Expr (Closure _) -> ()
| Phi _ | Expr _ -> assert false)
known
end
let propagate st ~update approx x =
match st.defs.(Var.idx x) with
| Phi { known; others } ->
Domain.join_set ~update ~st ~approx ~others (fun y -> Var.Tbl.get approx y) known
| Expr e -> (
match e with
| Constant _ ->
(* A constant cannot contain a function *)
Domain.bot
| Closure _ | Block _ -> Domain.singleton x
| Field (y, n, _) -> (
match Var.Tbl.get approx y with
| Values { known; others } ->
let tags =
try Some (Hashtbl.find st.known_cases x) with Not_found -> None
in
Domain.join_set
~others
~update
~st
~approx
(fun z ->
match st.defs.(Var.idx z) with
| Expr (Block (t, a, _, _))
when n < Array.length a
&&
match tags with
| Some tags -> List.memq t ~set:tags
| None -> true ->
let t = a.(n) in
add_dep st x t;
let a = Var.Tbl.get approx t in
if Var.ISet.mem st.possibly_mutable z
then Domain.join ~update ~st ~approx Domain.others a
else a
| Expr (Block _ | Closure _) -> Domain.bot
| Phi _ | Expr _ -> assert false)
known
| Top -> Top)
| Prim
( Extern ("caml_check_bound" | "caml_check_bound_float" | "caml_check_bound_gen")
, [ Pv y; _ ] ) -> Var.Tbl.get approx y
| Prim
( (Array_get | Extern ("caml_array_unsafe_get" | "caml_floatarray_unsafe_get"))
, [ Pv y; _ ] ) -> (
if st.fast
then Domain.others
else
match Var.Tbl.get approx y with
| Values { known; others } ->
Domain.join_set
~update
~st
~approx
~others
(fun z ->
match st.defs.(Var.idx z) with
| Expr (Block (_, lst, _, _)) ->
Array.iter ~f:(fun t -> add_dep st x t) lst;
let a =
Array.fold_left
~f:(fun acc t ->
Domain.join ~update ~st ~approx (Var.Tbl.get approx t) acc)
~init:Domain.bot
lst
in
if Var.ISet.mem st.possibly_mutable z
then Domain.join ~update ~st ~approx Domain.others a
else a
| Expr (Closure _) -> Domain.bot
| Phi _ | Expr _ -> assert false)
known
| Top -> Top)
| Prim (Array_get, _) -> Domain.others
| Prim ((Vectlength | Not | IsInt | Eq | Neq | Lt | Le | Ult), _) ->
(* The result of these primitive is neither a function nor a
block *)
Domain.bot
| Prim (Extern _, _) -> Domain.others
| Special _ -> Domain.others
| Apply { f; args; _ } -> (
match Var.Tbl.get approx f with
| Values { known; others } ->
if others
then
List.iter
~f:(fun y -> Domain.variable_escape ~update ~st ~approx Escape y)
args;
Domain.join_set
~update
~st
~approx
~others
(fun g ->
match st.defs.(Var.idx g) with
| Expr (Closure (params, _)) when List.length args = List.length params
->
if not (Hashtbl.mem st.applied_functions (x, g))
then (
Hashtbl.add st.applied_functions (x, g) ();
if st.fast
then
List.iter
~f:(fun y ->
Domain.variable_escape ~update ~st ~approx Escape y)
args
else
List.iter2
~f:(fun p a ->
add_assign_def st p a;
update ~children:false p)
params
args;
Var.Set.iter
(fun y -> add_dep st x y)
(Var.Map.find g st.return_values));
Domain.join_set
~update
~st
~approx
(fun y -> Var.Tbl.get approx y)
(Var.Map.find g st.return_values)
| Expr (Closure (_, _)) ->
(* The funciton is partially applied or over applied *)
List.iter
~f:(fun y -> Domain.variable_escape ~update ~st ~approx Escape y)
args;
Domain.variable_escape ~update ~st ~approx Escape g;
Domain.others
| Expr (Block _) -> Domain.bot
| Phi _ | Expr _ -> assert false)
known
| Top ->
List.iter
~f:(fun y -> Domain.variable_escape ~update ~st ~approx Escape y)
args;
Top))
let propagate st ~update approx x =
let res = propagate st ~update approx x in
match res with
| Values { known; _ } when Var.Set.cardinal known >= 200 ->
(* When the set of possible values get to large, we give up and
just forget about it. This is crucial to make the analysis
terminates in a reasonable amount of time. This happens when
our analysis is very imprecise (for instance, with
[List.map]), so we may not loose too much by doing that. *)
if debug () then Format.eprintf "TOP %a@." Var.print x;
Domain.approx_escape ~update ~st ~approx Escape res;
Top
| Values _ ->
(match st.variable_may_escape.(Var.idx x) with
| (Escape | Escape_constant) as s -> Domain.approx_escape ~update ~st ~approx s res
| No -> ());
if Var.ISet.mem st.variable_possibly_mutable x
then Domain.mark_mutable ~update ~st res;
res
| Top -> Top
module G = Dgraph.Make_Imperative (Var) (Var.ISet) (Var.Tbl)
module Solver = G.Solver (Domain)
let solver st =
let g =
{ G.domain = st.vars
; G.iter_children =
(fun f x -> Var.Tbl.DataSet.iter (fun k -> f k) (Var.Tbl.get st.deps x))
}
in
Solver.f' () g (propagate st)
(****)
type info =
{ info_defs : def array
; info_approximation : Domain.t Var.Tbl.t
; info_may_escape : Var.ISet.t
; info_variable_may_escape : escape_status array
; info_return_vals : Var.Set.t Var.Map.t
}
let f ~fast p =
let t = Timer.make () in
let t1 = Timer.make () in
let rets = return_values p in
let nv = Var.count () in
let vars = Var.ISet.empty () in
let deps = Var.Tbl.make_set () in
let defs = Array.make nv undefined in
let variable_may_escape = Array.make nv No in
let variable_possibly_mutable = Var.ISet.empty () in
let may_escape = Array.make nv No in
let possibly_mutable = Var.ISet.empty () in
let st =
{ vars
; deps
; defs
; return_values = rets
; variable_may_escape
; variable_possibly_mutable
; may_escape
; possibly_mutable
; known_cases = Hashtbl.create 16
; applied_functions = Hashtbl.create 16
; fast
}
in
program_deps st p;
if times ()
then Format.eprintf " global flow analysis (initialize): %a@." Timer.print t1;
let t2 = Timer.make () in
let approximation = solver st in
if times ()
then Format.eprintf " global flow analysis (solve): %a@." Timer.print t2;
if times () then Format.eprintf " global flow analysis: %a@." Timer.print t;
if debug ()
then
Var.ISet.iter
(fun x ->
let s = Var.Tbl.get approximation x in
if not (Domain.equal s Domain.bot)
then
Format.eprintf
"%a: %a@."
Var.print
x
(fun f a ->
match a with
| Top -> Format.fprintf f "top"
| Values { known; others } ->
Format.fprintf
f
"{%a/%b} mut:%b vmut:%b vesc:%s esc:%s"
(Format.pp_print_list
~pp_sep:(fun f () -> Format.fprintf f ", ")
(fun f x ->
Format.fprintf
f
"%a(%s)"
Var.print
x
(match st.defs.(Var.idx x) with
| Expr (Closure _) -> "C"
| Expr (Block _) -> (
"B"
^
match st.may_escape.(Var.idx x) with
| Escape -> "X"
| _ -> "")
| _ -> "O")))
(Var.Set.elements known)
others
(Var.ISet.mem st.possibly_mutable x)
(Var.ISet.mem st.variable_possibly_mutable x)
(match st.variable_may_escape.(Var.idx x) with
| Escape -> "Y"
| Escape_constant -> "y"
| No -> "n")
(match st.may_escape.(Var.idx x) with
| Escape -> "Y"
| Escape_constant -> "y"
| No -> "n"))
s)
vars;
let info_variable_may_escape = variable_may_escape in
let info_may_escape = Var.ISet.empty () in
Array.iteri
~f:(fun i s -> if Poly.(s <> No) then Var.ISet.add info_may_escape (Var.of_idx i))
may_escape;
{ info_defs = defs
; info_approximation = approximation
; info_variable_may_escape
; info_may_escape
; info_return_vals = rets
}
let exact_call info f n =
match Var.Tbl.get info.info_approximation f with
| Top | Values { others = true; _ } -> false
| Values { known; others = false } ->
Var.Set.for_all
(fun g ->
match info.info_defs.(Var.idx g) with
| Expr (Closure (params, _)) -> List.length params = n
| Expr (Block _) -> true
| Expr _ | Phi _ -> assert false)
known
let function_arity info f =
match Var.Tbl.get info.info_approximation f with
| Top | Values { others = true; _ } -> None
| Values { known; others = false } -> (
match
Var.Set.fold
(fun g acc ->
match info.info_defs.(Var.idx g) with
| Expr (Closure (params, _)) -> (
let n = List.length params in
match acc with
| None -> Some (Some n)
| Some (Some n') when n <> n' -> Some None
| Some _ -> acc)
| Expr (Block _) -> acc
| Expr _ | Phi _ -> assert false)
known
None
with
| Some v -> v
| None -> None)
|